• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "brw_vec4.h"
25 extern "C" {
26 #include "main/macros.h"
27 #include "program/prog_parameter.h"
28 }
29 
30 #define MAX_INSTRUCTION (1 << 30)
31 
32 namespace brw {
33 
34 /**
35  * Common helper for constructing swizzles.  When only a subset of
36  * channels of a vec4 are used, we don't want to reference the other
37  * channels, as that will tell optimization passes that those other
38  * channels are used.
39  */
40 unsigned
swizzle_for_size(int size)41 swizzle_for_size(int size)
42 {
43    static const unsigned size_swizzles[4] = {
44       BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
45       BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
46       BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
47       BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
48    };
49 
50    assert((size >= 1) && (size <= 4));
51    return size_swizzles[size - 1];
52 }
53 
54 void
init()55 src_reg::init()
56 {
57    memset(this, 0, sizeof(*this));
58 
59    this->file = BAD_FILE;
60 }
61 
src_reg(register_file file,int reg,const glsl_type * type)62 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
63 {
64    init();
65 
66    this->file = file;
67    this->reg = reg;
68    if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
69       this->swizzle = swizzle_for_size(type->vector_elements);
70    else
71       this->swizzle = SWIZZLE_XYZW;
72 }
73 
74 /** Generic unset register constructor. */
src_reg()75 src_reg::src_reg()
76 {
77    init();
78 }
79 
src_reg(float f)80 src_reg::src_reg(float f)
81 {
82    init();
83 
84    this->file = IMM;
85    this->type = BRW_REGISTER_TYPE_F;
86    this->imm.f = f;
87 }
88 
src_reg(uint32_t u)89 src_reg::src_reg(uint32_t u)
90 {
91    init();
92 
93    this->file = IMM;
94    this->type = BRW_REGISTER_TYPE_UD;
95    this->imm.u = u;
96 }
97 
src_reg(int32_t i)98 src_reg::src_reg(int32_t i)
99 {
100    init();
101 
102    this->file = IMM;
103    this->type = BRW_REGISTER_TYPE_D;
104    this->imm.i = i;
105 }
106 
src_reg(dst_reg reg)107 src_reg::src_reg(dst_reg reg)
108 {
109    init();
110 
111    this->file = reg.file;
112    this->reg = reg.reg;
113    this->reg_offset = reg.reg_offset;
114    this->type = reg.type;
115    this->reladdr = reg.reladdr;
116    this->fixed_hw_reg = reg.fixed_hw_reg;
117 
118    int swizzles[4];
119    int next_chan = 0;
120    int last = 0;
121 
122    for (int i = 0; i < 4; i++) {
123       if (!(reg.writemask & (1 << i)))
124          continue;
125 
126       swizzles[next_chan++] = last = i;
127    }
128 
129    for (; next_chan < 4; next_chan++) {
130       swizzles[next_chan] = last;
131    }
132 
133    this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
134                                 swizzles[2], swizzles[3]);
135 }
136 
137 bool
is_tex()138 vec4_instruction::is_tex()
139 {
140    return (opcode == SHADER_OPCODE_TEX ||
141 	   opcode == SHADER_OPCODE_TXD ||
142 	   opcode == SHADER_OPCODE_TXF ||
143 	   opcode == SHADER_OPCODE_TXL ||
144 	   opcode == SHADER_OPCODE_TXS);
145 }
146 
147 void
init()148 dst_reg::init()
149 {
150    memset(this, 0, sizeof(*this));
151    this->file = BAD_FILE;
152    this->writemask = WRITEMASK_XYZW;
153 }
154 
dst_reg()155 dst_reg::dst_reg()
156 {
157    init();
158 }
159 
dst_reg(register_file file,int reg)160 dst_reg::dst_reg(register_file file, int reg)
161 {
162    init();
163 
164    this->file = file;
165    this->reg = reg;
166 }
167 
dst_reg(register_file file,int reg,const glsl_type * type,int writemask)168 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
