1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #ifndef EIGEN_PARTIALLU_H
12 #define EIGEN_PARTIALLU_H
13
14 namespace Eigen {
15
16 /** \ingroup LU_Module
17 *
18 * \class PartialPivLU
19 *
20 * \brief LU decomposition of a matrix with partial pivoting, and related features
21 *
22 * \param MatrixType the type of the matrix of which we are computing the LU decomposition
23 *
24 * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
25 * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
26 * is a permutation matrix.
27 *
28 * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
29 * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
30 * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
31 * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
32 *
33 * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
34 * by class FullPivLU.
35 *
36 * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
37 * such as rank computation. If you need these features, use class FullPivLU.
38 *
39 * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
40 * in the general case.
41 * On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
42 *
43 * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
44 *
45 * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
46 */
47 template<typename _MatrixType> class PartialPivLU
48 {
49 public:
50
51 typedef _MatrixType MatrixType;
52 enum {
53 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
54 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
55 Options = MatrixType::Options,
56 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
57 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
58 };
59 typedef typename MatrixType::Scalar Scalar;
60 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
61 typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
62 typedef typename MatrixType::Index Index;
63 typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
64 typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
65
66
67 /**
68 * \brief Default Constructor.
69 *
70 * The default constructor is useful in cases in which the user intends to
71 * perform decompositions via PartialPivLU::compute(const MatrixType&).
72 */
73 PartialPivLU();
74
75 /** \brief Default Constructor with memory preallocation
76 *
77 * Like the default constructor but with preallocation of the internal data
78 * according to the specified problem \a size.
79 * \sa PartialPivLU()
80 */
81 PartialPivLU(Index size);
82
83 /** Constructor.
84 *
85 * \param matrix the matrix of which to compute the LU decomposition.
86 *
87 * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
88 * If you need to deal with non-full rank, use class FullPivLU instead.
89 */
90 PartialPivLU(const MatrixType& matrix);
91
92 PartialPivLU& compute(const MatrixType& matrix);
93
94 /** \returns the LU decomposition matrix: the upper-triangular part is U, the
95 * unit-lower-triangular part is L (at least for square matrices; in the non-square
96 * case, special care is needed, see the documentation of class FullPivLU).
97 *
98 * \sa matrixL(), matrixU()
99 */
matrixLU()100 inline const MatrixType& matrixLU() const
101 {
102 eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
103 return m_lu;
104 }
105
106 /** \returns the permutation matrix P.
107 */
permutationP()108 inline const PermutationType& permutationP() const
109 {
110 eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
111 return m_p;
112 }
113
114 /** This method returns the solution x to the equation Ax=b, where A is the matrix of which
115 * *this is the LU decomposition.
116 *
117 * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
118 * the only requirement in order for the equation to make sense is that
119 * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
120 *
121 * \returns the solution.
122 *
123 * Example: \include PartialPivLU_solve.cpp
124 * Output: \verbinclude PartialPivLU_solve.out
125 *
126 * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
127 * theoretically exists and is unique regardless of b.
128 *
129 * \sa TriangularView::solve(), inverse(), computeInverse()
130 */
131 template<typename Rhs>
132 inline const internal::solve_retval<PartialPivLU, Rhs>
solve(const MatrixBase<Rhs> & b)133 solve(const MatrixBase<Rhs>& b) const
134 {
135 eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
136 return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived());
137 }
138
139 /** \returns the inverse of the matrix of which *this is the LU decomposition.
140 *
141 * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
142 * invertibility, use class FullPivLU instead.
143 *
144 * \sa MatrixBase::inverse(), LU::inverse()
145 */
inverse()146 inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
147 {
148 eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
149 return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
150 (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
151 }
152
153 /** \returns the determinant of the matrix of which
154 * *this is the LU decomposition. It has only linear complexity
155 * (that is, O(n) where n is the dimension of the square matrix)
156 * as the LU decomposition has already been computed.
157 *
158 * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
159 * optimized paths.
160 *
161 * \warning a determinant can be very big or small, so for matrices
162 * of large enough dimension, there is a risk of overflow/underflow.
