• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
2  * Use of this source code is governed by a BSD-style license that can be
3  * found in the LICENSE file.
4  */
5 
6 #define _BSD_SOURCE
7 #define _GNU_SOURCE
8 
9 #include <asm/unistd.h>
10 #include <ctype.h>
11 #include <errno.h>
12 #include <fcntl.h>
13 #include <grp.h>
14 #include <inttypes.h>
15 #include <limits.h>
16 #include <linux/capability.h>
17 #include <pwd.h>
18 #include <sched.h>
19 #include <signal.h>
20 #include <stdarg.h>
21 #include <stdbool.h>
22 #include <stddef.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <syscall.h>
27 #include <sys/capability.h>
28 #include <sys/mount.h>
29 #include <sys/param.h>
30 #include <sys/prctl.h>
31 #include <sys/stat.h>
32 #include <sys/types.h>
33 #include <sys/user.h>
34 #include <sys/utsname.h>
35 #include <sys/wait.h>
36 #include <unistd.h>
37 
38 #include "libminijail.h"
39 #include "libminijail-private.h"
40 
41 #include "signal_handler.h"
42 #include "syscall_filter.h"
43 #include "util.h"
44 
45 #ifdef HAVE_SECUREBITS_H
46 #include <linux/securebits.h>
47 #else
48 #define SECURE_ALL_BITS         0x15
49 #define SECURE_ALL_LOCKS        (SECURE_ALL_BITS << 1)
50 #endif
51 
52 /* Until these are reliably available in linux/prctl.h */
53 #ifndef PR_SET_SECCOMP
54 # define PR_SET_SECCOMP 22
55 #endif
56 
57 #ifndef PR_ALT_SYSCALL
58 # define PR_ALT_SYSCALL 0x43724f53
59 #endif
60 
61 /* For seccomp_filter using BPF. */
62 #ifndef PR_SET_NO_NEW_PRIVS
63 # define PR_SET_NO_NEW_PRIVS 38
64 #endif
65 #ifndef SECCOMP_MODE_FILTER
66 # define SECCOMP_MODE_FILTER 2 /* uses user-supplied filter. */
67 #endif
68 
69 #ifdef USE_SECCOMP_SOFTFAIL
70 # define SECCOMP_SOFTFAIL 1
71 #else
72 # define SECCOMP_SOFTFAIL 0
73 #endif
74 
75 #define MAX_CGROUPS 10 /* 10 different controllers supported by Linux. */
76 
77 struct mountpoint {
78 	char *src;
79 	char *dest;
80 	char *type;
81 	unsigned long flags;
82 	struct mountpoint *next;
83 };
84 
85 struct minijail {
86 	/*
87 	 * WARNING: if you add a flag here you need to make sure it's
88 	 * accounted for in minijail_pre{enter|exec}() below.
89 	 */
90 	struct {
91 		int uid:1;
92 		int gid:1;
93 		int usergroups:1;
94 		int suppl_gids:1;
95 		int caps:1;
96 		int vfs:1;
97 		int enter_vfs:1;
98 		int pids:1;
99 		int ipc:1;
100 		int net:1;
101 		int enter_net:1;
102 		int userns:1;
103 		int seccomp:1;
104 		int remount_proc_ro:1;
105 		int no_new_privs:1;
106 		int seccomp_filter:1;
107 		int log_seccomp_filter:1;
108 		int chroot:1;
109 		int pivot_root:1;
110 		int mount_tmp:1;
111 		int do_init:1;
112 		int pid_file:1;
113 		int cgroups:1;
114 		int alt_syscall:1;
115 		int reset_signal_mask:1;
116 	} flags;
117 	uid_t uid;
118 	gid_t gid;
119 	gid_t usergid;
120 	char *user;
121 	size_t suppl_gid_count;
122 	gid_t *suppl_gid_list;
123 	uint64_t caps;
124 	pid_t initpid;
125 	int mountns_fd;
126 	int netns_fd;
127 	char *chrootdir;
128 	char *pid_file_path;
129 	char *uidmap;
130 	char *gidmap;
131 	size_t filter_len;
132 	struct sock_fprog *filter_prog;
133 	char *alt_syscall_table;
134 	struct mountpoint *mounts_head;
135 	struct mountpoint *mounts_tail;
136 	size_t mounts_count;
137 	char *cgroups[MAX_CGROUPS];
138 	size_t cgroup_count;
139 };
140 
141 /*
142  * Strip out flags meant for the parent.
143  * We keep things that are not inherited across execve(2) (e.g. capabilities),
144  * or are easier to set after execve(2) (e.g. seccomp filters).
145  */
minijail_preenter(struct minijail * j)146 void minijail_preenter(struct minijail *j)
147 {
148 	j->flags.vfs = 0;
149 	j->flags.enter_vfs = 0;
150 	j->flags.remount_proc_ro = 0;
151 	j->flags.pids = 0;
152 	j->flags.do_init = 0;
153 	j->flags.pid_file = 0;
154 	j->flags.cgroups = 0;
155 }
156 
157 /*
158  * Strip out flags meant for the child.
159  * We keep things that are inherited across execve(2).
160  */
minijail_preexec(struct minijail * j)161 void minijail_preexec(struct minijail *j)
162 {
163 	int vfs = j->flags.vfs;
164 	int enter_vfs = j->flags.enter_vfs;
165 	int remount_proc_ro = j->flags.remount_proc_ro;
166 	int userns = j->flags.userns;
167 	if (j->user)
168 		free(j->user);
169 	j->user = NULL;
170 	if (j->suppl_gid_list)
171 		free(j->suppl_gid_list);
172 	j->suppl_gid_list = NULL;
173 	memset(&j->flags, 0, sizeof(j->flags));
174 	/* Now restore anything we meant to keep. */
175 	j->flags.vfs = vfs;
176 	j->flags.enter_vfs = enter_vfs;
177 	j->flags.remount_proc_ro = remount_proc_ro;
178 	j->flags.userns = userns;
179 	/* Note, |pids| will already have been used before this call. */
180 }
181 
182 /* Returns true if the kernel version is less than 3.8. */
seccomp_kernel_support_not_required()183 int seccomp_kernel_support_not_required()
184 {
185 	int major, minor;
186 	struct utsname uts;
187 	return (uname(&uts) != -1 &&
188 			sscanf(uts.release, "%d.%d", &major, &minor) == 2 &&
189 			((major < 3) || ((major == 3) && (minor < 8))));
190 }
191 
192 /* Allow seccomp soft-fail on Android devices with kernel version < 3.8. */
can_softfail()193 int can_softfail()
194 {
195 #if SECCOMP_SOFTFAIL
196 	if (is_android()) {
197 		if (seccomp_kernel_support_not_required())
198 			return 1;
199 		else
200 			return 0;
201 	} else {
202 		return 1;
203 	}
204 #endif
205 	return 0;
206 }
207 
208 /* Minijail API. */
209 
minijail_new(void)210 struct minijail API *minijail_new(void)
211 {
212 	return calloc(1, sizeof(struct minijail));
213 }
214 
minijail_change_uid(struct minijail * j,uid_t uid)215 void API minijail_change_uid(struct minijail *j, uid_t uid)
216 {
217 	if (uid == 0)
218 		die("useless change to uid 0");
219 	j->uid = uid;
220 	j->flags.uid = 1;
221 }
222 
minijail_change_gid(struct minijail * j,gid_t gid)223 void API minijail_change_gid(struct minijail *j, gid_t gid)
224 {
225 	if (gid == 0)
226 		die("useless change to gid 0");
227 	j->gid = gid;
228 	j->flags.gid = 1;
229 }
230 
minijail_set_supplementary_gids(struct minijail * j,size_t size,const gid_t * list)231 void API minijail_set_supplementary_gids(struct minijail *j, size_t size,
232 					 const gid_t *list)
233 {
234 	size_t i;
235 
236 	if (j->flags.usergroups)
237 		die("cannot inherit *and* set supplementary groups");
238 
239 	if (size == 0) {
240 		/* Clear supplementary groups. */
241 		j->suppl_gid_list = NULL;
242 		j->suppl_gid_count = 0;
243 		j->flags.suppl_gids = 1;
244 		return;
245 	}
246 
247 	/* Copy the gid_t array. */
248 	j->suppl_gid_list = calloc(size, sizeof(gid_t));
249 	if (!j->suppl_gid_list) {
250 		die("failed to allocate internal supplementary group array");
251 	}
252 	for (i = 0; i < size; i++) {
253 		j->suppl_gid_list[i] = list[i];
254 	}
255 	j->suppl_gid_count = size;
256 	j->flags.suppl_gids = 1;
257 }
258 
minijail_change_user(struct minijail * j,const char * user)259 int API minijail_change_user(struct minijail *j, const char *user)
260 {
261 	char *buf = NULL;
262 	struct passwd pw;
263 	struct passwd *ppw = NULL;
264 	ssize_t sz = sysconf(_SC_GETPW_R_SIZE_MAX);
265 	if (sz == -1)
266 		sz = 65536;	/* your guess is as good as mine... */
267 
268 	/*
269 	 * sysconf(_SC_GETPW_R_SIZE_MAX), under glibc, is documented to return
270 	 * the maximum needed size of the buffer, so we don't have to search.
271 	 */
272 	buf = malloc(sz);
273 	if (!buf)
274 		return -ENOMEM;
275 	getpwnam_r(user, &pw, buf, sz, &ppw);
276 	/*
277 	 * We're safe to free the buffer here. The strings inside |pw| point
278 	 * inside |buf|, but we don't use any of them; this leaves the pointers
279 	 * dangling but it's safe. |ppw| points at |pw| if getpwnam_r(3) succeeded.