169                  int writemask)
170 {
171    init();
172 
173    this->file = file;
174    this->reg = reg;
175    this->type = brw_type_for_base_type(type);
176    this->writemask = writemask;
177 }
178 
dst_reg(struct brw_reg reg)179 dst_reg::dst_reg(struct brw_reg reg)
180 {
181    init();
182 
183    this->file = HW_REG;
184    this->fixed_hw_reg = reg;
185 }
186 
dst_reg(src_reg reg)187 dst_reg::dst_reg(src_reg reg)
188 {
189    init();
190 
191    this->file = reg.file;
192    this->reg = reg.reg;
193    this->reg_offset = reg.reg_offset;
194    this->type = reg.type;
195    this->writemask = WRITEMASK_XYZW;
196    this->reladdr = reg.reladdr;
197    this->fixed_hw_reg = reg.fixed_hw_reg;
198 }
199 
200 bool
is_math()201 vec4_instruction::is_math()
202 {
203    return (opcode == SHADER_OPCODE_RCP ||
204 	   opcode == SHADER_OPCODE_RSQ ||
205 	   opcode == SHADER_OPCODE_SQRT ||
206 	   opcode == SHADER_OPCODE_EXP2 ||
207 	   opcode == SHADER_OPCODE_LOG2 ||
208 	   opcode == SHADER_OPCODE_SIN ||
209 	   opcode == SHADER_OPCODE_COS ||
210 	   opcode == SHADER_OPCODE_INT_QUOTIENT ||
211 	   opcode == SHADER_OPCODE_INT_REMAINDER ||
212 	   opcode == SHADER_OPCODE_POW);
213 }
214 /**
215  * Returns how many MRFs an opcode will write over.
216  *
217  * Note that this is not the 0 or 1 implied writes in an actual gen
218  * instruction -- the generate_* functions generate additional MOVs
219  * for setup.
220  */
221 int
implied_mrf_writes(vec4_instruction * inst)222 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
223 {
224    if (inst->mlen == 0)
225       return 0;
226 
227    switch (inst->opcode) {
228    case SHADER_OPCODE_RCP:
229    case SHADER_OPCODE_RSQ:
230    case SHADER_OPCODE_SQRT:
231    case SHADER_OPCODE_EXP2:
232    case SHADER_OPCODE_LOG2:
233    case SHADER_OPCODE_SIN:
234    case SHADER_OPCODE_COS:
235       return 1;
236    case SHADER_OPCODE_POW:
237       return 2;
238    case VS_OPCODE_URB_WRITE:
239       return 1;
240    case VS_OPCODE_PULL_CONSTANT_LOAD:
241       return 2;
242    case VS_OPCODE_SCRATCH_READ:
243       return 2;
244    case VS_OPCODE_SCRATCH_WRITE:
245       return 3;
246    default:
247       assert(!"not reached");
248       return inst->mlen;
249    }
250 }
251 
252 bool
equals(src_reg * r)253 src_reg::equals(src_reg *r)
254 {
255    return (file == r->file &&
256 	   reg == r->reg &&
257 	   reg_offset == r->reg_offset &&
258 	   type == r->type &&
259 	   negate == r->negate &&
260 	   abs == r->abs &&
261 	   swizzle == r->swizzle &&
262 	   !reladdr && !r->reladdr &&
263 	   memcmp(&fixed_hw_reg, &r->fixed_hw_reg,
264 		  sizeof(fixed_hw_reg)) == 0 &&
265 	   imm.u == r->imm.u);
266 }
267 
268 void
calculate_live_intervals()269 vec4_visitor::calculate_live_intervals()
270 {
271    int *def = ralloc_array(mem_ctx, int, virtual_grf_count);
272    int *use = ralloc_array(mem_ctx, int, virtual_grf_count);
273    int loop_depth = 0;
274    int loop_start = 0;
275 
276    if (this->live_intervals_valid)
277       return;
278 
279    for (int i = 0; i < virtual_grf_count; i++) {
280       def[i] = MAX_INSTRUCTION;
281       use[i] = -1;
282    }
283 
284    int ip = 0;
285    foreach_list(node, &this->instructions) {
286       vec4_instruction *inst = (vec4_instruction *)node;
287 
288       if (inst->opcode == BRW_OPCODE_DO) {
289 	 if (loop_depth++ == 0)
290 	    loop_start = ip;
291       } else if (inst->opcode == BRW_OPCODE_WHILE) {
292 	 loop_depth--;
293 
294 	 if (loop_depth == 0) {
295 	    /* Patches up the use of vars marked for being live across
296 	     * the whole loop.