163 *
164 * \sa MatrixBase::determinant()
165 */
166 typename internal::traits<MatrixType>::Scalar determinant() const;
167
168 MatrixType reconstructedMatrix() const;
169
rows()170 inline Index rows() const { return m_lu.rows(); }
cols()171 inline Index cols() const { return m_lu.cols(); }
172
173 protected:
174
check_template_parameters()175 static void check_template_parameters()
176 {
177 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
178 }
179
180 MatrixType m_lu;
181 PermutationType m_p;
182 TranspositionType m_rowsTranspositions;
183 Index m_det_p;
184 bool m_isInitialized;
185 };
186
187 template<typename MatrixType>
PartialPivLU()188 PartialPivLU<MatrixType>::PartialPivLU()
189 : m_lu(),
190 m_p(),
191 m_rowsTranspositions(),
192 m_det_p(0),
193 m_isInitialized(false)
194 {
195 }
196
197 template<typename MatrixType>
PartialPivLU(Index size)198 PartialPivLU<MatrixType>::PartialPivLU(Index size)
199 : m_lu(size, size),
200 m_p(size),
201 m_rowsTranspositions(size),
202 m_det_p(0),
203 m_isInitialized(false)
204 {
205 }
206
207 template<typename MatrixType>
PartialPivLU(const MatrixType & matrix)208 PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
209 : m_lu(matrix.rows(), matrix.rows()),
210 m_p(matrix.rows()),
211 m_rowsTranspositions(matrix.rows()),
212 m_det_p(0),
213 m_isInitialized(false)
214 {
215 compute(matrix);
216 }
217
218 namespace internal {
219
220 /** \internal This is the blocked version of fullpivlu_unblocked() */
221 template<typename Scalar, int StorageOrder, typename PivIndex>
222 struct partial_lu_impl
223 {
224 // FIXME add a stride to Map, so that the following mapping becomes easier,
225 // another option would be to create an expression being able to automatically
226 // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
227 // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
228 // and Block.
229 typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
230 typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
231 typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
232 typedef typename MatrixType::RealScalar RealScalar;
233 typedef typename MatrixType::Index Index;
234
235 /** \internal performs the LU decomposition in-place of the matrix \a lu
236 * using an unblocked algorithm.
237 *
238 * In addition, this function returns the row transpositions in the
239 * vector \a row_transpositions which must have a size equal to the number
240 * of columns of the matrix \a lu, and an integer \a nb_transpositions
241 * which returns the actual number of transpositions.
242 *
243 * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
244 */
unblocked_lupartial_lu_impl245 static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
246 {
247 const Index rows = lu.rows();
248 const Index cols = lu.cols();
249 const Index size = (std::min)(rows,cols);
250 nb_transpositions = 0;
251 Index first_zero_pivot = -1;
252 for(Index k = 0; k < size; ++k)
253 {
254 Index rrows = rows-k-1;
255 Index rcols = cols-k-1;
256
257 Index row_of_biggest_in_col;
258 RealScalar biggest_in_corner
259 = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col);
260 row_of_biggest_in_col += k;
261
262 row_transpositions[k] = PivIndex(row_of_biggest_in_col);
263
264 if(biggest_in_corner != RealScalar(0))
265 {
266 if(k != row_of_biggest_in_col)
267 {
268 lu.row(k).swap(lu.row(row_of_biggest_in_col));
269 ++nb_transpositions;
270 }
271
272 // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k)
273 // overflow but not the actual quotient?
274 lu.col(k).tail(rrows) /= lu.coeff(k,k);
275 }
276 else if(first_zero_pivot==-1)
277 {
278 // the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
279 // and continue the factorization such we still have A = PLU
280 first_zero_pivot = k;
281 }
282
283 if(k<rows-1)
284 lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols);
285 }
286 return first_zero_pivot;
287 }
288
289 /** \internal performs the LU decomposition in-place of the matrix represented
290 * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
291 * recursive, blocked algorithm.
292 *
293 * In addition, this function returns the row transpositions in the
294 * vector \a row_transpositions which must have a size equal to the number
295 * of columns of the matrix \a lu, and an integer \a nb_transpositions
296 * which returns the actual number of transpositions.
297 *
298 * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
299 *
300 * \note This very low level interface using pointers, etc. is to:
301 * 1 - reduce the number of instanciations to the strict minimum
302 * 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > >
303 */
304 static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
305 {
306 MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
307 MatrixType lu(lu1,0,0,rows,cols);
308
309 const Index size = (std::min)(rows,cols);
310
311 // if the matrix is too small, no blocking:
312 if(size<=16)
313 {
314 return unblocked_lu(lu, row_transpositions, nb_transpositions);
315 }
316
317 // automatically adjust the number of subdivisions to the size
318 // of the matrix so that there is enough sub blocks:
319 Index blockSize;
320 {
321 blockSize = size/8;
322 blockSize = (blockSize/16)*16;
323 blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
324 }
325
326 nb_transpositions = 0;
327 Index first_zero_pivot = -1;
328 for(Index k = 0; k < size; k+=blockSize)
329 {
330 Index bs = (std::min)(size-k,blockSize); // actual size of the block
331 Index trows = rows - k - bs; // trailing rows
332 Index tsize = size - k - bs; // trailing size
333
334 // partition the matrix:
335 // A00 | A01 | A02
336 // lu = A_0 | A_1 | A_2 = A10 | A11 | A12
337 // A20 | A21 | A22
338 BlockType A_0(lu,0,0,rows,k);
339 BlockType A_2(lu,0,k+bs,rows,tsize);
340 BlockType A11(lu,k,k,bs,bs);
341 BlockType A12(lu,k,k+bs,bs,tsize);
342 BlockType A21(lu,k+bs,k,trows,bs);
343 BlockType A22(lu,k+bs,k+bs,trows,tsize);
344
345 PivIndex nb_transpositions_in_panel;
346 // recursively call the blocked LU algorithm on [A11^T A21^T]^T
347 // with a very small blocking size:
348 Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
349 row_transpositions+k, nb_transpositions_in_panel, 16);
350 if(ret>=0 && first_zero_pivot==-1)
351 first_zero_pivot = k+ret;
352
353 nb_transpositions += nb_transpositions_in_panel;
354 // update permutations and apply them to A_0
355 for(Index i=k; i<k+bs; ++i)
356 {
357 Index piv = (row_transpositions[i] += k);
358 A_0.row(i).swap(A_0.row(piv));
359 }
360
361 if(trows)
362 {
363 // apply permutations to A_2
364 for(Index i=k;i<k+bs; ++i)
365 A_2.row(i).swap(A_2.row(row_transpositions[i]));
366
367 // A12 = A11^-1 A12
368 A11.template triangularView<UnitLower>().solveInPlace(A12);
369
370 A22.noalias() -= A21 * A12;
371 }
372 }
373 return first_zero_pivot;
374 }
375 };
376
377 /** \internal performs the LU decomposition with partial pivoting in-place.