280 	 */
281 	free(buf);
282 	/* getpwnam_r(3) does *not* set errno when |ppw| is NULL. */
283 	if (!ppw)
284 		return -1;
285 	minijail_change_uid(j, ppw->pw_uid);
286 	j->user = strdup(user);
287 	if (!j->user)
288 		return -ENOMEM;
289 	j->usergid = ppw->pw_gid;
290 	return 0;
291 }
292 
minijail_change_group(struct minijail * j,const char * group)293 int API minijail_change_group(struct minijail *j, const char *group)
294 {
295 	char *buf = NULL;
296 	struct group gr;
297 	struct group *pgr = NULL;
298 	ssize_t sz = sysconf(_SC_GETGR_R_SIZE_MAX);
299 	if (sz == -1)
300 		sz = 65536;	/* and mine is as good as yours, really */
301 
302 	/*
303 	 * sysconf(_SC_GETGR_R_SIZE_MAX), under glibc, is documented to return
304 	 * the maximum needed size of the buffer, so we don't have to search.
305 	 */
306 	buf = malloc(sz);
307 	if (!buf)
308 		return -ENOMEM;
309 	getgrnam_r(group, &gr, buf, sz, &pgr);
310 	/*
311 	 * We're safe to free the buffer here. The strings inside gr point
312 	 * inside buf, but we don't use any of them; this leaves the pointers
313 	 * dangling but it's safe. pgr points at gr if getgrnam_r succeeded.
314 	 */
315 	free(buf);
316 	/* getgrnam_r(3) does *not* set errno when |pgr| is NULL. */
317 	if (!pgr)
318 		return -1;
319 	minijail_change_gid(j, pgr->gr_gid);
320 	return 0;
321 }
322 
minijail_use_seccomp(struct minijail * j)323 void API minijail_use_seccomp(struct minijail *j)
324 {
325 	j->flags.seccomp = 1;
326 }
327 
minijail_no_new_privs(struct minijail * j)328 void API minijail_no_new_privs(struct minijail *j)
329 {
330 	j->flags.no_new_privs = 1;
331 }
332 
minijail_use_seccomp_filter(struct minijail * j)333 void API minijail_use_seccomp_filter(struct minijail *j)
334 {
335 	j->flags.seccomp_filter = 1;
336 }
337 
minijail_log_seccomp_filter_failures(struct minijail * j)338 void API minijail_log_seccomp_filter_failures(struct minijail *j)
339 {
340 	j->flags.log_seccomp_filter = 1;
341 }
342 
minijail_use_caps(struct minijail * j,uint64_t capmask)343 void API minijail_use_caps(struct minijail *j, uint64_t capmask)
344 {
345 	j->caps = capmask;
346 	j->flags.caps = 1;
347 }
348 
minijail_reset_signal_mask(struct minijail * j)349 void API minijail_reset_signal_mask(struct minijail* j) {
350 	j->flags.reset_signal_mask = 1;
351 }
352 
minijail_namespace_vfs(struct minijail * j)353 void API minijail_namespace_vfs(struct minijail *j)
354 {
355 	j->flags.vfs = 1;
356 }
357 
minijail_namespace_enter_vfs(struct minijail * j,const char * ns_path)358 void API minijail_namespace_enter_vfs(struct minijail *j, const char *ns_path)
359 {
360 	int ns_fd = open(ns_path, O_RDONLY);
361 	if (ns_fd < 0) {
362 		pdie("failed to open namespace '%s'", ns_path);
363 	}
364 	j->mountns_fd = ns_fd;
365 	j->flags.enter_vfs = 1;
366 }
367 
minijail_namespace_pids(struct minijail * j)368 void API minijail_namespace_pids(struct minijail *j)
369 {
370 	j->flags.vfs = 1;
371 	j->flags.remount_proc_ro = 1;
372 	j->flags.pids = 1;
373 	j->flags.do_init = 1;
374 }
375 
minijail_namespace_ipc(struct minijail * j)376 void API minijail_namespace_ipc(struct minijail *j)
377 {
378 	j->flags.ipc = 1;
379 }
380 
minijail_namespace_net(struct minijail * j)381 void API minijail_namespace_net(struct minijail *j)
382 {
383 	j->flags.net = 1;
384 }
385 
minijail_namespace_enter_net(struct minijail * j,const char * ns_path)386 void API minijail_namespace_enter_net(struct minijail *j, const char *ns_path)
387 {
388 	int ns_fd = open(ns_path, O_RDONLY);
389 	if (ns_fd < 0) {
390 		pdie("failed to open namespace '%s'", ns_path);
391 	}
392 	j->netns_fd = ns_fd;
393 	j->flags.enter_net = 1;
394 }
395 
minijail_remount_proc_readonly(struct minijail * j)396 void API minijail_remount_proc_readonly(struct minijail *j)
397 {
398 	j->flags.vfs = 1;
399 	j->flags.remount_proc_ro = 1;
400 }
401 
minijail_namespace_user(struct minijail * j)402 void API minijail_namespace_user(struct minijail *j)
403 {
404 	j->flags.userns = 1;
405 }
406 
minijail_uidmap(struct minijail * j,const char * uidmap)407 int API minijail_uidmap(struct minijail *j, const char *uidmap)
408 {
409 	j->uidmap = strdup(uidmap);
410 	if (!j->uidmap)
411 		return -ENOMEM;
412 	char *ch;
413 	for (ch = j->uidmap; *ch; ch++) {
414 		if (*ch == ',')
415 			*ch = '\n';
416 	}
417 	return 0;
418 }
419 
minijail_gidmap(struct minijail * j,const char * gidmap)420 int API minijail_gidmap(struct minijail *j, const char *gidmap)
421 {
422 	j->gidmap = strdup(gidmap);
423 	if (!j->gidmap)
424 		return -ENOMEM;
425 	char *ch;
426 	for (ch = j->gidmap; *ch; ch++) {
427 		if (*ch == ',')
428 			*ch = '\n';
429 	}
430 	return 0;
431 }
432 
minijail_inherit_usergroups(struct minijail * j)433 void API minijail_inherit_usergroups(struct minijail *j)
434 {
435 	j->flags.usergroups = 1;
436 }
437 
minijail_run_as_init(struct minijail * j)438 void API minijail_run_as_init(struct minijail *j)
439 {
440 	/*
441 	 * Since the jailed program will become 'init' in the new PID namespace,
442 	 * Minijail does not need to fork an 'init' process.
443 	 */
444 	j->flags.do_init = 0;
445 }
446 
minijail_enter_chroot(struct minijail * j,const char * dir)447 int API minijail_enter_chroot(struct minijail *j, const char *dir)
448 {
449 	if (j->chrootdir)
450 		return -EINVAL;
451 	j->chrootdir = strdup(dir);
452 	if (!j->chrootdir)
453 		return -ENOMEM;
454 	j->flags.chroot = 1;
455 	return 0;
456 }
457 
minijail_enter_pivot_root(struct minijail * j,const char * dir)458 int API minijail_enter_pivot_root(struct minijail *j, const char *dir)
459 {
460 	if (j->chrootdir)
461 		return -EINVAL;
462 	j->chrootdir = strdup(dir);
463 	if (!j->chrootdir)
464 		return -ENOMEM;
465 	j->flags.pivot_root = 1;
466 	return 0;
467 }
468 
append_external_path(const char * external_path,const char * path_inside_chroot)469 static char *append_external_path(const char *external_path,
470 				  const char *path_inside_chroot)
471 {
472 	char *path;
473 	size_t pathlen;
474 
475 	/* One extra char for '/' and one for '\0', hence + 2. */
476 	pathlen = strlen(path_inside_chroot) + strlen(external_path) + 2;
477 	path = malloc(pathlen);
478 	snprintf(path, pathlen, "%s/%s", external_path, path_inside_chroot);
479 
480 	return path;
481 }
482 
minijail_get_original_path(struct minijail * j,const char * path_inside_chroot)483 char API *minijail_get_original_path(struct minijail *j,
484 				     const char *path_inside_chroot)
485 {
486 	struct mountpoint *b;
487 
488 	b = j->mounts_head;
489 	while (b) {
490 		/*
491 		 * If |path_inside_chroot| is the exact destination of a
492 		 * mount, then the original path is exactly the source of
493 		 * the mount.
494 		 *  for example: "-b /some/path/exe,/chroot/path/exe"
495 		 *    mount source = /some/path/exe, mount dest =
496 		 *    /chroot/path/exe Then when getting the original path of
497 		 *    "/chroot/path/exe", the source of that mount,
498 		 *    "/some/path/exe" is what should be returned.
499 		 */
500 		if (!strcmp(b->dest, path_inside_chroot))
501 			return strdup(b->src);
502 
503 		/*
504 		 * If |path_inside_chroot| is within the destination path of a
505 		 * mount, take the suffix of the chroot path relative to the
506 		 * mount destination path, and append it to the mount source
507 		 * path.
