1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Analysis/LazyCallGraph.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/IR/CallSite.h"
13 #include "llvm/IR/InstVisitor.h"
14 #include "llvm/IR/Instructions.h"
15 #include "llvm/IR/PassManager.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/raw_ostream.h"
18
19 using namespace llvm;
20
21 #define DEBUG_TYPE "lcg"
22
findCallees(SmallVectorImpl<Constant * > & Worklist,SmallPtrSetImpl<Constant * > & Visited,SmallVectorImpl<PointerUnion<Function *,LazyCallGraph::Node * >> & Callees,DenseMap<Function *,size_t> & CalleeIndexMap)23 static void findCallees(
24 SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
25 SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees,
26 DenseMap<Function *, size_t> &CalleeIndexMap) {
27 while (!Worklist.empty()) {
28 Constant *C = Worklist.pop_back_val();
29
30 if (Function *F = dyn_cast<Function>(C)) {
31 // Note that we consider *any* function with a definition to be a viable
32 // edge. Even if the function's definition is subject to replacement by
33 // some other module (say, a weak definition) there may still be
34 // optimizations which essentially speculate based on the definition and
35 // a way to check that the specific definition is in fact the one being
36 // used. For example, this could be done by moving the weak definition to
37 // a strong (internal) definition and making the weak definition be an
38 // alias. Then a test of the address of the weak function against the new
39 // strong definition's address would be an effective way to determine the
40 // safety of optimizing a direct call edge.
41 if (!F->isDeclaration() &&
42 CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) {
43 DEBUG(dbgs() << " Added callable function: " << F->getName()
44 << "\n");
45 Callees.push_back(F);
46 }
47 continue;
48 }
49
50 for (Value *Op : C->operand_values())
51 if (Visited.insert(cast<Constant>(Op)).second)
52 Worklist.push_back(cast<Constant>(Op));
53 }
54 }
55
Node(LazyCallGraph & G,Function & F)56 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
57 : G(&G), F(F), DFSNumber(0), LowLink(0) {
58 DEBUG(dbgs() << " Adding functions called by '" << F.getName()
59 << "' to the graph.\n");
60
61 SmallVector<Constant *, 16> Worklist;
62 SmallPtrSet<Constant *, 16> Visited;
63 // Find all the potential callees in this function. First walk the
64 // instructions and add every operand which is a constant to the worklist.
65 for (BasicBlock &BB : F)
66 for (Instruction &I : BB)
67 for (Value *Op : I.operand_values())
68 if (Constant *C = dyn_cast<Constant>(Op))
69 if (Visited.insert(C).second)
70 Worklist.push_back(C);
71
72 // We've collected all the constant (and thus potentially function or
73 // function containing) operands to all of the instructions in the function.
74 // Process them (recursively) collecting every function found.
75 findCallees(Worklist, Visited, Callees, CalleeIndexMap);
76 }
77
insertEdgeInternal(Function & Callee)78 void LazyCallGraph::Node::insertEdgeInternal(Function &Callee) {
79 if (Node *N = G->lookup(Callee))
80 return insertEdgeInternal(*N);
81
82 CalleeIndexMap.insert(std::make_pair(&Callee, Callees.size()));
83 Callees.push_back(&Callee);
84 }
85
insertEdgeInternal(Node & CalleeN)86 void LazyCallGraph::Node::insertEdgeInternal(Node &CalleeN) {
87 CalleeIndexMap.insert(std::make_pair(&CalleeN.getFunction(), Callees.size()));
88 Callees.push_back(&CalleeN);
89 }
90
removeEdgeInternal(Function & Callee)91 void LazyCallGraph::Node::removeEdgeInternal(Function &Callee) {
92 auto IndexMapI = CalleeIndexMap.find(&Callee);
93 assert(IndexMapI != CalleeIndexMap.end() &&
94 "Callee not in the callee set for this caller?");
95
96 Callees[IndexMapI->second] = nullptr;
97 CalleeIndexMap.erase(IndexMapI);
98 }
99
LazyCallGraph(Module & M)100 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
101 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
102 << "\n");
103 for (Function &F : M)
104 if (!F.isDeclaration() && !F.hasLocalLinkage())
105 if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) {
106 DEBUG(dbgs() << " Adding '" << F.getName()
107 << "' to entry set of the graph.\n");
108 EntryNodes.push_back(&F);
109 }
110
111 // Now add entry nodes for functions reachable via initializers to globals.