297 	     */
298 	    for (int i = 0; i < virtual_grf_count; i++) {
299 	       if (use[i] == loop_start) {
300 		  use[i] = ip;
301 	       }
302 	    }
303 	 }
304       } else {
305 	 for (unsigned int i = 0; i < 3; i++) {
306 	    if (inst->src[i].file == GRF) {
307 	       int reg = inst->src[i].reg;
308 
309 	       if (!loop_depth) {
310 		  use[reg] = ip;
311 	       } else {
312 		  def[reg] = MIN2(loop_start, def[reg]);
313 		  use[reg] = loop_start;
314 
315 		  /* Nobody else is going to go smash our start to
316 		   * later in the loop now, because def[reg] now
317 		   * points before the bb header.
318 		   */
319 	       }
320 	    }
321 	 }
322 	 if (inst->dst.file == GRF) {
323 	    int reg = inst->dst.reg;
324 
325 	    if (!loop_depth) {
326 	       def[reg] = MIN2(def[reg], ip);
327 	    } else {
328 	       def[reg] = MIN2(def[reg], loop_start);
329 	    }
330 	 }
331       }
332 
333       ip++;
334    }
335 
336    ralloc_free(this->virtual_grf_def);
337    ralloc_free(this->virtual_grf_use);
338    this->virtual_grf_def = def;
339    this->virtual_grf_use = use;
340 
341    this->live_intervals_valid = true;
342 }
343 
344 bool
virtual_grf_interferes(int a,int b)345 vec4_visitor::virtual_grf_interferes(int a, int b)
346 {
347    int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
348    int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
349 
350    /* We can't handle dead register writes here, without iterating
351     * over the whole instruction stream to find every single dead
352     * write to that register to compare to the live interval of the
353     * other register.  Just assert that dead_code_eliminate() has been
354     * called.
355     */
356    assert((this->virtual_grf_use[a] != -1 ||
357 	   this->virtual_grf_def[a] == MAX_INSTRUCTION) &&
358 	  (this->virtual_grf_use[b] != -1 ||
359 	   this->virtual_grf_def[b] == MAX_INSTRUCTION));
360 
361    return start < end;
362 }
363 
364 /**
365  * Must be called after calculate_live_intervales() to remove unused
366  * writes to registers -- register allocation will fail otherwise
367  * because something deffed but not used won't be considered to
368  * interfere with other regs.
369  */
370 bool
dead_code_eliminate()371 vec4_visitor::dead_code_eliminate()
372 {
373    bool progress = false;
374    int pc = 0;
375 
376    calculate_live_intervals();
377 
378    foreach_list_safe(node, &this->instructions) {
379       vec4_instruction *inst = (vec4_instruction *)node;
380 
381       if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
382 	 inst->remove();
383 	 progress = true;
384       }
385 
386       pc++;
387    }
388 
389    if (progress)
390       live_intervals_valid = false;
391 
392    return progress;
393 }
394 
395 void
split_uniform_registers()396 vec4_visitor::split_uniform_registers()
397 {
398    /* Prior to this, uniforms have been in an array sized according to
399     * the number of vector uniforms present, sparsely filled (so an
400     * aggregate results in reg indices being skipped over).  Now we're
401     * going to cut those aggregates up so each .reg index is one
402     * vector.  The goal is to make elimination of unused uniform
403     * components easier later.