508 		 */
509 		if (!strncmp(b->dest, path_inside_chroot, strlen(b->dest))) {
510 			const char *relative_path =
511 				path_inside_chroot + strlen(b->dest);
512 			return append_external_path(b->src, relative_path);
513 		}
514 		b = b->next;
515 	}
516 
517 	/* If there is a chroot path, append |path_inside_chroot| to that. */
518 	if (j->chrootdir)
519 		return append_external_path(j->chrootdir, path_inside_chroot);
520 
521 	/* No chroot, so the path outside is the same as it is inside. */
522 	return strdup(path_inside_chroot);
523 }
524 
minijail_mount_tmp(struct minijail * j)525 void API minijail_mount_tmp(struct minijail *j)
526 {
527 	j->flags.mount_tmp = 1;
528 }
529 
minijail_write_pid_file(struct minijail * j,const char * path)530 int API minijail_write_pid_file(struct minijail *j, const char *path)
531 {
532 	j->pid_file_path = strdup(path);
533 	if (!j->pid_file_path)
534 		return -ENOMEM;
535 	j->flags.pid_file = 1;
536 	return 0;
537 }
538 
minijail_add_to_cgroup(struct minijail * j,const char * path)539 int API minijail_add_to_cgroup(struct minijail *j, const char *path)
540 {
541 	if (j->cgroup_count >= MAX_CGROUPS)
542 		return -ENOMEM;
543 	j->cgroups[j->cgroup_count] = strdup(path);
544 	if (!j->cgroups[j->cgroup_count])
545 		return -ENOMEM;
546 	j->cgroup_count++;
547 	j->flags.cgroups = 1;
548 	return 0;
549 }
550 
minijail_mount(struct minijail * j,const char * src,const char * dest,const char * type,unsigned long flags)551 int API minijail_mount(struct minijail *j, const char *src, const char *dest,
552 		       const char *type, unsigned long flags)
553 {
554 	struct mountpoint *m;
555 
556 	if (*dest != '/')
557 		return -EINVAL;
558 	m = calloc(1, sizeof(*m));
559 	if (!m)
560 		return -ENOMEM;
561 	m->dest = strdup(dest);
562 	if (!m->dest)
563 		goto error;
564 	m->src = strdup(src);
565 	if (!m->src)
566 		goto error;
567 	m->type = strdup(type);
568 	if (!m->type)
569 		goto error;
570 	m->flags = flags;
571 
572 	info("mount %s -> %s type '%s'", src, dest, type);
573 
574 	/*
575 	 * Force vfs namespacing so the mounts don't leak out into the
576 	 * containing vfs namespace.
577 	 */
578 	minijail_namespace_vfs(j);
579 
580 	if (j->mounts_tail)
581 		j->mounts_tail->next = m;
582 	else
583 		j->mounts_head = m;
584 	j->mounts_tail = m;
585 	j->mounts_count++;
586 
587 	return 0;
588 
589 error:
590 	free(m->src);
591 	free(m->dest);
592 	free(m);
593 	return -ENOMEM;
594 }
595 
minijail_bind(struct minijail * j,const char * src,const char * dest,int writeable)596 int API minijail_bind(struct minijail *j, const char *src, const char *dest,
597 		      int writeable)
598 {
599 	unsigned long flags = MS_BIND;
600 
601 	if (!writeable)
602 		flags |= MS_RDONLY;
603 
604 	return minijail_mount(j, src, dest, "", flags);
605 }
606 
minijail_parse_seccomp_filters(struct minijail * j,const char * path)607 void API minijail_parse_seccomp_filters(struct minijail *j, const char *path)
608 {
609 	if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, NULL)) {
610 		if ((errno == EINVAL) && can_softfail()) {
611 			warn("not loading seccomp filter,"
612 			     " seccomp not supported");
613 			j->flags.seccomp_filter = 0;
614 			j->flags.log_seccomp_filter = 0;
615 			j->filter_len = 0;
616 			j->filter_prog = NULL;
617 			j->flags.no_new_privs = 0;
618 		}
619 	}
620 	FILE *file = fopen(path, "r");
621 	if (!file) {
622 		pdie("failed to open seccomp filter file '%s'", path);
623 	}
624 
625 	struct sock_fprog *fprog = malloc(sizeof(struct sock_fprog));
626 	if (compile_filter(file, fprog, j->flags.log_seccomp_filter)) {
627 		die("failed to compile seccomp filter BPF program in '%s'",
628 		    path);
629 	}
630 
631 	j->filter_len = fprog->len;
632 	j->filter_prog = fprog;
633 
634 	fclose(file);
635 }
636 
minijail_use_alt_syscall(struct minijail * j,const char * table)637 int API minijail_use_alt_syscall(struct minijail *j, const char *table)
638 {
639 	j->alt_syscall_table = strdup(table);
640 	if (!j->alt_syscall_table)
641 		return -ENOMEM;
642 	j->flags.alt_syscall = 1;
643 	return 0;
644 }
645 
646 struct marshal_state {
647 	size_t available;
648 	size_t total;
649 	char *buf;
650 };
651 
marshal_state_init(struct marshal_state * state,char * buf,size_t available)652 void marshal_state_init(struct marshal_state *state,
653 			char *buf, size_t available)
654 {
655 	state->available = available;
656 	state->buf = buf;
657 	state->total = 0;
658 }
659 
marshal_append(struct marshal_state * state,void * src,size_t length)660 void marshal_append(struct marshal_state *state,
661 		    void *src, size_t length)
662 {
663 	size_t copy_len = MIN(state->available, length);
664 
665 	/* Up to |available| will be written. */
666 	if (copy_len) {
667 		memcpy(state->buf, src, copy_len);
668 		state->buf += copy_len;
669 		state->available -= copy_len;
670 	}
671 	/* |total| will contain the expected length. */
672 	state->total += length;
673 }
674 
minijail_marshal_helper(struct marshal_state * state,const struct minijail * j)675 void minijail_marshal_helper(struct marshal_state *state,
676 			     const struct minijail *j)
677 {
678 	struct mountpoint *m = NULL;
679 	size_t i;
680 
681 	marshal_append(state, (char *)j, sizeof(*j));
682 	if (j->user)
683 		marshal_append(state, j->user, strlen(j->user) + 1);
684 	if (j->suppl_gid_list) {
685 		marshal_append(state, j->suppl_gid_list,
686 			       j->suppl_gid_count * sizeof(gid_t));
687 	}
688 	if (j->chrootdir)
689 		marshal_append(state, j->chrootdir, strlen(j->chrootdir) + 1);
690 	if (j->alt_syscall_table) {
691 		marshal_append(state, j->alt_syscall_table,
692 			       strlen(j->alt_syscall_table) + 1);
693 	}
694 	if (j->flags.seccomp_filter && j->filter_prog) {
695 		struct sock_fprog *fp = j->filter_prog;
696 		marshal_append(state, (char *)fp->filter,
697 				fp->len * sizeof(struct sock_filter));
698 	}
699 	for (m = j->mounts_head; m; m = m->next) {
700 		marshal_append(state, m->src, strlen(m->src) + 1);
701 		marshal_append(state, m->dest, strlen(m->dest) + 1);
702 		marshal_append(state, m->type, strlen(m->type) + 1);
703 		marshal_append(state, (char *)&m->flags, sizeof(m->flags));
704 	}
705 	for (i = 0; i < j->cgroup_count; ++i)
706 		marshal_append(state, j->cgroups[i], strlen(j->cgroups[i]) + 1);
707 }
708 
minijail_size(const struct minijail * j)709 size_t API minijail_size(const struct minijail *j)
710 {
711 	struct marshal_state state;
712 	marshal_state_init(&state, NULL, 0);
713 	minijail_marshal_helper(&state, j);
714 	return state.total;
715 }
716 
minijail_marshal(const struct minijail * j,char * buf,size_t available)717 int minijail_marshal(const struct minijail *j, char *buf, size_t available)
718 {
719 	struct marshal_state state;
720 	marshal_state_init(&state, buf, available);
721 	minijail_marshal_helper(&state, j);
722 	return (state.total > available);
723 }
724 
725 /*
726  * consumebytes: consumes @length bytes from a buffer @buf of length @buflength
727  * @length    Number of bytes to consume
728  * @buf       Buffer to consume from
729  * @buflength Size of @buf
730  *
731  * Returns a pointer to the base of the bytes, or NULL for errors.
732  */
consumebytes(size_t length,char ** buf,size_t * buflength)733 void *consumebytes(size_t length, char **buf, size_t *buflength)
734 {
735 	char *p = *buf;
736 	if (length > *buflength)
737 		return NULL;
738 	*buf += length;
739 	*buflength -= length;
740 	return p;
741 }
742 
743 /*
744  * consumestr: consumes a C string from a buffer @buf of length @length
745  * @buf    Buffer to consume
746  * @length Length of buffer
747  *
748  * Returns a pointer to the base of the string, or NULL for errors.