112 SmallVector<Constant *, 16> Worklist;
113 SmallPtrSet<Constant *, 16> Visited;
114 for (GlobalVariable &GV : M.globals())
115 if (GV.hasInitializer())
116 if (Visited.insert(GV.getInitializer()).second)
117 Worklist.push_back(GV.getInitializer());
118
119 DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
120 "entry set.\n");
121 findCallees(Worklist, Visited, EntryNodes, EntryIndexMap);
122
123 for (auto &Entry : EntryNodes) {
124 assert(!Entry.isNull() &&
125 "We can't have removed edges before we finish the constructor!");
126 if (Function *F = Entry.dyn_cast<Function *>())
127 SCCEntryNodes.push_back(F);
128 else
129 SCCEntryNodes.push_back(&Entry.get<Node *>()->getFunction());
130 }
131 }
132
LazyCallGraph(LazyCallGraph && G)133 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
134 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
135 EntryNodes(std::move(G.EntryNodes)),
136 EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
137 SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)),
138 DFSStack(std::move(G.DFSStack)),
139 SCCEntryNodes(std::move(G.SCCEntryNodes)),
140 NextDFSNumber(G.NextDFSNumber) {
141 updateGraphPtrs();
142 }
143
operator =(LazyCallGraph && G)144 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
145 BPA = std::move(G.BPA);
146 NodeMap = std::move(G.NodeMap);
147 EntryNodes = std::move(G.EntryNodes);
148 EntryIndexMap = std::move(G.EntryIndexMap);
149 SCCBPA = std::move(G.SCCBPA);
150 SCCMap = std::move(G.SCCMap);
151 LeafSCCs = std::move(G.LeafSCCs);
152 DFSStack = std::move(G.DFSStack);
153 SCCEntryNodes = std::move(G.SCCEntryNodes);
154 NextDFSNumber = G.NextDFSNumber;
155 updateGraphPtrs();
156 return *this;
157 }
158
insert(Node & N)159 void LazyCallGraph::SCC::insert(Node &N) {
160 N.DFSNumber = N.LowLink = -1;
161 Nodes.push_back(&N);
162 G->SCCMap[&N] = this;
163 }
164
isDescendantOf(const SCC & C) const165 bool LazyCallGraph::SCC::isDescendantOf(const SCC &C) const {
166 // Walk up the parents of this SCC and verify that we eventually find C.
167 SmallVector<const SCC *, 4> AncestorWorklist;
168 AncestorWorklist.push_back(this);
169 do {
170 const SCC *AncestorC = AncestorWorklist.pop_back_val();
171 if (AncestorC->isChildOf(C))
172 return true;
173 for (const SCC *ParentC : AncestorC->ParentSCCs)
174 AncestorWorklist.push_back(ParentC);
175 } while (!AncestorWorklist.empty());
176
177 return false;
178 }
179
insertIntraSCCEdge(Node & CallerN,Node & CalleeN)180 void LazyCallGraph::SCC::insertIntraSCCEdge(Node &CallerN, Node &CalleeN) {
181 // First insert it into the caller.
182 CallerN.insertEdgeInternal(CalleeN);
183
184 assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
185 assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
186
187 // Nothing changes about this SCC or any other.
188 }
189
insertOutgoingEdge(Node & CallerN,Node & CalleeN)190 void LazyCallGraph::SCC::insertOutgoingEdge(Node &CallerN, Node &CalleeN) {
191 // First insert it into the caller.
192 CallerN.insertEdgeInternal(CalleeN);
193
194 assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
195
196 SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
197 assert(&CalleeC != this && "Callee must not be in this SCC.");
198 assert(CalleeC.isDescendantOf(*this) &&
199 "Callee must be a descendant of the Caller.");
200
201 // The only change required is to add this SCC to the parent set of the callee.
202 CalleeC.ParentSCCs.insert(this);
203 }
204
205 SmallVector<LazyCallGraph::SCC *, 1>
insertIncomingEdge(Node & CallerN,Node & CalleeN)206 LazyCallGraph::SCC::insertIncomingEdge(Node &CallerN, Node &CalleeN) {
207 // First insert it into the caller.