404     */
405    foreach_list(node, &this->instructions) {
406       vec4_instruction *inst = (vec4_instruction *)node;
407 
408       for (int i = 0 ; i < 3; i++) {
409 	 if (inst->src[i].file != UNIFORM)
410 	    continue;
411 
412 	 assert(!inst->src[i].reladdr);
413 
414 	 inst->src[i].reg += inst->src[i].reg_offset;
415 	 inst->src[i].reg_offset = 0;
416       }
417    }
418 
419    /* Update that everything is now vector-sized. */
420    for (int i = 0; i < this->uniforms; i++) {
421       this->uniform_size[i] = 1;
422    }
423 }
424 
425 void
pack_uniform_registers()426 vec4_visitor::pack_uniform_registers()
427 {
428    bool uniform_used[this->uniforms];
429    int new_loc[this->uniforms];
430    int new_chan[this->uniforms];
431 
432    memset(uniform_used, 0, sizeof(uniform_used));
433    memset(new_loc, 0, sizeof(new_loc));
434    memset(new_chan, 0, sizeof(new_chan));
435 
436    /* Find which uniform vectors are actually used by the program.  We
437     * expect unused vector elements when we've moved array access out
438     * to pull constants, and from some GLSL code generators like wine.
439     */
440    foreach_list(node, &this->instructions) {
441       vec4_instruction *inst = (vec4_instruction *)node;
442 
443       for (int i = 0 ; i < 3; i++) {
444 	 if (inst->src[i].file != UNIFORM)
445 	    continue;
446 
447 	 uniform_used[inst->src[i].reg] = true;
448       }
449    }
450 
451    int new_uniform_count = 0;
452 
453    /* Now, figure out a packing of the live uniform vectors into our
454     * push constants.
455     */
456    for (int src = 0; src < uniforms; src++) {
457       int size = this->uniform_vector_size[src];
458 
459       if (!uniform_used[src]) {
460 	 this->uniform_vector_size[src] = 0;
461 	 continue;
462       }
463 
464       int dst;
465       /* Find the lowest place we can slot this uniform in. */
466       for (dst = 0; dst < src; dst++) {
467 	 if (this->uniform_vector_size[dst] + size <= 4)
468 	    break;
469       }
470 
471       if (src == dst) {
472 	 new_loc[src] = dst;
473 	 new_chan[src] = 0;
474       } else {
475 	 new_loc[src] = dst;
476 	 new_chan[src] = this->uniform_vector_size[dst];
477 
478 	 /* Move the references to the data */
479 	 for (int j = 0; j < size; j++) {
480 	    c->prog_data.param[dst * 4 + new_chan[src] + j] =
481 	       c->prog_data.param[src * 4 + j];
482 	 }
483 
484 	 this->uniform_vector_size[dst] += size;
485 	 this->uniform_vector_size[src] = 0;
486       }
487 
488       new_uniform_count = MAX2(new_uniform_count, dst + 1);
489    }
490 
491    this->uniforms = new_uniform_count;
492 
493    /* Now, update the instructions for our repacked uniforms. */
494    foreach_list(node, &this->instructions) {
495       vec4_instruction *inst = (vec4_instruction *)node;
496 
497       for (int i = 0 ; i < 3; i++) {
498 	 int src = inst->src[i].reg;
499 
500 	 if (inst->src[i].file != UNIFORM)
501 	    continue;
502 
503 	 inst->src[i].reg = new_loc[src];
504 
505 	 int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
506 	 int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
507 	 int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
508 	 int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
509 	 inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
510       }
511    }
512 }
513 
514 bool
is_zero() const515 src_reg::is_zero() const
516 {
517    if (file != IMM)
518       return false;
519 
520    if (type == BRW_REGISTER_TYPE_F) {
521       return imm.f == 0.0;
522    } else {
523       return imm.i == 0;
524    }
525 }
526 
527 bool
is_one() const528 src_reg::is_one() const
529 {
530    if (file != IMM)
531       return false;
532 
533    if (type == BRW_REGISTER_TYPE_F) {
534       return imm.f == 1.0;
535    } else {
536       return imm.i == 1;
537    }
538 }
539 
540 /**
541  * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
542  *
543  * While GLSL IR also performs this optimization, we end up with it in
544  * our instruction stream for a couple of reasons.  One is that we
545  * sometimes generate silly instructions, for example in array access
546  * where we'll generate "ADD offset, index, base" even if base is 0.