749  */
consumestr(char ** buf,size_t * buflength)750 char *consumestr(char **buf, size_t *buflength)
751 {
752 	size_t len = strnlen(*buf, *buflength);
753 	if (len == *buflength)
754 		/* There's no null-terminator. */
755 		return NULL;
756 	return consumebytes(len + 1, buf, buflength);
757 }
758 
minijail_unmarshal(struct minijail * j,char * serialized,size_t length)759 int minijail_unmarshal(struct minijail *j, char *serialized, size_t length)
760 {
761 	size_t i;
762 	size_t count;
763 	int ret = -EINVAL;
764 
765 	if (length < sizeof(*j))
766 		goto out;
767 	memcpy((void *)j, serialized, sizeof(*j));
768 	serialized += sizeof(*j);
769 	length -= sizeof(*j);
770 
771 	/* Potentially stale pointers not used as signals. */
772 	j->mounts_head = NULL;
773 	j->mounts_tail = NULL;
774 	j->filter_prog = NULL;
775 
776 	if (j->user) {		/* stale pointer */
777 		char *user = consumestr(&serialized, &length);
778 		if (!user)
779 			goto clear_pointers;
780 		j->user = strdup(user);
781 		if (!j->user)
782 			goto clear_pointers;
783 	}
784 
785 	if (j->suppl_gid_list) {	/* stale pointer */
786 		if (j->suppl_gid_count > NGROUPS_MAX) {
787 			goto bad_gid_list;
788 		}
789 		size_t gid_list_size = j->suppl_gid_count * sizeof(gid_t);
790 		void *gid_list_bytes =
791 		    consumebytes(gid_list_size, &serialized, &length);
792 		if (!gid_list_bytes)
793 			goto bad_gid_list;
794 
795 		j->suppl_gid_list = calloc(j->suppl_gid_count, sizeof(gid_t));
796 		if (!j->suppl_gid_list)
797 			goto bad_gid_list;
798 
799 		memcpy(j->suppl_gid_list, gid_list_bytes, gid_list_size);
800 	}
801 
802 	if (j->chrootdir) {	/* stale pointer */
803 		char *chrootdir = consumestr(&serialized, &length);
804 		if (!chrootdir)
805 			goto bad_chrootdir;
806 		j->chrootdir = strdup(chrootdir);
807 		if (!j->chrootdir)
808 			goto bad_chrootdir;
809 	}
810 
811 	if (j->alt_syscall_table) {	/* stale pointer */
812 		char *alt_syscall_table = consumestr(&serialized, &length);
813 		if (!alt_syscall_table)
814 			goto bad_syscall_table;
815 		j->alt_syscall_table = strdup(alt_syscall_table);
816 		if (!j->alt_syscall_table)
817 			goto bad_syscall_table;
818 	}
819 
820 	if (j->flags.seccomp_filter && j->filter_len > 0) {
821 		size_t ninstrs = j->filter_len;
822 		if (ninstrs > (SIZE_MAX / sizeof(struct sock_filter)) ||
823 		    ninstrs > USHRT_MAX)
824 			goto bad_filters;
825 
826 		size_t program_len = ninstrs * sizeof(struct sock_filter);
827 		void *program = consumebytes(program_len, &serialized, &length);
828 		if (!program)
829 			goto bad_filters;
830 
831 		j->filter_prog = malloc(sizeof(struct sock_fprog));
832 		if (!j->filter_prog)
833 			goto bad_filters;
834 
835 		j->filter_prog->len = ninstrs;
836 		j->filter_prog->filter = malloc(program_len);
837 		if (!j->filter_prog->filter)
838 			goto bad_filter_prog_instrs;
839 
840 		memcpy(j->filter_prog->filter, program, program_len);
841 	}
842 
843 	count = j->mounts_count;
844 	j->mounts_count = 0;
845 	for (i = 0; i < count; ++i) {
846 		unsigned long *flags;
847 		const char *dest;
848 		const char *type;
849 		const char *src = consumestr(&serialized, &length);
850 		if (!src)
851 			goto bad_mounts;
852 		dest = consumestr(&serialized, &length);
853 		if (!dest)
854 			goto bad_mounts;
855 		type = consumestr(&serialized, &length);
856 		if (!type)
857 			goto bad_mounts;
858 		flags = consumebytes(sizeof(*flags), &serialized, &length);
859 		if (!flags)
860 			goto bad_mounts;
861 		if (minijail_mount(j, src, dest, type, *flags))
862 			goto bad_mounts;
863 	}
864 
865 	count = j->cgroup_count;
866 	j->cgroup_count = 0;
867 	for (i = 0; i < count; ++i) {
868 		char *cgroup = consumestr(&serialized, &length);
869 		if (!cgroup)
870 			goto bad_cgroups;
871 		j->cgroups[i] = strdup(cgroup);
872 		if (!j->cgroups[i])
873 			goto bad_cgroups;
874 		++j->cgroup_count;
875 	}
876 
877 	return 0;
878 
879 bad_cgroups:
880 	while (j->mounts_head) {
881 		struct mountpoint *m = j->mounts_head;
882 		j->mounts_head = j->mounts_head->next;
883 		free(m->type);
884 		free(m->dest);
885 		free(m->src);
886 		free(m);
887 	}
888 	for (i = 0; i < j->cgroup_count; ++i)
889 		free(j->cgroups[i]);
890 bad_mounts:
891 	if (j->flags.seccomp_filter && j->filter_len > 0) {
892 		free(j->filter_prog->filter);
893 		free(j->filter_prog);
894 	}
895 bad_filter_prog_instrs:
896 	if (j->filter_prog)
897 		free(j->filter_prog);
898 bad_filters:
899 	if (j->alt_syscall_table)
900 		free(j->alt_syscall_table);
901 bad_syscall_table:
902 	if (j->chrootdir)
903 		free(j->chrootdir);
904 bad_chrootdir:
905 	if (j->suppl_gid_list)
906 		free(j->suppl_gid_list);
907 bad_gid_list:
908 	if (j->user)
909 		free(j->user);
910 clear_pointers:
911 	j->user = NULL;
912 	j->suppl_gid_list = NULL;
913 	j->chrootdir = NULL;
914 	j->alt_syscall_table = NULL;
915 	j->cgroup_count = 0;
916 out:
917 	return ret;
918 }
919 
write_ugid_mappings(const struct minijail * j)920 static void write_ugid_mappings(const struct minijail *j)
921 {
922 	int fd, ret, len;
923 	size_t sz;
924 	char fname[32];
925 
926 	sz = sizeof(fname);
927 	if (j->uidmap) {
928 		ret = snprintf(fname, sz, "/proc/%d/uid_map", j->initpid);
929 		if (ret < 0 || (size_t)ret >= sz)
930 			die("failed to write file name of uid_map");
931 		fd = open(fname, O_WRONLY);
932 		if (fd < 0)
933 			pdie("failed to open '%s'", fname);
934 		len = strlen(j->uidmap);
935 		if (write(fd, j->uidmap, len) < len)
936 			die("failed to set uid_map");
937 		close(fd);
938 	}
939 	if (j->gidmap) {
940 		ret = snprintf(fname, sz, "/proc/%d/gid_map", j->initpid);
941 		if (ret < 0 || (size_t)ret >= sz)
942 			die("failed to write file name of gid_map");
943 		fd = open(fname, O_WRONLY);
944 		if (fd < 0)
945 			pdie("failed to open '%s'", fname);
946 		len = strlen(j->gidmap);
947 		if (write(fd, j->gidmap, len) < len)
948 			die("failed to set gid_map");
949 		close(fd);
950 	}
951 }
952 
parent_setup_complete(int * pipe_fds)953 static void parent_setup_complete(int *pipe_fds)
954 {
955 	close(pipe_fds[0]);
956 	close(pipe_fds[1]);
957 }
958 
959 /*
960  * wait_for_parent_setup: Called by the child process to wait for any
961  * further parent-side setup to complete before continuing.
962  */
wait_for_parent_setup(int * pipe_fds)963 static void wait_for_parent_setup(int *pipe_fds)
964 {
965 	char buf;
966 
967 	close(pipe_fds[1]);
968 
969 	/* Wait for parent to complete setup and close the pipe. */
970 	if (read(pipe_fds[0], &buf, 1) != 0)
971 		die("failed to sync with parent");
972 	close(pipe_fds[0]);
973 }
974 
enter_user_namespace(const struct minijail * j)975 static void enter_user_namespace(const struct minijail *j)
976 {
977 	if (j->uidmap && setresuid(0, 0, 0))
978 		pdie("setresuid");
979 	if (j->gidmap && setresgid(0, 0, 0))
980 		pdie("setresgid");
981 }
982 
983 /*
984  * mount_one: Applies mounts from @m for @j, recursing as needed.
985  * @j Minijail these mounts are for
986  * @m Head of list of mounts
987  *
988  * Returns 0 for success.
989  */
mount_one(const struct minijail * j,struct mountpoint * m)990 static int mount_one(const struct minijail *j, struct mountpoint *m)
991 {
992 	int ret;
993 	char *dest;
994 	int remount_ro = 0;
995 
996 	/* |dest| has a leading "/". */
997 	if (asprintf(&dest, "%s%s", j->chrootdir, m->dest) < 0)
998 		return -ENOMEM;
999 
1000 	/*
1001 	 * R/O bind mounts have to be remounted since 'bind' and 'ro'
1002 	 * can't both be specified in the original bind mount.
1003 	 * Remount R/O after the initial mount.
1004 	 */
1005 	if ((m->flags & MS_BIND) && (m->flags & MS_RDONLY)) {
1006 		remount_ro = 1;
1007 		m->flags &= ~MS_RDONLY;
1008 	}
1009 
1010 	ret = mount(m->src, dest, m->type, m->flags, NULL);
1011 	if (ret)
1012 		pdie("mount: %s -> %s", m->src, dest);
1013 
1014 	if (remount_ro) {
1015 		m->flags |= MS_RDONLY;
1016 		ret = mount(m->src, dest, NULL,
1017 			    m->flags | MS_REMOUNT, NULL);
1018 		if (ret)
1019 			pdie("bind ro: %s -> %s", m->src, dest);
1020 	}
1021 
1022 	free(dest);
1023 	if (m->next)
1024 		return mount_one(j, m->next);
1025 	return ret;
1026 }
1027 
enter_chroot(const struct minijail * j)1028 int enter_chroot(const struct minijail *j)
1029 {
1030 	int ret;
1031 
1032 	if (j->mounts_head && (ret = mount_one(j, j->mounts_head)))
1033 		return ret;
1034 
1035 	if (chroot(j->chrootdir))
1036 		return -errno;
1037 
1038 	if (chdir("/"))
1039 		return -errno;
1040 
1041 	return 0;
1042 }
1043 
enter_pivot_root(const struct minijail * j)1044 int enter_pivot_root(const struct minijail *j)
1045 {
1046 	int ret, oldroot, newroot;
1047 
1048 	if (j->mounts_head && (ret = mount_one(j, j->mounts_head)))
1049 		return ret;
1050 
1051 	/*
1052 	 * Keep the fd for both old and new root.