208 CallerN.insertEdgeInternal(CalleeN);
209
210 assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
211
212 SCC &CallerC = *G->SCCMap.lookup(&CallerN);
213 assert(&CallerC != this && "Caller must not be in this SCC.");
214 assert(CallerC.isDescendantOf(*this) &&
215 "Caller must be a descendant of the Callee.");
216
217 // The algorithm we use for merging SCCs based on the cycle introduced here
218 // is to walk the SCC inverted DAG formed by the parent SCC sets. The inverse
219 // graph has the same cycle properties as the actual DAG of the SCCs, and
220 // when forming SCCs lazily by a DFS, the bottom of the graph won't exist in
221 // many cases which should prune the search space.
222 //
223 // FIXME: We can get this pruning behavior even after the incremental SCC
224 // formation by leaving behind (conservative) DFS numberings in the nodes,
225 // and pruning the search with them. These would need to be cleverly updated
226 // during the removal of intra-SCC edges, but could be preserved
227 // conservatively.
228
229 // The set of SCCs that are connected to the caller, and thus will
230 // participate in the merged connected component.
231 SmallPtrSet<SCC *, 8> ConnectedSCCs;
232 ConnectedSCCs.insert(this);
233 ConnectedSCCs.insert(&CallerC);
234
235 // We build up a DFS stack of the parents chains.
236 SmallVector<std::pair<SCC *, SCC::parent_iterator>, 8> DFSSCCs;
237 SmallPtrSet<SCC *, 8> VisitedSCCs;
238 int ConnectedDepth = -1;
239 SCC *C = this;
240 parent_iterator I = parent_begin(), E = parent_end();
241 for (;;) {
242 while (I != E) {
243 SCC &ParentSCC = *I++;
244
245 // If we have already processed this parent SCC, skip it, and remember
246 // whether it was connected so we don't have to check the rest of the
247 // stack. This also handles when we reach a child of the 'this' SCC (the
248 // callee) which terminates the search.
249 if (ConnectedSCCs.count(&ParentSCC)) {
250 ConnectedDepth = std::max<int>(ConnectedDepth, DFSSCCs.size());
251 continue;
252 }
253 if (VisitedSCCs.count(&ParentSCC))
254 continue;
255
256 // We fully explore the depth-first space, adding nodes to the connected
257 // set only as we pop them off, so "recurse" by rotating to the parent.
258 DFSSCCs.push_back(std::make_pair(C, I));
259 C = &ParentSCC;
260 I = ParentSCC.parent_begin();
261 E = ParentSCC.parent_end();
262 }
263
264 // If we've found a connection anywhere below this point on the stack (and
265 // thus up the parent graph from the caller), the current node needs to be
266 // added to the connected set now that we've processed all of its parents.
267 if ((int)DFSSCCs.size() == ConnectedDepth) {
268 --ConnectedDepth; // We're finished with this connection.
269 ConnectedSCCs.insert(C);
270 } else {
271 // Otherwise remember that its parents don't ever connect.
272 assert(ConnectedDepth < (int)DFSSCCs.size() &&
273 "Cannot have a connected depth greater than the DFS depth!");
274 VisitedSCCs.insert(C);
275 }
276
277 if (DFSSCCs.empty())
278 break; // We've walked all the parents of the caller transitively.
279
280 // Pop off the prior node and position to unwind the depth first recursion.
281 std::tie(C, I) = DFSSCCs.pop_back_val();
282 E = C->parent_end();
283 }
284
285 // Now that we have identified all of the SCCs which need to be merged into
286 // a connected set with the inserted edge, merge all of them into this SCC.
287 // FIXME: This operation currently creates ordering stability problems
288 // because we don't use stably ordered containers for the parent SCCs or the
289 // connected SCCs.
