• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_PARTIALLU_H
12 #define EIGEN_PARTIALLU_H
13 
14 namespace Eigen {
15 
16 /** \ingroup LU_Module
17   *
18   * \class PartialPivLU
19   *
20   * \brief LU decomposition of a matrix with partial pivoting, and related features
21   *
22   * \param MatrixType the type of the matrix of which we are computing the LU decomposition
23   *
24   * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
25   * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
26   * is a permutation matrix.
27   *
28   * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
29   * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
30   * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
31   * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
32   *
33   * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
34   * by class FullPivLU.
35   *
36   * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
37   * such as rank computation. If you need these features, use class FullPivLU.
38   *
39   * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
40   * in the general case.
41   * On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
42   *
43   * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
44   *
45   * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
46   */
47 template<typename _MatrixType> class PartialPivLU
48 {
49   public:
50 
51     typedef _MatrixType MatrixType;
52     enum {
53       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
54       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
55       Options = MatrixType::Options,
56       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
57       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
58     };
59     typedef typename MatrixType::Scalar Scalar;
60     typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
61     typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
62     typedef typename MatrixType::Index Index;
63     typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
64     typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
65 
66 
67     /**
68     * \brief Default Constructor.
69     *
70     * The default constructor is useful in cases in which the user intends to
71     * perform decompositions via PartialPivLU::compute(const MatrixType&).
72     */
73     PartialPivLU();
74 
75     /** \brief Default Constructor with memory preallocation
76       *
77       * Like the default constructor but with preallocation of the internal data
78       * according to the specified problem \a size.
79       * \sa PartialPivLU()
80       */
81     PartialPivLU(Index size);
82 
83     /** Constructor.
84       *
85       * \param matrix the matrix of which to compute the LU decomposition.
86       *
87       * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
88       * If you need to deal with non-full rank, use class FullPivLU instead.
89       */
90     PartialPivLU(const MatrixType& matrix);
91 
92     PartialPivLU& compute(const MatrixType& matrix);
93 
94     /** \returns the LU decomposition matrix: the upper-triangular part is U, the
95       * unit-lower-triangular part is L (at least for square matrices; in the non-square
96       * case, special care is needed, see the documentation of class FullPivLU).
97       *
98       * \sa matrixL(), matrixU()
99       */
matrixLU()100     inline const MatrixType& matrixLU() const
101     {
102       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
103       return m_lu;
104     }
105 
106     /** \returns the permutation matrix P.
107       */
permutationP()108     inline const PermutationType& permutationP() const
109     {
110       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
111       return m_p;
112     }
113 
114     /** This method returns the solution x to the equation Ax=b, where A is the matrix of which
115       * *this is the LU decomposition.
116       *
117       * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
118       *          the only requirement in order for the equation to make sense is that
119       *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
120       *
121       * \returns the solution.
122       *
123       * Example: \include PartialPivLU_solve.cpp
124       * Output: \verbinclude PartialPivLU_solve.out
125       *
126       * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
127       * theoretically exists and is unique regardless of b.
128       *
129       * \sa TriangularView::solve(), inverse(), computeInverse()
130       */
131     template<typename Rhs>
132     inline const internal::solve_retval<PartialPivLU, Rhs>
solve(const MatrixBase<Rhs> & b)133     solve(const MatrixBase<Rhs>& b) const
134     {
135       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
136       return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived());
137     }
138 
139     /** \returns the inverse of the matrix of which *this is the LU decomposition.
140       *
141       * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
142       *          invertibility, use class FullPivLU instead.
143       *
144       * \sa MatrixBase::inverse(), LU::inverse()
145       */
inverse()146     inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
147     {
148       eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
149       return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
150                (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
151     }
152 
153     /** \returns the determinant of the matrix of which
154       * *this is the LU decomposition. It has only linear complexity
155       * (that is, O(n) where n is the dimension of the square matrix)
156       * as the LU decomposition has already been computed.
157       *
158       * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
159       *       optimized paths.
160       *
161       * \warning a determinant can be very big or small, so for matrices
162       * of large enough dimension, there is a risk of overflow/underflow.