1053 	 * It will be used in fchdir later.
1054 	 */
1055 	oldroot = open("/", O_DIRECTORY | O_RDONLY);
1056 	if (oldroot < 0)
1057 		pdie("failed to open / for fchdir");
1058 	newroot = open(j->chrootdir, O_DIRECTORY | O_RDONLY);
1059 	if (newroot < 0)
1060 		pdie("failed to open %s for fchdir", j->chrootdir);
1061 
1062 	/*
1063 	 * To ensure chrootdir is the root of a file system,
1064 	 * do a self bind mount.
1065 	 */
1066 	if (mount(j->chrootdir, j->chrootdir, "bind", MS_BIND | MS_REC, ""))
1067 		pdie("failed to bind mount '%s'", j->chrootdir);
1068 	if (chdir(j->chrootdir))
1069 		return -errno;
1070 	if (syscall(SYS_pivot_root, ".", "."))
1071 		pdie("pivot_root");
1072 
1073 	/*
1074 	 * Now the old root is mounted on top of the new root. Use fchdir to
1075 	 * change to the old root and unmount it.
1076 	 */
1077 	if (fchdir(oldroot))
1078 		pdie("failed to fchdir to old /");
1079 	/* The old root might be busy, so use lazy unmount. */
1080 	if (umount2(".", MNT_DETACH))
1081 		pdie("umount(/)");
1082 	/* Change back to the new root. */
1083 	if (fchdir(newroot))
1084 		return -errno;
1085 	if (chroot("/"))
1086 		return -errno;
1087 	/* Set correct CWD for getcwd(3). */
1088 	if (chdir("/"))
1089 		return -errno;
1090 
1091 	return 0;
1092 }
1093 
mount_tmp(void)1094 int mount_tmp(void)
1095 {
1096 	return mount("none", "/tmp", "tmpfs", 0, "size=64M,mode=777");
1097 }
1098 
remount_proc_readonly(const struct minijail * j)1099 int remount_proc_readonly(const struct minijail *j)
1100 {
1101 	const char *kProcPath = "/proc";
1102 	const unsigned int kSafeFlags = MS_NODEV | MS_NOEXEC | MS_NOSUID;
1103 	/*
1104 	 * Right now, we're holding a reference to our parent's old mount of
1105 	 * /proc in our namespace, which means using MS_REMOUNT here would
1106 	 * mutate our parent's mount as well, even though we're in a VFS
1107 	 * namespace (!). Instead, remove their mount from our namespace
1108 	 * and make our own. However, if we are in a new user namespace, /proc
1109 	 * is not seen as mounted, so don't return error if umount() fails.
1110 	 */
1111 	if (umount2(kProcPath, MNT_DETACH) && !j->flags.userns)
1112 		return -errno;
1113 	if (mount("", kProcPath, "proc", kSafeFlags | MS_RDONLY, ""))
1114 		return -errno;
1115 	return 0;
1116 }
1117 
write_pid_to_path(pid_t pid,const char * path)1118 static void write_pid_to_path(pid_t pid, const char *path)
1119 {
1120 	FILE *fp = fopen(path, "w");
1121 
1122 	if (!fp)
1123 		pdie("failed to open '%s'", path);
1124 	if (fprintf(fp, "%d\n", (int)pid) < 0)
1125 		pdie("fprintf(%s)", path);
1126 	if (fclose(fp))
1127 		pdie("fclose(%s)", path);
1128 }
1129 
write_pid_file(const struct minijail * j)1130 static void write_pid_file(const struct minijail *j)
1131 {
1132 	write_pid_to_path(j->initpid, j->pid_file_path);
1133 }
1134 
add_to_cgroups(const struct minijail * j)1135 static void add_to_cgroups(const struct minijail *j)
1136 {
1137 	size_t i;
1138 
1139 	for (i = 0; i < j->cgroup_count; ++i)
1140 		write_pid_to_path(j->initpid, j->cgroups[i]);
1141 }
1142 
drop_ugid(const struct minijail * j)1143 void drop_ugid(const struct minijail *j)
1144 {
1145 	if (j->flags.usergroups && j->flags.suppl_gids) {
1146 		die("tried to inherit *and* set supplementary groups;"
1147 		    " can only do one");
1148 	}
1149 
1150 	if (j->flags.usergroups) {
1151 		if (initgroups(j->user, j->usergid))
1152 			pdie("initgroups");
1153 	} else if (j->flags.suppl_gids) {
1154 		if (setgroups(j->suppl_gid_count, j->suppl_gid_list)) {
1155 			pdie("setgroups");
1156 		}
1157 	} else {
1158 		/*
1159 		 * Only attempt to clear supplementary groups if we are changing
1160 		 * users.
1161 		 */
1162 		if ((j->uid || j->gid) && setgroups(0, NULL))
1163 			pdie("setgroups");
1164 	}
1165 
1166 	if (j->flags.gid && setresgid(j->gid, j->gid, j->gid))
1167 		pdie("setresgid");
1168 
1169 	if (j->flags.uid && setresuid(j->uid, j->uid, j->uid))
1170 		pdie("setresuid");
1171 }
1172 
1173 /*
1174  * We specifically do not use cap_valid() as that only tells us the last
1175  * valid cap we were *compiled* against (i.e. what the version of kernel
1176  * headers says). If we run on a different kernel version, then it's not
1177  * uncommon for that to be less (if an older kernel) or more (if a newer
1178  * kernel).
1179  * Normally, we suck up the answer via /proc. On Android, not all processes are
1180  * guaranteed to be able to access '/proc/sys/kernel/cap_last_cap' so we
1181  * programmatically find the value by calling prctl(PR_CAPBSET_READ).
1182  */
get_last_valid_cap()1183 static unsigned int get_last_valid_cap()
1184 {
1185 	unsigned int last_valid_cap = 0;
1186 	if (is_android()) {
1187 		for (; prctl(PR_CAPBSET_READ, last_valid_cap, 0, 0, 0) >= 0;
1188 		     ++last_valid_cap);
1189 
1190 		/* |last_valid_cap| will be the first failing value. */
1191 		if (last_valid_cap > 0) {
1192 			last_valid_cap--;
1193 		}
1194 	} else {
1195 		const char cap_file[] = "/proc/sys/kernel/cap_last_cap";
1196 		FILE *fp = fopen(cap_file, "re");
1197 		if (fscanf(fp, "%u", &last_valid_cap) != 1)
1198 			pdie("fscanf(%s)", cap_file);
1199 		fclose(fp);
1200 	}
1201 	return last_valid_cap;
1202 }
1203 
drop_caps(const struct minijail * j,unsigned int last_valid_cap)1204 void drop_caps(const struct minijail *j, unsigned int last_valid_cap)
1205 {
1206 	cap_t caps = cap_get_proc();
1207 	cap_value_t flag[1];
1208 	const uint64_t one = 1;
1209 	unsigned int i;
1210 	if (!caps)
1211 		die("can't get process caps");
1212 	if (cap_clear_flag(caps, CAP_INHERITABLE))
1213 		die("can't clear inheritable caps");
1214 	if (cap_clear_flag(caps, CAP_EFFECTIVE))
1215 		die("can't clear effective caps");
1216 	if (cap_clear_flag(caps, CAP_PERMITTED))
1217 		die("can't clear permitted caps");
1218 	for (i = 0; i < sizeof(j->caps) * 8 && i <= last_valid_cap; ++i) {
1219 		/* Keep CAP_SETPCAP for dropping bounding set bits. */
1220 		if (i != CAP_SETPCAP && !(j->caps & (one << i)))
1221 			continue;
1222 		flag[0] = i;
1223 		if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_SET))
1224 			die("can't add effective cap");
1225 		if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_SET))
1226 			die("can't add permitted cap");
1227 		if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_SET))
1228 			die("can't add inheritable cap");
1229 	}
1230 	if (cap_set_proc(caps))
1231 		die("can't apply initial cleaned capset");
1232 
1233 	/*
1234 	 * Instead of dropping bounding set first, do it here in case
1235 	 * the caller had a more permissive bounding set which could
1236 	 * have been used above to raise a capability that wasn't already
1237 	 * present. This requires CAP_SETPCAP, so we raised/kept it above.
1238 	 */
1239 	for (i = 0; i < sizeof(j->caps) * 8 && i <= last_valid_cap; ++i) {
1240 		if (j->caps & (one << i))
1241 			continue;
1242 		if (prctl(PR_CAPBSET_DROP, i))
1243 			pdie("prctl(PR_CAPBSET_DROP)");
1244 	}
1245 
1246 	/* If CAP_SETPCAP wasn't specifically requested, now we remove it. */
1247 	if ((j->caps & (one << CAP_SETPCAP)) == 0) {
1248 		flag[0] = CAP_SETPCAP;
1249 		if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_CLEAR))
1250 			die("can't clear effective cap");
1251 		if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_CLEAR))
1252 			die("can't clear permitted cap");
1253 		if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_CLEAR))
1254 			die("can't clear inheritable cap");
1255 	}
1256 
1257 	if (cap_set_proc(caps))
1258 		die("can't apply final cleaned capset");
1259 
1260 	cap_free(caps);
1261 }
1262 
set_seccomp_filter(const struct minijail * j)1263 void set_seccomp_filter(const struct minijail *j)
1264 {
1265 	/*
1266 	 * Set no_new_privs. See </kernel/seccomp.c> and </kernel/sys.c>
1267 	 * in the kernel source tree for an explanation of the parameters.