290 unsigned NewNodeBeginIdx = Nodes.size();
291 for (SCC *C : ConnectedSCCs) {
292 if (C == this)
293 continue;
294 for (SCC *ParentC : C->ParentSCCs)
295 if (!ConnectedSCCs.count(ParentC))
296 ParentSCCs.insert(ParentC);
297 C->ParentSCCs.clear();
298
299 for (Node *N : *C) {
300 for (Node &ChildN : *N) {
301 SCC &ChildC = *G->SCCMap.lookup(&ChildN);
302 if (&ChildC != C)
303 ChildC.ParentSCCs.erase(C);
304 }
305 G->SCCMap[N] = this;
306 Nodes.push_back(N);
307 }
308 C->Nodes.clear();
309 }
310 for (auto I = Nodes.begin() + NewNodeBeginIdx, E = Nodes.end(); I != E; ++I)
311 for (Node &ChildN : **I) {
312 SCC &ChildC = *G->SCCMap.lookup(&ChildN);
313 if (&ChildC != this)
314 ChildC.ParentSCCs.insert(this);
315 }
316
317 // We return the list of SCCs which were merged so that callers can
318 // invalidate any data they have associated with those SCCs. Note that these
319 // SCCs are no longer in an interesting state (they are totally empty) but
320 // the pointers will remain stable for the life of the graph itself.
321 return SmallVector<SCC *, 1>(ConnectedSCCs.begin(), ConnectedSCCs.end());
322 }
323
removeInterSCCEdge(Node & CallerN,Node & CalleeN)324 void LazyCallGraph::SCC::removeInterSCCEdge(Node &CallerN, Node &CalleeN) {
325 // First remove it from the node.
326 CallerN.removeEdgeInternal(CalleeN.getFunction());
327
328 assert(G->SCCMap.lookup(&CallerN) == this &&
329 "The caller must be a member of this SCC.");
330
331 SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
332 assert(&CalleeC != this &&
333 "This API only supports the rmoval of inter-SCC edges.");
334
335 assert(std::find(G->LeafSCCs.begin(), G->LeafSCCs.end(), this) ==
336 G->LeafSCCs.end() &&
337 "Cannot have a leaf SCC caller with a different SCC callee.");
338
339 bool HasOtherCallToCalleeC = false;
340 bool HasOtherCallOutsideSCC = false;
341 for (Node *N : *this) {
342 for (Node &OtherCalleeN : *N) {
343 SCC &OtherCalleeC = *G->SCCMap.lookup(&OtherCalleeN);
344 if (&OtherCalleeC == &CalleeC) {
345 HasOtherCallToCalleeC = true;
346 break;
347 }
348 if (&OtherCalleeC != this)
349 HasOtherCallOutsideSCC = true;
350 }
351 if (HasOtherCallToCalleeC)
352 break;
353 }
354 // Because the SCCs form a DAG, deleting such an edge cannot change the set
355 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
356 // the caller no longer a parent of the callee. Walk the other call edges
357 // in the caller to tell.
358 if (!HasOtherCallToCalleeC) {
359 bool Removed = CalleeC.ParentSCCs.erase(this);
360 (void)Removed;
361 assert(Removed &&
362 "Did not find the caller SCC in the callee SCC's parent list!");
363
364 // It may orphan an SCC if it is the last edge reaching it, but that does
365 // not violate any invariants of the graph.
366 if (CalleeC.ParentSCCs.empty())
367 DEBUG(dbgs() << "LCG: Update removing " << CallerN.getFunction().getName()
368 << " -> " << CalleeN.getFunction().getName()
369 << " edge orphaned the callee's SCC!\n");
370 }
371
372 // It may make the Caller SCC a leaf SCC.
373 if (!HasOtherCallOutsideSCC)
374 G->LeafSCCs.push_back(this);
375 }
376
internalDFS(SmallVectorImpl<std::pair<Node *,Node::iterator>> & DFSStack,SmallVectorImpl<Node * > & PendingSCCStack,Node * N,SmallVectorImpl<SCC * > & ResultSCCs)377 void LazyCallGraph::SCC::internalDFS(
378 SmallVectorImpl<std::pair<Node *, Node::iterator>> &DFSStack,
379 SmallVectorImpl<Node *> &PendingSCCStack, Node *N,
380 SmallVectorImpl<SCC *> &ResultSCCs) {
381 Node::iterator I = N->begin();
382 N->LowLink = N->DFSNumber = 1;
383 int NextDFSNumber = 2;
384 for (;;) {
385 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
386 "before processing a node.");
387
388 // We simulate recursion by popping out of the nested loop and continuing.