163       *
164       * \sa MatrixBase::determinant()
165       */
166     typename internal::traits<MatrixType>::Scalar determinant() const;
167 
168     MatrixType reconstructedMatrix() const;
169 
rows()170     inline Index rows() const { return m_lu.rows(); }
cols()171     inline Index cols() const { return m_lu.cols(); }
172 
173   protected:
174 
check_template_parameters()175     static void check_template_parameters()
176     {
177       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
178     }
179 
180     MatrixType m_lu;
181     PermutationType m_p;
182     TranspositionType m_rowsTranspositions;
183     Index m_det_p;
184     bool m_isInitialized;
185 };
186 
187 template<typename MatrixType>
PartialPivLU()188 PartialPivLU<MatrixType>::PartialPivLU()
189   : m_lu(),
190     m_p(),
191     m_rowsTranspositions(),
192     m_det_p(0),
193     m_isInitialized(false)
194 {
195 }
196 
197 template<typename MatrixType>
PartialPivLU(Index size)198 PartialPivLU<MatrixType>::PartialPivLU(Index size)
199   : m_lu(size, size),
200     m_p(size),
201     m_rowsTranspositions(size),
202     m_det_p(0),
203     m_isInitialized(false)
204 {
205 }
206 
207 template<typename MatrixType>
PartialPivLU(const MatrixType & matrix)208 PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
209   : m_lu(matrix.rows(), matrix.rows()),
210     m_p(matrix.rows()),
211     m_rowsTranspositions(matrix.rows()),
212     m_det_p(0),
213     m_isInitialized(false)
214 {
215   compute(matrix);
216 }
217 
218 namespace internal {
219 
220 /** \internal This is the blocked version of fullpivlu_unblocked() */
221 template<typename Scalar, int StorageOrder, typename PivIndex>
222 struct partial_lu_impl
223 {
224   // FIXME add a stride to Map, so that the following mapping becomes easier,
225   // another option would be to create an expression being able to automatically
226   // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
227   // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
228   // and Block.
229   typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
230   typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
231   typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
232   typedef typename MatrixType::RealScalar RealScalar;
233   typedef typename MatrixType::Index Index;
234 
235   /** \internal performs the LU decomposition in-place of the matrix \a lu
236     * using an unblocked algorithm.
237     *
238     * In addition, this function returns the row transpositions in the
239     * vector \a row_transpositions which must have a size equal to the number
240     * of columns of the matrix \a lu, and an integer \a nb_transpositions
241     * which returns the actual number of transpositions.
242     *
243     * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
244     */
unblocked_lupartial_lu_impl245   static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
246   {
247     const Index rows = lu.rows();
248     const Index cols = lu.cols();
249     const Index size = (std::min)(rows,cols);
250     nb_transpositions = 0;
251     Index first_zero_pivot = -1;
252     for(Index k = 0; k < size; ++k)
253     {
254       Index rrows = rows-k-1;
255       Index rcols = cols-k-1;
256 
257       Index row_of_biggest_in_col;
258       RealScalar biggest_in_corner
259         = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col);
260       row_of_biggest_in_col += k;
261 
262       row_transpositions[k] = PivIndex(row_of_biggest_in_col);
263 
264       if(biggest_in_corner != RealScalar(0))
265       {
266         if(k != row_of_biggest_in_col)
267         {
268           lu.row(k).swap(lu.row(row_of_biggest_in_col));
269           ++nb_transpositions;
270         }
271 
272         // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k)
273         // overflow but not the actual quotient?
274         lu.col(k).tail(rrows) /= lu.coeff(k,k);
275       }
276       else if(first_zero_pivot==-1)
277       {
278         // the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
279         // and continue the factorization such we still have A = PLU
280         first_zero_pivot = k;
281       }
282 
283       if(k<rows-1)
284         lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols);
285     }
286     return first_zero_pivot;
287   }
288 
289   /** \internal performs the LU decomposition in-place of the matrix represented
290     * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
291     * recursive, blocked algorithm.
292     *
293     * In addition, this function returns the row transpositions in the
294     * vector \a row_transpositions which must have a size equal to the number
295     * of columns of the matrix \a lu, and an integer \a nb_transpositions
296     * which returns the actual number of transpositions.
297     *
298     * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
299     *
300     * \note This very low level interface using pointers, etc. is to:
301     *   1 - reduce the number of instanciations to the strict minimum
302     *   2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > >
303     */
304   static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
305   {
306     MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
307     MatrixType lu(lu1,0,0,rows,cols);
308 
309     const Index size = (std::min)(rows,cols);
310 
311     // if the matrix is too small, no blocking:
312     if(size<=16)
313     {
314       return unblocked_lu(lu, row_transpositions, nb_transpositions);
315     }
316 
317     // automatically adjust the number of subdivisions to the size
318     // of the matrix so that there is enough sub blocks:
319     Index blockSize;
320     {
321       blockSize = size/8;
322       blockSize = (blockSize/16)*16;
323       blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
324     }
325 
326     nb_transpositions = 0;
327     Index first_zero_pivot = -1;
328     for(Index k = 0; k < size; k+=blockSize)
329     {
330       Index bs = (std::min)(size-k,blockSize); // actual size of the block
331       Index trows = rows - k - bs; // trailing rows
332       Index tsize = size - k - bs; // trailing size
333 
334       // partition the matrix:
335       //                          A00 | A01 | A02
336       // lu  = A_0 | A_1 | A_2 =  A10 | A11 | A12
337       //                          A20 | A21 | A22
338       BlockType A_0(lu,0,0,rows,k);
339       BlockType A_2(lu,0,k+bs,rows,tsize);
340       BlockType A11(lu,k,k,bs,bs);
341       BlockType A12(lu,k,k+bs,bs,tsize);
342       BlockType A21(lu,k+bs,k,trows,bs);
343       BlockType A22(lu,k+bs,k+bs,trows,tsize);
344 
345       PivIndex nb_transpositions_in_panel;
346       // recursively call the blocked LU algorithm on [A11^T A21^T]^T
347       // with a very small blocking size:
348       Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
349                    row_transpositions+k, nb_transpositions_in_panel, 16);
350       if(ret>=0 && first_zero_pivot==-1)
351         first_zero_pivot = k+ret;
352 
353       nb_transpositions += nb_transpositions_in_panel;
354       // update permutations and apply them to A_0
355       for(Index i=k; i<k+bs; ++i)
356       {
357         Index piv = (row_transpositions[i] += k);
358         A_0.row(i).swap(A_0.row(piv));
359       }
360 
361       if(trows)
362       {
363         // apply permutations to A_2
364         for(Index i=k;i<k+bs; ++i)
365           A_2.row(i).swap(A_2.row(row_transpositions[i]));
366 
367         // A12 = A11^-1 A12
368         A11.template triangularView<UnitLower>().solveInPlace(A12);
369 
370         A22.noalias() -= A21 * A12;
371       }
372     }
373     return first_zero_pivot;
374   }
375 };
376 
377 /** \internal performs the LU decomposition with partial pivoting in-place.