1268 	 */
1269 	if (j->flags.no_new_privs) {
1270 		if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
1271 			pdie("prctl(PR_SET_NO_NEW_PRIVS)");
1272 	}
1273 
1274 	/*
1275 	 * Code running with ASan
1276 	 * (https://github.com/google/sanitizers/wiki/AddressSanitizer)
1277 	 * will make system calls not included in the syscall filter policy,
1278 	 * which will likely crash the program. Skip setting seccomp filter in
1279 	 * that case.
1280 	 * 'running_with_asan()' has no inputs and is completely defined at
1281 	 * build time, so this cannot be used by an attacker to skip setting
1282 	 * seccomp filter.
1283 	 */
1284 	if (j->flags.seccomp_filter && running_with_asan()) {
1285 		warn("running with ASan, not setting seccomp filter");
1286 		return;
1287 	}
1288 
1289 	/*
1290 	 * If we're logging seccomp filter failures,
1291 	 * install the SIGSYS handler first.
1292 	 */
1293 	if (j->flags.seccomp_filter && j->flags.log_seccomp_filter) {
1294 		if (install_sigsys_handler())
1295 			pdie("install SIGSYS handler");
1296 		warn("logging seccomp filter failures");
1297 	}
1298 
1299 	/*
1300 	 * Install the syscall filter.
1301 	 */
1302 	if (j->flags.seccomp_filter) {
1303 		if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
1304 			  j->filter_prog)) {
1305 			if ((errno == EINVAL) && can_softfail()) {
1306 				warn("seccomp not supported");
1307 				return;
1308 			}
1309 			pdie("prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER)");
1310 		}
1311 	}
1312 }
1313 
minijail_enter(const struct minijail * j)1314 void API minijail_enter(const struct minijail *j)
1315 {
1316 	/*
1317 	 * If we're dropping caps, get the last valid cap from /proc now,
1318 	 * since /proc can be unmounted before drop_caps() is called.
1319 	 */
1320 	unsigned int last_valid_cap = 0;
1321 	if (j->flags.caps)
1322 		last_valid_cap = get_last_valid_cap();
1323 
1324 	if (j->flags.pids)
1325 		die("tried to enter a pid-namespaced jail;"
1326 		    " try minijail_run()?");
1327 
1328 	if (j->flags.usergroups && !j->user)
1329 		die("usergroup inheritance without username");
1330 
1331 	/*
1332 	 * We can't recover from failures if we've dropped privileges partially,
1333 	 * so we don't even try. If any of our operations fail, we abort() the
1334 	 * entire process.
1335 	 */
1336 	if (j->flags.enter_vfs && setns(j->mountns_fd, CLONE_NEWNS))
1337 		pdie("setns(CLONE_NEWNS)");
1338 
1339 	if (j->flags.vfs) {
1340 		if (unshare(CLONE_NEWNS))
1341 			pdie("unshare(vfs)");
1342 		/*
1343 		 * Remount all filesystems as private. If they are shared
1344 		 * new bind mounts will creep out of our namespace.
1345 		 * https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
1346 		 */
1347 		if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL))
1348 			pdie("mount(/, private)");
1349 	}
1350 
1351 	if (j->flags.ipc && unshare(CLONE_NEWIPC)) {
1352 		pdie("unshare(ipc)");
1353 	}
1354 
1355 	if (j->flags.enter_net) {
1356 		if (setns(j->netns_fd, CLONE_NEWNET))
1357 			pdie("setns(CLONE_NEWNET)");
1358 	} else if (j->flags.net && unshare(CLONE_NEWNET)) {
1359 		pdie("unshare(net)");
1360 	}
1361 
1362 	if (j->flags.chroot && enter_chroot(j))
1363 		pdie("chroot");
1364 
1365 	if (j->flags.pivot_root && enter_pivot_root(j))
1366 		pdie("pivot_root");
1367 
1368 	if (j->flags.mount_tmp && mount_tmp())
1369 		pdie("mount_tmp");
1370 
1371 	if (j->flags.remount_proc_ro && remount_proc_readonly(j))
1372 		pdie("remount");
1373 
1374 	if (j->flags.caps) {
1375 		/*
1376 		 * POSIX capabilities are a bit tricky. If we drop our
1377 		 * capability to change uids, our attempt to use setuid()
1378 		 * below will fail. Hang on to root caps across setuid(), then
1379 		 * lock securebits.
1380 		 */
1381 		if (prctl(PR_SET_KEEPCAPS, 1))
1382 			pdie("prctl(PR_SET_KEEPCAPS)");
1383 		if (prctl
1384 		    (PR_SET_SECUREBITS, SECURE_ALL_BITS | SECURE_ALL_LOCKS))
1385 			pdie("prctl(PR_SET_SECUREBITS)");
1386 	}
1387 
1388 	/*
1389 	 * If we're setting no_new_privs, we can drop privileges
1390 	 * before setting seccomp filter. This way filter policies
1391 	 * don't need to allow privilege-dropping syscalls.
1392 	 */
1393 	if (j->flags.no_new_privs) {
1394 		drop_ugid(j);
1395 		if (j->flags.caps)
1396 			drop_caps(j, last_valid_cap);
1397 
1398 		set_seccomp_filter(j);
1399 	} else {
1400 		/*
1401 		 * If we're not setting no_new_privs,
1402 		 * we need to set seccomp filter *before* dropping privileges.
1403 		 * WARNING: this means that filter policies *must* allow
1404 		 * setgroups()/setresgid()/setresuid() for dropping root and
1405 		 * capget()/capset()/prctl() for dropping caps.
1406 		 */
1407 		set_seccomp_filter(j);
1408 
1409 		drop_ugid(j);
1410 		if (j->flags.caps)
1411 			drop_caps(j, last_valid_cap);
1412 	}
1413 
1414 	/*
1415 	 * Select the specified alternate syscall table.  The table must not
1416 	 * block prctl(2) if we're using seccomp as well.
1417 	 */
1418 	if (j->flags.alt_syscall) {
1419 		if (prctl(PR_ALT_SYSCALL, 1, j->alt_syscall_table))
1420 			pdie("prctl(PR_ALT_SYSCALL)");
1421 	}
1422 
1423 	/*
1424 	 * seccomp has to come last since it cuts off all the other
1425 	 * privilege-dropping syscalls :)
1426 	 */
1427 	if (j->flags.seccomp && prctl(PR_SET_SECCOMP, 1)) {
1428 		if ((errno == EINVAL) && can_softfail()) {
1429 			warn("seccomp not supported");
1430 			return;
1431 		}
1432 		pdie("prctl(PR_SET_SECCOMP)");
1433 	}
1434 }
1435 
1436 /* TODO(wad) will visibility affect this variable? */
1437 static int init_exitstatus = 0;
1438 
init_term(int sig)1439 void init_term(int __attribute__ ((unused)) sig)
1440 {
1441 	_exit(init_exitstatus);
1442 }
1443 
init(pid_t rootpid)1444 int init(pid_t rootpid)
1445 {
1446 	pid_t pid;
1447 	int status;
1448 	/* so that we exit with the right status */
1449 	signal(SIGTERM, init_term);
1450 	/* TODO(wad) self jail with seccomp_filters here. */
1451 	while ((pid = wait(&status)) > 0) {
1452 		/*
1453 		 * This loop will only end when either there are no processes
1454 		 * left inside our pid namespace or we get a signal.