389 Node::iterator E = N->end();
390 while (I != E) {
391 Node &ChildN = *I;
392 if (SCC *ChildSCC = G->SCCMap.lookup(&ChildN)) {
393 // Check if we have reached a node in the new (known connected) set of
394 // this SCC. If so, the entire stack is necessarily in that set and we
395 // can re-start.
396 if (ChildSCC == this) {
397 insert(*N);
398 while (!PendingSCCStack.empty())
399 insert(*PendingSCCStack.pop_back_val());
400 while (!DFSStack.empty())
401 insert(*DFSStack.pop_back_val().first);
402 return;
403 }
404
405 // If this child isn't currently in this SCC, no need to process it.
406 // However, we do need to remove this SCC from its SCC's parent set.
407 ChildSCC->ParentSCCs.erase(this);
408 ++I;
409 continue;
410 }
411
412 if (ChildN.DFSNumber == 0) {
413 // Mark that we should start at this child when next this node is the
414 // top of the stack. We don't start at the next child to ensure this
415 // child's lowlink is reflected.
416 DFSStack.push_back(std::make_pair(N, I));
417
418 // Continue, resetting to the child node.
419 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
420 N = &ChildN;
421 I = ChildN.begin();
422 E = ChildN.end();
423 continue;
424 }
425
426 // Track the lowest link of the children, if any are still in the stack.
427 // Any child not on the stack will have a LowLink of -1.
428 assert(ChildN.LowLink != 0 &&
429 "Low-link must not be zero with a non-zero DFS number.");
430 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
431 N->LowLink = ChildN.LowLink;
432 ++I;
433 }
434
435 if (N->LowLink == N->DFSNumber) {
436 ResultSCCs.push_back(G->formSCC(N, PendingSCCStack));
437 if (DFSStack.empty())
438 return;
439 } else {
440 // At this point we know that N cannot ever be an SCC root. Its low-link
441 // is not its dfs-number, and we've processed all of its children. It is
442 // just sitting here waiting until some node further down the stack gets
443 // low-link == dfs-number and pops it off as well. Move it to the pending
444 // stack which is pulled into the next SCC to be formed.
445 PendingSCCStack.push_back(N);
446
447 assert(!DFSStack.empty() && "We shouldn't have an empty stack!");
448 }
449
450 N = DFSStack.back().first;
451 I = DFSStack.back().second;
452 DFSStack.pop_back();
453 }
454 }
455
456 SmallVector<LazyCallGraph::SCC *, 1>
removeIntraSCCEdge(Node & CallerN,Node & CalleeN)457 LazyCallGraph::SCC::removeIntraSCCEdge(Node &CallerN,
458 Node &CalleeN) {
459 // First remove it from the node.
460 CallerN.removeEdgeInternal(CalleeN.getFunction());
461
462 // We return a list of the resulting *new* SCCs in postorder.
463 SmallVector<SCC *, 1> ResultSCCs;
464
465 // Direct recursion doesn't impact the SCC graph at all.
466 if (&CallerN == &CalleeN)
467 return ResultSCCs;
468
469 // The worklist is every node in the original SCC.
470 SmallVector<Node *, 1> Worklist;
471 Worklist.swap(Nodes);
472 for (Node *N : Worklist) {
473 // The nodes formerly in this SCC are no longer in any SCC.
474 N->DFSNumber = 0;
475 N->LowLink = 0;
476 G->SCCMap.erase(N);
477 }
478 assert(Worklist.size() > 1 && "We have to have at least two nodes to have an "
479 "edge between them that is within the SCC.");
480
481 // The callee can already reach every node in this SCC (by definition). It is
482 // the only node we know will stay inside this SCC. Everything which
483 // transitively reaches Callee will also remain in the SCC. To model this we
484 // incrementally add any chain of nodes which reaches something in the new
485 // node set to the new node set. This short circuits one side of the Tarjan's
486 // walk.
487 insert(CalleeN);
488
489 // We're going to do a full mini-Tarjan's walk using a local stack here.
490 SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack;
491 SmallVector<Node *, 4> PendingSCCStack;
492 do {
493 Node *N = Worklist.pop_back_val();
494 if (N->DFSNumber == 0)
495 internalDFS(DFSStack, PendingSCCStack, N, ResultSCCs);
496
497 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
498 assert(PendingSCCStack.empty() && "Didn't flush all pending SCC nodes!");
499 } while (!Worklist.empty());
500
501 // Now we need to reconnect the current SCC to the graph.