378 */
379 template<typename MatrixType, typename TranspositionType>
partial_lu_inplace(MatrixType & lu,TranspositionType & row_transpositions,typename TranspositionType::Index & nb_transpositions)380 void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions)
381 {
382 eigen_assert(lu.cols() == row_transpositions.size());
383 eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
384
385 partial_lu_impl
386 <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index>
387 ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
388 }
389
390 } // end namespace internal
391
392 template<typename MatrixType>
compute(const MatrixType & matrix)393 PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
394 {
395 check_template_parameters();
396
397 // the row permutation is stored as int indices, so just to be sure:
398 eigen_assert(matrix.rows()<NumTraits<int>::highest());
399
400 m_lu = matrix;
401
402 eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
403 const Index size = matrix.rows();
404
405 m_rowsTranspositions.resize(size);
406
407 typename TranspositionType::Index nb_transpositions;
408 internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
409 m_det_p = (nb_transpositions%2) ? -1 : 1;
410
411 m_p = m_rowsTranspositions;
412
413 m_isInitialized = true;
414 return *this;
415 }
416
417 template<typename MatrixType>
determinant()418 typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
419 {
420 eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
421 return Scalar(m_det_p) * m_lu.diagonal().prod();
422 }
423
424 /** \returns the matrix represented by the decomposition,
425 * i.e., it returns the product: P^{-1} L U.
426 * This function is provided for debug purpose. */
427 template<typename MatrixType>
reconstructedMatrix()428 MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
429 {
430 eigen_assert(m_isInitialized && "LU is not initialized.");
431 // LU
432 MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
433 * m_lu.template triangularView<Upper>();
434
435 // P^{-1}(LU)
436 res = m_p.inverse() * res;
437
438 return res;
439 }
440
441 /***** Implementation of solve() *****************************************************/
442
443 namespace internal {
444
445 template<typename _MatrixType, typename Rhs>
446 struct solve_retval<PartialPivLU<_MatrixType>, Rhs>
447 : solve_retval_base<PartialPivLU<_MatrixType>, Rhs>
448 {
449 EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs)
450
451 template<typename Dest> void evalTo(Dest& dst) const
452 {
453 /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
454 * So we proceed as follows:
455 * Step 1: compute c = Pb.
456 * Step 2: replace c by the solution x to Lx = c.
457 * Step 3: replace c by the solution x to Ux = c.
458 */
459
460 eigen_assert(rhs().rows() == dec().matrixLU().rows());
461
462 // Step 1
463 dst = dec().permutationP() * rhs();
464
465 // Step 2
466 dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst);
467
468 // Step 3
469 dec().matrixLU().template triangularView<Upper>().solveInPlace(dst);
470 }
471 };
472
473 } // end namespace internal
474
475 /******** MatrixBase methods *******/
476
477 /** \lu_module
478 *
479 * \return the partial-pivoting LU decomposition of \c *this.
480 *
481 * \sa class PartialPivLU
482 */
483 template<typename Derived>
484 inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
485 MatrixBase<Derived>::partialPivLu() const
486 {
487 return PartialPivLU<PlainObject>(eval());
488 }
489
490 #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
491 /** \lu_module
492 *
493 * Synonym of partialPivLu().
494 *
495 * \return the partial-pivoting LU decomposition of \c *this.
496 *
497 * \sa class PartialPivLU
498 */
499 template<typename Derived>
500 inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
501 MatrixBase<Derived>::lu() const
502 {
503 return PartialPivLU<PlainObject>(eval());
504 }
505 #endif
506
507 } // end namespace Eigen
508
509 #endif // EIGEN_PARTIALLU_H
510