1455 		 */
1456 		if (pid == rootpid)
1457 			init_exitstatus = status;
1458 	}
1459 	if (!WIFEXITED(init_exitstatus))
1460 		_exit(MINIJAIL_ERR_INIT);
1461 	_exit(WEXITSTATUS(init_exitstatus));
1462 }
1463 
minijail_from_fd(int fd,struct minijail * j)1464 int API minijail_from_fd(int fd, struct minijail *j)
1465 {
1466 	size_t sz = 0;
1467 	size_t bytes = read(fd, &sz, sizeof(sz));
1468 	char *buf;
1469 	int r;
1470 	if (sizeof(sz) != bytes)
1471 		return -EINVAL;
1472 	if (sz > USHRT_MAX)	/* arbitrary sanity check */
1473 		return -E2BIG;
1474 	buf = malloc(sz);
1475 	if (!buf)
1476 		return -ENOMEM;
1477 	bytes = read(fd, buf, sz);
1478 	if (bytes != sz) {
1479 		free(buf);
1480 		return -EINVAL;
1481 	}
1482 	r = minijail_unmarshal(j, buf, sz);
1483 	free(buf);
1484 	return r;
1485 }
1486 
minijail_to_fd(struct minijail * j,int fd)1487 int API minijail_to_fd(struct minijail *j, int fd)
1488 {
1489 	char *buf;
1490 	size_t sz = minijail_size(j);
1491 	ssize_t written;
1492 	int r;
1493 
1494 	if (!sz)
1495 		return -EINVAL;
1496 	buf = malloc(sz);
1497 	r = minijail_marshal(j, buf, sz);
1498 	if (r) {
1499 		free(buf);
1500 		return r;
1501 	}
1502 	/* Sends [size][minijail]. */
1503 	written = write(fd, &sz, sizeof(sz));
1504 	if (written != sizeof(sz)) {
1505 		free(buf);
1506 		return -EFAULT;
1507 	}
1508 	written = write(fd, buf, sz);
1509 	if (written < 0 || (size_t) written != sz) {
1510 		free(buf);
1511 		return -EFAULT;
1512 	}
1513 	free(buf);
1514 	return 0;
1515 }
1516 
setup_preload(void)1517 int setup_preload(void)
1518 {
1519 #if defined(__ANDROID__)
1520 	/* Don't use LDPRELOAD on Brillo. */
1521 	return 0;
1522 #else
1523 	char *oldenv = getenv(kLdPreloadEnvVar) ? : "";
1524 	char *newenv = malloc(strlen(oldenv) + 2 + strlen(PRELOADPATH));
1525 	if (!newenv)
1526 		return -ENOMEM;
1527 
1528 	/* Only insert a separating space if we have something to separate... */
1529 	sprintf(newenv, "%s%s%s", oldenv, strlen(oldenv) ? " " : "",
1530 		PRELOADPATH);
1531 
1532 	/* setenv() makes a copy of the string we give it. */
1533 	setenv(kLdPreloadEnvVar, newenv, 1);
1534 	free(newenv);
1535 	return 0;
1536 #endif
1537 }
1538 
setup_pipe(int fds[2])1539 int setup_pipe(int fds[2])
1540 {
1541 	int r = pipe(fds);
1542 	char fd_buf[11];
1543 	if (r)
1544 		return r;
1545 	r = snprintf(fd_buf, sizeof(fd_buf), "%d", fds[0]);
1546 	if (r <= 0)
1547 		return -EINVAL;
1548 	setenv(kFdEnvVar, fd_buf, 1);
1549 	return 0;
1550 }
1551 
setup_pipe_end(int fds[2],size_t index)1552 int setup_pipe_end(int fds[2], size_t index)
1553 {
1554 	if (index > 1)
1555 		return -1;
1556 
1557 	close(fds[1 - index]);
1558 	return fds[index];
1559 }
1560 
setup_and_dupe_pipe_end(int fds[2],size_t index,int fd)1561 int setup_and_dupe_pipe_end(int fds[2], size_t index, int fd)
1562 {
1563 	if (index > 1)
1564 		return -1;
1565 
1566 	close(fds[1 - index]);
1567 	/* dup2(2) the corresponding end of the pipe into |fd|. */
1568 	return dup2(fds[index], fd);
1569 }
1570 
1571 int minijail_run_internal(struct minijail *j, const char *filename,
1572 			  char *const argv[], pid_t *pchild_pid,
1573 			  int *pstdin_fd, int *pstdout_fd, int *pstderr_fd,
1574 			  int use_preload);
1575 
minijail_run(struct minijail * j,const char * filename,char * const argv[])1576 int API minijail_run(struct minijail *j, const char *filename,
1577 		     char *const argv[])
1578 {
1579 	return minijail_run_internal(j, filename, argv, NULL, NULL, NULL, NULL,
1580 				     true);
1581 }
1582 
minijail_run_pid(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid)1583 int API minijail_run_pid(struct minijail *j, const char *filename,
1584 			 char *const argv[], pid_t *pchild_pid)
1585 {
1586 	return minijail_run_internal(j, filename, argv, pchild_pid,
1587 				     NULL, NULL, NULL, true);
1588 }
1589 
minijail_run_pipe(struct minijail * j,const char * filename,char * const argv[],int * pstdin_fd)1590 int API minijail_run_pipe(struct minijail *j, const char *filename,
1591 			  char *const argv[], int *pstdin_fd)
1592 {
1593 	return minijail_run_internal(j, filename, argv, NULL, pstdin_fd,
1594 				     NULL, NULL, true);
1595 }
1596 
minijail_run_pid_pipes(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid,int * pstdin_fd,int * pstdout_fd,int * pstderr_fd)1597 int API minijail_run_pid_pipes(struct minijail *j, const char *filename,
1598 			       char *const argv[], pid_t *pchild_pid,
1599 			       int *pstdin_fd, int *pstdout_fd, int *pstderr_fd)
1600 {
1601 	return minijail_run_internal(j, filename, argv, pchild_pid,
1602 				     pstdin_fd, pstdout_fd, pstderr_fd, true);
1603 }
1604 
minijail_run_no_preload(struct minijail * j,const char * filename,char * const argv[])1605 int API minijail_run_no_preload(struct minijail *j, const char *filename,
1606 				char *const argv[])
1607 {
1608 	return minijail_run_internal(j, filename, argv, NULL, NULL, NULL, NULL,
1609 				     false);
1610 }
1611 
minijail_run_pid_pipes_no_preload(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid,int * pstdin_fd,int * pstdout_fd,int * pstderr_fd)1612 int API minijail_run_pid_pipes_no_preload(struct minijail *j,
1613 					  const char *filename,
1614 					  char *const argv[],
1615 					  pid_t *pchild_pid,
1616 					  int *pstdin_fd, int *pstdout_fd,
1617 					  int *pstderr_fd) {
1618 	return minijail_run_internal(j, filename, argv, pchild_pid,
1619 				     pstdin_fd, pstdout_fd, pstderr_fd, false);
1620 }
1621 
minijail_run_internal(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid,int * pstdin_fd,int * pstdout_fd,int * pstderr_fd,int use_preload)1622 int minijail_run_internal(struct minijail *j, const char *filename,
1623 			  char *const argv[], pid_t *pchild_pid,
1624 			  int *pstdin_fd, int *pstdout_fd, int *pstderr_fd,
1625 			  int use_preload)
1626 {
1627 	char *oldenv, *oldenv_copy = NULL;
1628 	pid_t child_pid;
1629 	int pipe_fds[2];
1630 	int stdin_fds[2];
1631 	int stdout_fds[2];
1632 	int stderr_fds[2];
1633 	int child_sync_pipe_fds[2];
1634 	int sync_child = 0;
1635 	int ret;
1636 	/* We need to remember this across the minijail_preexec() call. */
1637 	int pid_namespace = j->flags.pids;
1638 	int do_init = j->flags.do_init;
1639 
1640 	if (use_preload) {
1641 		oldenv = getenv(kLdPreloadEnvVar);
1642 		if (oldenv) {
1643 			oldenv_copy = strdup(oldenv);
1644 			if (!oldenv_copy)
1645 				return -ENOMEM;
1646 		}
1647 
1648 		if (setup_preload())
1649 			return -EFAULT;
1650 	}
1651 
1652 	if (!use_preload) {
1653 		if (j->flags.caps)
1654 			die("capabilities are not supported without "
1655 			    "LD_PRELOAD");
1656 	}
1657 
1658 	/*
1659 	 * Make the process group ID of this process equal to its PID, so that
1660 	 * both the Minijail process and the jailed process can be killed
1661 	 * together.
1662 	 * Don't fail on EPERM, since setpgid(0, 0) can only EPERM when
1663 	 * the process is already a process group leader.
1664 	 */
1665 	if (setpgid(0 /* use calling PID */, 0 /* make PGID = PID */)) {
1666 		if (errno != EPERM) {
1667 			pdie("setpgid(0, 0)");
1668 		}
1669 	}
1670 
1671 	if (use_preload) {
1672 		/*
1673 		 * Before we fork(2) and execve(2) the child process, we need
1674 		 * to open a pipe(2) to send the minijail configuration over.
1675 		 */
1676 		if (setup_pipe(pipe_fds))
1677 			return -EFAULT;
1678 	}
1679 
1680 	/*
1681 	 * If we want to write to the child process' standard input,
1682 	 * create the pipe(2) now.
1683 	 */
1684 	if (pstdin_fd) {
1685 		if (pipe(stdin_fds))
1686 			return -EFAULT;
1687 	}
1688 
1689 	/*
1690 	 * If we want to read from the child process' standard output,
1691 	 * create the pipe(2) now.
1692 	 */
1693 	if (pstdout_fd) {
1694 		if (pipe(stdout_fds))
1695 			return -EFAULT;
1696 	}
1697 
1698 	/*
1699 	 * If we want to read from the child process' standard error,
1700 	 * create the pipe(2) now.
1701 	 */
1702 	if (pstderr_fd) {
1703 		if (pipe(stderr_fds))
1704 			return -EFAULT;
1705 	}
1706 
1707 	/*
1708 	 * If we want to set up a new uid/gid mapping in the user namespace,
1709 	 * or if we need to add the child process to cgroups, create the pipe(2)
1710 	 * to sync between parent and child.
1711 	 */
1712 	if (j->flags.userns || j->flags.cgroups) {
1713 		sync_child = 1;
1714 		if (pipe(child_sync_pipe_fds))
1715 			return -EFAULT;
1716 	}
1717 
1718 	/*
1719 	 * Use sys_clone() if and only if we're creating a pid namespace.
1720 	 *
1721 	 * tl;dr: WARNING: do not mix pid namespaces and multithreading.
1722 	 *
1723 	 * In multithreaded programs, there are a bunch of locks inside libc,
1724 	 * some of which may be held by other threads at the time that we call
1725 	 * minijail_run_pid(). If we call fork(), glibc does its level best to
1726 	 * ensure that we hold all of these locks before it calls clone()
1727 	 * internally and drop them after clone() returns, but when we call
1728 	 * sys_clone(2) directly, all that gets bypassed and we end up with a
1729 	 * child address space where some of libc's important locks are held by
1730 	 * other threads (which did not get cloned, and hence will never release
1731 	 * those locks). This is okay so long as we call exec() immediately
1732 	 * after, but a bunch of seemingly-innocent libc functions like setenv()
1733 	 * take locks.
1734 	 *
1735 	 * Hence, only call sys_clone() if we need to, in order to get at pid
1736 	 * namespacing. If we follow this path, the child's address space might
1737 	 * have broken locks; you may only call functions that do not acquire
1738 	 * any locks.
1739 	 *
1740 	 * Unfortunately, fork() acquires every lock it can get its hands on, as
1741 	 * previously detailed, so this function is highly likely to deadlock
1742 	 * later on (see "deadlock here") if we're multithreaded.