547  * The other is that GLSL IR's constant propagation doesn't track the
548  * components of aggregates, so some VS patterns (initialize matrix to
549  * 0, accumulate in vertex blending factors) end up breaking down to
550  * instructions involving 0.
551  */
552 bool
opt_algebraic()553 vec4_visitor::opt_algebraic()
554 {
555    bool progress = false;
556 
557    foreach_list(node, &this->instructions) {
558       vec4_instruction *inst = (vec4_instruction *)node;
559 
560       switch (inst->opcode) {
561       case BRW_OPCODE_ADD:
562 	 if (inst->src[1].is_zero()) {
563 	    inst->opcode = BRW_OPCODE_MOV;
564 	    inst->src[1] = src_reg();
565 	    progress = true;
566 	 }
567 	 break;
568 
569       case BRW_OPCODE_MUL:
570 	 if (inst->src[1].is_zero()) {
571 	    inst->opcode = BRW_OPCODE_MOV;
572 	    switch (inst->src[0].type) {
573 	    case BRW_REGISTER_TYPE_F:
574 	       inst->src[0] = src_reg(0.0f);
575 	       break;
576 	    case BRW_REGISTER_TYPE_D:
577 	       inst->src[0] = src_reg(0);
578 	       break;
579 	    case BRW_REGISTER_TYPE_UD:
580 	       inst->src[0] = src_reg(0u);
581 	       break;
582 	    default:
583 	       assert(!"not reached");
584 	       inst->src[0] = src_reg(0.0f);
585 	       break;
586 	    }
587 	    inst->src[1] = src_reg();
588 	    progress = true;
589 	 } else if (inst->src[1].is_one()) {
590 	    inst->opcode = BRW_OPCODE_MOV;
591 	    inst->src[1] = src_reg();
592 	    progress = true;
593 	 }
594 	 break;
595       default:
596 	 break;
597       }
598    }
599 
600    if (progress)
601       this->live_intervals_valid = false;
602 
603    return progress;
604 }
605 
606 /**
607  * Only a limited number of hardware registers may be used for push
608  * constants, so this turns access to the overflowed constants into
609  * pull constants.
610  */
611 void
move_push_constants_to_pull_constants()612 vec4_visitor::move_push_constants_to_pull_constants()
613 {
614    int pull_constant_loc[this->uniforms];
615 
616    /* Only allow 32 registers (256 uniform components) as push constants,
617     * which is the limit on gen6.
618     */
619    int max_uniform_components = 32 * 8;
620    if (this->uniforms * 4 <= max_uniform_components)
621       return;
622 
623    /* Make some sort of choice as to which uniforms get sent to pull
624     * constants.  We could potentially do something clever here like
625     * look for the most infrequently used uniform vec4s, but leave
626     * that for later.
627     */
628    for (int i = 0; i < this->uniforms * 4; i += 4) {
629       pull_constant_loc[i / 4] = -1;
630 
631       if (i >= max_uniform_components) {
632 	 const float **values = &prog_data->param[i];
633 
634 	 /* Try to find an existing copy of this uniform in the pull
635 	  * constants if it was part of an array access already.