378   */
379 template<typename MatrixType, typename TranspositionType>
partial_lu_inplace(MatrixType & lu,TranspositionType & row_transpositions,typename TranspositionType::Index & nb_transpositions)380 void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions)
381 {
382   eigen_assert(lu.cols() == row_transpositions.size());
383   eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
384 
385   partial_lu_impl
386     <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index>
387     ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
388 }
389 
390 } // end namespace internal
391 
392 template<typename MatrixType>
compute(const MatrixType & matrix)393 PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
394 {
395   check_template_parameters();
396 
397   // the row permutation is stored as int indices, so just to be sure:
398   eigen_assert(matrix.rows()<NumTraits<int>::highest());
399 
400   m_lu = matrix;
401 
402   eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
403   const Index size = matrix.rows();
404 
405   m_rowsTranspositions.resize(size);
406 
407   typename TranspositionType::Index nb_transpositions;
408   internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
409   m_det_p = (nb_transpositions%2) ? -1 : 1;
410 
411   m_p = m_rowsTranspositions;
412 
413   m_isInitialized = true;
414   return *this;
415 }
416 
417 template<typename MatrixType>
determinant()418 typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
419 {
420   eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
421   return Scalar(m_det_p) * m_lu.diagonal().prod();
422 }
423 
424 /** \returns the matrix represented by the decomposition,
425  * i.e., it returns the product: P^{-1} L U.
426  * This function is provided for debug purpose. */
427 template<typename MatrixType>
reconstructedMatrix()428 MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
429 {
430   eigen_assert(m_isInitialized && "LU is not initialized.");
431   // LU
432   MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
433                  * m_lu.template triangularView<Upper>();
434 
435   // P^{-1}(LU)
436   res = m_p.inverse() * res;
437 
438   return res;
439 }
440 
441 /***** Implementation of solve() *****************************************************/
442 
443 namespace internal {
444 
445 template<typename _MatrixType, typename Rhs>
446 struct solve_retval<PartialPivLU<_MatrixType>, Rhs>
447   : solve_retval_base<PartialPivLU<_MatrixType>, Rhs>
448 {
449   EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs)
450 
451   template<typename Dest> void evalTo(Dest& dst) const
452   {
453     /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
454     * So we proceed as follows:
455     * Step 1: compute c = Pb.
456     * Step 2: replace c by the solution x to Lx = c.
457     * Step 3: replace c by the solution x to Ux = c.
458     */
459 
460     eigen_assert(rhs().rows() == dec().matrixLU().rows());
461 
462     // Step 1
463     dst = dec().permutationP() * rhs();
464 
465     // Step 2
466     dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst);
467 
468     // Step 3
469     dec().matrixLU().template triangularView<Upper>().solveInPlace(dst);
470   }
471 };
472 
473 } // end namespace internal
474 
475 /******** MatrixBase methods *******/
476 
477 /** \lu_module
478   *
479   * \return the partial-pivoting LU decomposition of \c *this.
480   *
481   * \sa class PartialPivLU
482   */
483 template<typename Derived>
484 inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
485 MatrixBase<Derived>::partialPivLu() const
486 {
487   return PartialPivLU<PlainObject>(eval());
488 }
489 
490 #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
491 /** \lu_module
492   *
493   * Synonym of partialPivLu().
494   *
495   * \return the partial-pivoting LU decomposition of \c *this.
496   *
497   * \sa class PartialPivLU
498   */
499 template<typename Derived>
500 inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
501 MatrixBase<Derived>::lu() const
502 {
503   return PartialPivLU<PlainObject>(eval());
504 }
505 #endif
506 
507 } // end namespace Eigen
508 
509 #endif // EIGEN_PARTIALLU_H
510