1743 	 *
1744 	 * We might hack around this by having the clone()d child (init of the
1745 	 * pid namespace) return directly, rather than leaving the clone()d
1746 	 * process hanging around to be init for the new namespace (and having
1747 	 * its fork()ed child return in turn), but that process would be crippled
1748 	 * with its libc locks potentially broken. We might try fork()ing in the
1749 	 * parent before we clone() to ensure that we own all the locks, but
1750 	 * then we have to have the forked child hanging around consuming
1751 	 * resources (and possibly having file descriptors / shared memory
1752 	 * regions / etc attached). We'd need to keep the child around to avoid
1753 	 * having its children get reparented to init.
1754 	 *
1755 	 * TODO(ellyjones): figure out if the "forked child hanging around"
1756 	 * problem is fixable or not. It would be nice if we worked in this
1757 	 * case.
1758 	 */
1759 	if (pid_namespace) {
1760 		int clone_flags = CLONE_NEWPID | SIGCHLD;
1761 		if (j->flags.userns)
1762 			clone_flags |= CLONE_NEWUSER;
1763 		child_pid = syscall(SYS_clone, clone_flags, NULL);
1764 	} else {
1765 		child_pid = fork();
1766 	}
1767 
1768 	if (child_pid < 0) {
1769 		if (use_preload) {
1770 			free(oldenv_copy);
1771 		}
1772 		die("failed to fork child");
1773 	}
1774 
1775 	if (child_pid) {
1776 		if (use_preload) {
1777 			/* Restore parent's LD_PRELOAD. */
1778 			if (oldenv_copy) {
1779 				setenv(kLdPreloadEnvVar, oldenv_copy, 1);
1780 				free(oldenv_copy);
1781 			} else {
1782 				unsetenv(kLdPreloadEnvVar);
1783 			}
1784 			unsetenv(kFdEnvVar);
1785 		}
1786 
1787 		j->initpid = child_pid;
1788 
1789 		if (j->flags.pid_file)
1790 			write_pid_file(j);
1791 
1792 		if (j->flags.cgroups)
1793 			add_to_cgroups(j);
1794 
1795 		if (j->flags.userns)
1796 			write_ugid_mappings(j);
1797 
1798 		if (sync_child)
1799 			parent_setup_complete(child_sync_pipe_fds);
1800 
1801 		if (use_preload) {
1802 			/* Send marshalled minijail. */
1803 			close(pipe_fds[0]);	/* read endpoint */
1804 			ret = minijail_to_fd(j, pipe_fds[1]);
1805 			close(pipe_fds[1]);	/* write endpoint */
1806 			if (ret) {
1807 				kill(j->initpid, SIGKILL);
1808 				die("failed to send marshalled minijail");
1809 			}
1810 		}
1811 
1812 		if (pchild_pid)
1813 			*pchild_pid = child_pid;
1814 
1815 		/*
1816 		 * If we want to write to the child process' standard input,
1817 		 * set up the write end of the pipe.
1818 		 */
1819 		if (pstdin_fd)
1820 			*pstdin_fd = setup_pipe_end(stdin_fds,
1821 						    1 /* write end */);
1822 
1823 		/*
1824 		 * If we want to read from the child process' standard output,
1825 		 * set up the read end of the pipe.
1826 		 */
1827 		if (pstdout_fd)
1828 			*pstdout_fd = setup_pipe_end(stdout_fds,
1829 						     0 /* read end */);
1830 
1831 		/*
1832 		 * If we want to read from the child process' standard error,
1833 		 * set up the read end of the pipe.
1834 		 */
1835 		if (pstderr_fd)
1836 			*pstderr_fd = setup_pipe_end(stderr_fds,
1837 						     0 /* read end */);
1838 
1839 		return 0;
1840 	}
1841 	free(oldenv_copy);
1842 
1843 	if (j->flags.reset_signal_mask) {
1844 		sigset_t signal_mask;
1845 		if (sigemptyset(&signal_mask) != 0)
1846 			pdie("sigemptyset failed");
1847 		if (sigprocmask(SIG_SETMASK, &signal_mask, NULL) != 0)
1848 			pdie("sigprocmask failed");
1849 	}
1850 
1851 	if (sync_child)
1852 		wait_for_parent_setup(child_sync_pipe_fds);
1853 
1854 	if (j->flags.userns)
1855 		enter_user_namespace(j);
1856 
1857 	/*
1858 	 * If we want to write to the jailed process' standard input,
1859 	 * set up the read end of the pipe.
1860 	 */
1861 	if (pstdin_fd) {
1862 		if (setup_and_dupe_pipe_end(stdin_fds, 0 /* read end */,
1863 					    STDIN_FILENO) < 0)
1864 			die("failed to set up stdin pipe");
1865 	}
1866 
1867 	/*
1868 	 * If we want to read from the jailed process' standard output,
1869 	 * set up the write end of the pipe.
1870 	 */
1871 	if (pstdout_fd) {
1872 		if (setup_and_dupe_pipe_end(stdout_fds, 1 /* write end */,
1873 					    STDOUT_FILENO) < 0)
1874 			die("failed to set up stdout pipe");
1875 	}
1876 
1877 	/*
1878 	 * If we want to read from the jailed process' standard error,
1879 	 * set up the write end of the pipe.
1880 	 */
1881 	if (pstderr_fd) {
1882 		if (setup_and_dupe_pipe_end(stderr_fds, 1 /* write end */,
1883 					    STDERR_FILENO) < 0)
1884 			die("failed to set up stderr pipe");
1885 	}
1886 
1887 	/* If running an init program, let it decide when/how to mount /proc. */
1888 	if (pid_namespace && !do_init)
1889 		j->flags.remount_proc_ro = 0;
1890 
1891 	if (use_preload) {
1892 		/* Strip out flags that cannot be inherited across execve(2). */
1893 		minijail_preexec(j);
1894 	} else {
1895 		j->flags.pids = 0;
1896 	}
1897 	/* Jail this process, then execve() the target. */
1898 	minijail_enter(j);
1899 
1900 	if (pid_namespace && do_init) {
1901 		/*
1902 		 * pid namespace: this process will become init inside the new
1903 		 * namespace. We don't want all programs we might exec to have
1904 		 * to know how to be init. Normally (do_init == 1) we fork off
1905 		 * a child to actually run the program. If |do_init == 0|, we
1906 		 * let the program keep pid 1 and be init.
1907 		 *
1908 		 * If we're multithreaded, we'll probably deadlock here. See
1909 		 * WARNING above.
1910 		 */
1911 		child_pid = fork();
1912 		if (child_pid < 0)
1913 			_exit(child_pid);
1914 		else if (child_pid > 0)
1915 			init(child_pid);	/* never returns */
1916 	}
1917 
1918 	/*
1919 	 * If we aren't pid-namespaced, or the jailed program asked to be init:
1920 	 *   calling process
1921 	 *   -> execve()-ing process
1922 	 * If we are:
1923 	 *   calling process
1924 	 *   -> init()-ing process
1925 	 *      -> execve()-ing process
1926 	 */
1927 	_exit(execve(filename, argv, environ));
1928 }
1929 
minijail_kill(struct minijail * j)1930 int API minijail_kill(struct minijail *j)
1931 {
1932 	int st;
1933 	if (kill(j->initpid, SIGTERM))
1934 		return -errno;
1935 	if (waitpid(j->initpid, &st, 0) < 0)
1936 		return -errno;
1937 	return st;
1938 }
1939 
minijail_wait(struct minijail * j)1940 int API minijail_wait(struct minijail *j)
1941 {
1942 	int st;
1943 	if (waitpid(j->initpid, &st, 0) < 0)
1944 		return -errno;
1945 
1946 	if (!WIFEXITED(st)) {
1947 		int error_status = st;
1948 		if (WIFSIGNALED(st)) {
1949 			int signum = WTERMSIG(st);
1950 			warn("child process %d received signal %d",
1951 			     j->initpid, signum);
1952 			/*
1953 			 * We return MINIJAIL_ERR_JAIL if the process received
1954 			 * SIGSYS, which happens when a syscall is blocked by
1955 			 * seccomp filters.
1956 			 * If not, we do what bash(1) does:
1957 			 * $? = 128 + signum
1958 			 */
1959 			if (signum == SIGSYS) {
1960 				error_status = MINIJAIL_ERR_JAIL;
1961 			} else {
1962 				error_status = 128 + signum;
1963 			}
1964 		}
1965 		return error_status;
1966 	}
1967 
1968 	int exit_status = WEXITSTATUS(st);
1969 	if (exit_status != 0)
1970 		info("child process %d exited with status %d",
1971 		     j->initpid, exit_status);
1972 
1973 	return exit_status;
1974 }
1975 
minijail_destroy(struct minijail * j)1976 void API minijail_destroy(struct minijail *j)
1977 {
1978 	size_t i;
1979 
1980 	if (j->flags.seccomp_filter && j->filter_prog) {
1981 		free(j->filter_prog->filter);
1982 		free(j->filter_prog);
1983 	}
1984 	while (j->mounts_head) {
1985 		struct mountpoint *m = j->mounts_head;
1986 		j->mounts_head = j->mounts_head->next;
1987 		free(m->type);
1988 		free(m->dest);
1989 		free(m->src);
1990 		free(m);
1991 	}
1992 	j->mounts_tail = NULL;
1993 	if (j->user)
1994 		free(j->user);
1995 	if (j->suppl_gid_list)
1996 		free(j->suppl_gid_list);
1997 	if (j->chrootdir)
1998 		free(j->chrootdir);
1999 	if (j->alt_syscall_table)
2000 		free(j->alt_syscall_table);
2001 	for (i = 0; i < j->cgroup_count; ++i)
2002 		free(j->cgroups[i]);
2003 	free(j);
2004 }
2005