636 	  */
637 	 for (unsigned int j = 0; j < prog_data->nr_pull_params; j += 4) {
638 	    int matches;
639 
640 	    for (matches = 0; matches < 4; matches++) {
641 	       if (prog_data->pull_param[j + matches] != values[matches])
642 		  break;
643 	    }
644 
645 	    if (matches == 4) {
646 	       pull_constant_loc[i / 4] = j / 4;
647 	       break;
648 	    }
649 	 }
650 
651 	 if (pull_constant_loc[i / 4] == -1) {
652 	    assert(prog_data->nr_pull_params % 4 == 0);
653 	    pull_constant_loc[i / 4] = prog_data->nr_pull_params / 4;
654 
655 	    for (int j = 0; j < 4; j++) {
656 	       prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
657 	    }
658 	 }
659       }
660    }
661 
662    /* Now actually rewrite usage of the things we've moved to pull
663     * constants.
664     */
665    foreach_list_safe(node, &this->instructions) {
666       vec4_instruction *inst = (vec4_instruction *)node;
667 
668       for (int i = 0 ; i < 3; i++) {
669 	 if (inst->src[i].file != UNIFORM ||
670 	     pull_constant_loc[inst->src[i].reg] == -1)
671 	    continue;
672 
673 	 int uniform = inst->src[i].reg;
674 
675 	 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
676 
677 	 emit_pull_constant_load(inst, temp, inst->src[i],
678 				 pull_constant_loc[uniform]);
679 
680 	 inst->src[i].file = temp.file;
681 	 inst->src[i].reg = temp.reg;
682 	 inst->src[i].reg_offset = temp.reg_offset;
683 	 inst->src[i].reladdr = NULL;
684       }
685    }
686 
687    /* Repack push constants to remove the now-unused ones. */
688    pack_uniform_registers();
689 }
690 
691 /*
692  * Tries to reduce extra MOV instructions by taking GRFs that get just
693  * written and then MOVed into an MRF and making the original write of
694  * the GRF write directly to the MRF instead.
695  */
696 bool
opt_compute_to_mrf()697 vec4_visitor::opt_compute_to_mrf()
698 {
699    bool progress = false;
700    int next_ip = 0;
701 
702    calculate_live_intervals();
703 
704    foreach_list_safe(node, &this->instructions) {
705       vec4_instruction *inst = (vec4_instruction *)node;
706 
707       int ip = next_ip;
708       next_ip++;
709 
710       if (inst->opcode != BRW_OPCODE_MOV ||
711 	  inst->predicate ||
712 	  inst->dst.file != MRF || inst->src[0].file != GRF ||
713 	  inst->dst.type != inst->src[0].type ||
714 	  inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
715 	 continue;
716 
717       int mrf = inst->dst.reg;
718 
719       /* Can't compute-to-MRF this GRF if someone else was going to
720        * read it later.
721        */
722       if (this->virtual_grf_use[inst->src[0].reg] > ip)
723 	 continue;
724 
725       /* We need to check interference with the MRF between this
726        * instruction and the earliest instruction involved in writing
727        * the GRF we're eliminating.  To do that, keep track of which
728        * of our source channels we've seen initialized.
729        */
730       bool chans_needed[4] = {false, false, false, false};
731       int chans_remaining = 0;
732       for (int i = 0; i < 4; i++) {
733 	 int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
734 
735 	 if (!(inst->dst.writemask & (1 << i)))
736 	    continue;
737 
738 	 /* We don't handle compute-to-MRF across a swizzle.  We would
739 	  * need to be able to rewrite instructions above to output
740 	  * results to different channels.
741 	  */
742 	 if (chan != i)
743 	    chans_remaining = 5;
744 
745 	 if (!chans_needed[chan]) {
746 	    chans_needed[chan] = true;
747 	    chans_remaining++;
748 	 }
749       }
750       if (chans_remaining > 4)
751 	 continue;
752 
753       /* Now walk up the instruction stream trying to see if we can
754        * rewrite everything writing to the GRF into the MRF instead.
755        */
756       vec4_instruction *scan_inst;
757       for (scan_inst = (vec4_instruction *)inst->prev;
758 	   scan_inst->prev != NULL;
759 	   scan_inst = (vec4_instruction *)scan_inst->prev) {
760 	 if (scan_inst->dst.file == GRF &&
761 	     scan_inst->dst.reg == inst->src[0].reg &&
762 	     scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
763 	    /* Found something writing to the reg we want to turn into
764 	     * a compute-to-MRF.