502 bool IsLeafSCC = true;
503 for (Node *N : Nodes) {
504 for (Node &ChildN : *N) {
505 SCC &ChildSCC = *G->SCCMap.lookup(&ChildN);
506 if (&ChildSCC == this)
507 continue;
508 ChildSCC.ParentSCCs.insert(this);
509 IsLeafSCC = false;
510 }
511 }
512 #ifndef NDEBUG
513 if (!ResultSCCs.empty())
514 assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new "
515 "SCCs by removing this edge.");
516 if (!std::any_of(G->LeafSCCs.begin(), G->LeafSCCs.end(),
517 [&](SCC *C) { return C == this; }))
518 assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child "
519 "SCCs before we removed this edge.");
520 #endif
521 // If this SCC stopped being a leaf through this edge removal, remove it from
522 // the leaf SCC list.
523 if (!IsLeafSCC && !ResultSCCs.empty())
524 G->LeafSCCs.erase(std::remove(G->LeafSCCs.begin(), G->LeafSCCs.end(), this),
525 G->LeafSCCs.end());
526
527 // Return the new list of SCCs.
528 return ResultSCCs;
529 }
530
insertEdge(Node & CallerN,Function & Callee)531 void LazyCallGraph::insertEdge(Node &CallerN, Function &Callee) {
532 assert(SCCMap.empty() && DFSStack.empty() &&
533 "This method cannot be called after SCCs have been formed!");
534
535 return CallerN.insertEdgeInternal(Callee);
536 }
537
removeEdge(Node & CallerN,Function & Callee)538 void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) {
539 assert(SCCMap.empty() && DFSStack.empty() &&
540 "This method cannot be called after SCCs have been formed!");
541
542 return CallerN.removeEdgeInternal(Callee);
543 }
544
insertInto(Function & F,Node * & MappedN)545 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
546 return *new (MappedN = BPA.Allocate()) Node(*this, F);
547 }
548
updateGraphPtrs()549 void LazyCallGraph::updateGraphPtrs() {
550 // Process all nodes updating the graph pointers.
551 {
552 SmallVector<Node *, 16> Worklist;
553 for (auto &Entry : EntryNodes)
554 if (Node *EntryN = Entry.dyn_cast<Node *>())
555 Worklist.push_back(EntryN);
556
557 while (!Worklist.empty()) {
558 Node *N = Worklist.pop_back_val();
559 N->G = this;
560 for (auto &Callee : N->Callees)
561 if (!Callee.isNull())
562 if (Node *CalleeN = Callee.dyn_cast<Node *>())
563 Worklist.push_back(CalleeN);
564 }
565 }
566
567 // Process all SCCs updating the graph pointers.
568 {
569 SmallVector<SCC *, 16> Worklist(LeafSCCs.begin(), LeafSCCs.end());
570
571 while (!Worklist.empty()) {
572 SCC *C = Worklist.pop_back_val();
573 C->G = this;
574 Worklist.insert(Worklist.end(), C->ParentSCCs.begin(),
575 C->ParentSCCs.end());
576 }
577 }
578 }
579
formSCC(Node * RootN,SmallVectorImpl<Node * > & NodeStack)580 LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN,
581 SmallVectorImpl<Node *> &NodeStack) {
582 // The tail of the stack is the new SCC. Allocate the SCC and pop the stack
583 // into it.
584 SCC *NewSCC = new (SCCBPA.Allocate()) SCC(*this);
585
586 while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) {
587 assert(NodeStack.back()->LowLink >= RootN->LowLink &&
588 "We cannot have a low link in an SCC lower than its root on the "
589 "stack!");
590 NewSCC->insert(*NodeStack.pop_back_val());
591 }
592 NewSCC->insert(*RootN);
593
594 // A final pass over all edges in the SCC (this remains linear as we only
595 // do this once when we build the SCC) to connect it to the parent sets of
596 // its children.
597 bool IsLeafSCC = true;
598 for (Node *SCCN : NewSCC->Nodes)
599 for (Node &SCCChildN : *SCCN) {
600 SCC &ChildSCC = *SCCMap.lookup(&SCCChildN);
601 if (&ChildSCC == NewSCC)
602 continue;
603 ChildSCC.ParentSCCs.insert(NewSCC);
604 IsLeafSCC = false;
605 }
606
607 // For the SCCs where we fine no child SCCs, add them to the leaf list.
608 if (IsLeafSCC)
609 LeafSCCs.push_back(NewSCC);
610
611 return NewSCC;
612 }
613
getNextSCCInPostOrder()614 LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
615 Node *N;
616 Node::iterator I;
617 if (!DFSStack.empty()) {
618 N = DFSStack.back().first;
619 I = DFSStack.back().second;
620 DFSStack.pop_back();
621 } else {
622 // If we've handled all candidate entry nodes to the SCC forest, we're done.
623 do {
624 if (SCCEntryNodes.empty())
625 return nullptr;
626
627 N = &get(*SCCEntryNodes.pop_back_val());
628 } while (N->DFSNumber != 0);
629 I = N->begin();
630 N->LowLink = N->DFSNumber = 1;
631 NextDFSNumber = 2;
632 }
633
634 for (;;) {
635 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
636 "before placing a node onto the stack.");
637
638 Node::iterator E = N->end();
639 while (I != E) {
640 Node &ChildN = *I;
641 if (ChildN.DFSNumber == 0) {
642 // Mark that we should start at this child when next this node is the
643 // top of the stack. We don't start at the next child to ensure this
644 // child's lowlink is reflected.
645 DFSStack.push_back(std::make_pair(N, N->begin()));
646
647 // Recurse onto this node via a tail call.
648 assert(!SCCMap.count(&ChildN) &&
649 "Found a node with 0 DFS number but already in an SCC!");
650 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
651 N = &ChildN;
652 I = ChildN.begin();
653 E = ChildN.end();
654 continue;
655 }
656
657 // Track the lowest link of the children, if any are still in the stack.
658 assert(ChildN.LowLink != 0 &&
659 "Low-link must not be zero with a non-zero DFS number.");
660 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
661 N->LowLink = ChildN.LowLink;
662 ++I;
663 }
664
665 if (N->LowLink == N->DFSNumber)
666 // Form the new SCC out of the top of the DFS stack.
667 return formSCC(N, PendingSCCStack);
668
669 // At this point we know that N cannot ever be an SCC root. Its low-link
670 // is not its dfs-number, and we've processed all of its children. It is
671 // just sitting here waiting until some node further down the stack gets
672 // low-link == dfs-number and pops it off as well. Move it to the pending
673 // stack which is pulled into the next SCC to be formed.
674 PendingSCCStack.push_back(N);
675
676 assert(!DFSStack.empty() && "We never found a viable root!");
677 N = DFSStack.back().first;
678 I = DFSStack.back().second;
679 DFSStack.pop_back();
680 }
681 }
682
683 char LazyCallGraphAnalysis::PassID;
684
LazyCallGraphPrinterPass(raw_ostream & OS)685 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
686
printNodes(raw_ostream & OS,LazyCallGraph::Node & N,SmallPtrSetImpl<LazyCallGraph::Node * > & Printed)687 static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
688 SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
689 // Recurse depth first through the nodes.
690 for (LazyCallGraph::Node &ChildN : N)
691 if (Printed.insert(&ChildN).second)
692 printNodes(OS, ChildN, Printed);
693
694 OS << " Call edges in function: " << N.getFunction().getName() << "\n";
695 for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
696 OS << " -> " << I->getFunction().getName() << "\n";
697
698 OS << "\n";
699 }
700
printSCC(raw_ostream & OS,LazyCallGraph::SCC & SCC)701 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) {
702 ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end());
703 OS << " SCC with " << SCCSize << " functions:\n";
704
705 for (LazyCallGraph::Node *N : SCC)
706 OS << " " << N->getFunction().getName() << "\n";
707
708 OS << "\n";
709 }
710
run(Module & M,ModuleAnalysisManager * AM)711 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
712 ModuleAnalysisManager *AM) {
713 LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);
714
715 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
716 << "\n\n";
717
718 SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
719 for (LazyCallGraph::Node &N : G)
720 if (Printed.insert(&N).second)
721 printNodes(OS, N, Printed);
722
723 for (LazyCallGraph::SCC &SCC : G.postorder_sccs())
724 printSCC(OS, SCC);
725
726 return PreservedAnalyses::all();
727 }
728