765 	     */
766 
767 	    /* SEND instructions can't have MRF as a destination. */
768 	    if (scan_inst->mlen)
769 	       break;
770 
771 	    if (intel->gen >= 6) {
772 	       /* gen6 math instructions must have the destination be
773 		* GRF, so no compute-to-MRF for them.
774 		*/
775 	       if (scan_inst->is_math()) {
776 		  break;
777 	       }
778 	    }
779 
780 	    /* Mark which channels we found unconditional writes for. */
781 	    if (!scan_inst->predicate) {
782 	       for (int i = 0; i < 4; i++) {
783 		  if (scan_inst->dst.writemask & (1 << i) &&
784 		      chans_needed[i]) {
785 		     chans_needed[i] = false;
786 		     chans_remaining--;
787 		  }
788 	       }
789 	    }
790 
791 	    if (chans_remaining == 0)
792 	       break;
793 	 }
794 
795 	 /* We don't handle flow control here.  Most computation of
796 	  * values that end up in MRFs are shortly before the MRF
797 	  * write anyway.
798 	  */
799 	 if (scan_inst->opcode == BRW_OPCODE_DO ||
800 	     scan_inst->opcode == BRW_OPCODE_WHILE ||
801 	     scan_inst->opcode == BRW_OPCODE_ELSE ||
802 	     scan_inst->opcode == BRW_OPCODE_ENDIF) {
803 	    break;
804 	 }
805 
806 	 /* You can't read from an MRF, so if someone else reads our
807 	  * MRF's source GRF that we wanted to rewrite, that stops us.
808 	  */
809 	 bool interfered = false;
810 	 for (int i = 0; i < 3; i++) {
811 	    if (scan_inst->src[i].file == GRF &&
812 		scan_inst->src[i].reg == inst->src[0].reg &&
813 		scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
814 	       interfered = true;
815 	    }
816 	 }
817 	 if (interfered)
818 	    break;
819 
820 	 /* If somebody else writes our MRF here, we can't
821 	  * compute-to-MRF before that.
822 	  */
823 	 if (scan_inst->dst.file == MRF && mrf == scan_inst->dst.reg)
824 	    break;
825 
826 	 if (scan_inst->mlen > 0) {
827 	    /* Found a SEND instruction, which means that there are
828 	     * live values in MRFs from base_mrf to base_mrf +
829 	     * scan_inst->mlen - 1.  Don't go pushing our MRF write up
830 	     * above it.
831 	     */
832 	    if (mrf >= scan_inst->base_mrf &&
833 		mrf < scan_inst->base_mrf + scan_inst->mlen) {
834 	       break;
835 	    }
836 	 }
837       }
838 
839       if (chans_remaining == 0) {
840 	 /* If we've made it here, we have an inst we want to
841 	  * compute-to-MRF, and a scan_inst pointing to the earliest
842 	  * instruction involved in computing the value.  Now go
843 	  * rewrite the instruction stream between the two.
844 	  */
845 
846 	 while (scan_inst != inst) {
847 	    if (scan_inst->dst.file == GRF &&
848 		scan_inst->dst.reg == inst->src[0].reg &&
849 		scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
850 	       scan_inst->dst.file = MRF;
851 	       scan_inst->dst.reg = mrf;
852 	       scan_inst->dst.reg_offset = 0;
853 	       scan_inst->dst.writemask &= inst->dst.writemask;
854 	       scan_inst->saturate |= inst->saturate;
855 	    }
856 	    scan_inst = (vec4_instruction *)scan_inst->next;
857 	 }
858 	 inst->remove();
859 	 progress = true;
860       }
861    }
862 
863    if (progress)
864       live_intervals_valid = false;
865 
866    return progress;
867 }
868 
869 } /* namespace brw */
870