• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "intrinsics_x86_64.h"
18 
19 #include <limits>
20 
21 #include "arch/x86_64/instruction_set_features_x86_64.h"
22 #include "art_method-inl.h"
23 #include "base/bit_utils.h"
24 #include "code_generator_x86_64.h"
25 #include "entrypoints/quick/quick_entrypoints.h"
26 #include "intrinsics.h"
27 #include "intrinsics_utils.h"
28 #include "mirror/array-inl.h"
29 #include "mirror/string.h"
30 #include "thread.h"
31 #include "utils/x86_64/assembler_x86_64.h"
32 #include "utils/x86_64/constants_x86_64.h"
33 
34 namespace art {
35 
36 namespace x86_64 {
37 
IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64 * codegen)38 IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen)
39   : arena_(codegen->GetGraph()->GetArena()), codegen_(codegen) {
40 }
41 
42 
GetAssembler()43 X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() {
44   return down_cast<X86_64Assembler*>(codegen_->GetAssembler());
45 }
46 
GetAllocator()47 ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() {
48   return codegen_->GetGraph()->GetArena();
49 }
50 
TryDispatch(HInvoke * invoke)51 bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) {
52   Dispatch(invoke);
53   LocationSummary* res = invoke->GetLocations();
54   if (res == nullptr) {
55     return false;
56   }
57   if (kEmitCompilerReadBarrier && res->CanCall()) {
58     // Generating an intrinsic for this HInvoke may produce an
59     // IntrinsicSlowPathX86_64 slow path.  Currently this approach
60     // does not work when using read barriers, as the emitted
61     // calling sequence will make use of another slow path
62     // (ReadBarrierForRootSlowPathX86_64 for HInvokeStaticOrDirect,
63     // ReadBarrierSlowPathX86_64 for HInvokeVirtual).  So we bail
64     // out in this case.
65     //
66     // TODO: Find a way to have intrinsics work with read barriers.
67     invoke->SetLocations(nullptr);
68     return false;
69   }
70   return res->Intrinsified();
71 }
72 
MoveArguments(HInvoke * invoke,CodeGeneratorX86_64 * codegen)73 static void MoveArguments(HInvoke* invoke, CodeGeneratorX86_64* codegen) {
74   InvokeDexCallingConventionVisitorX86_64 calling_convention_visitor;
75   IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
76 }
77 
78 using IntrinsicSlowPathX86_64 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86_64>;
79 
80 #define __ assembler->
81 
CreateFPToIntLocations(ArenaAllocator * arena,HInvoke * invoke)82 static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
83   LocationSummary* locations = new (arena) LocationSummary(invoke,
84                                                            LocationSummary::kNoCall,
85                                                            kIntrinsified);
86   locations->SetInAt(0, Location::RequiresFpuRegister());
87   locations->SetOut(Location::RequiresRegister());
88 }
89 
CreateIntToFPLocations(ArenaAllocator * arena,HInvoke * invoke)90 static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
91   LocationSummary* locations = new (arena) LocationSummary(invoke,
92                                                            LocationSummary::kNoCall,
93                                                            kIntrinsified);
94   locations->SetInAt(0, Location::RequiresRegister());
95   locations->SetOut(Location::RequiresFpuRegister());
96 }
97 
MoveFPToInt(LocationSummary * locations,bool is64bit,X86_64Assembler * assembler)98 static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
99   Location input = locations->InAt(0);
100   Location output = locations->Out();
101   __ movd(output.AsRegister<CpuRegister>(), input.AsFpuRegister<XmmRegister>(), is64bit);
102 }
103 
MoveIntToFP(LocationSummary * locations,bool is64bit,X86_64Assembler * assembler)104 static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
105   Location input = locations->InAt(0);
106   Location output = locations->Out();
107   __ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<CpuRegister>(), is64bit);
108 }
109 
VisitDoubleDoubleToRawLongBits(HInvoke * invoke)110 void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
111   CreateFPToIntLocations(arena_, invoke);
112 }
VisitDoubleLongBitsToDouble(HInvoke * invoke)113 void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
114   CreateIntToFPLocations(arena_, invoke);
115 }
116 
VisitDoubleDoubleToRawLongBits(HInvoke * invoke)117 void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
118   MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
119 }
VisitDoubleLongBitsToDouble(HInvoke * invoke)120 void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
121   MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
122 }
123 
VisitFloatFloatToRawIntBits(HInvoke * invoke)124 void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
125   CreateFPToIntLocations(arena_, invoke);
126 }
VisitFloatIntBitsToFloat(HInvoke * invoke)127 void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
128   CreateIntToFPLocations(arena_, invoke);
129 }
130 
VisitFloatFloatToRawIntBits(HInvoke * invoke)131 void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
132   MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
133 }
VisitFloatIntBitsToFloat(HInvoke * invoke)134 void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
135   MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
136 }
137 
CreateIntToIntLocations(ArenaAllocator * arena,HInvoke * invoke)138 static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
139   LocationSummary* locations = new (arena) LocationSummary(invoke,
140                                                            LocationSummary::kNoCall,
141                                                            kIntrinsified);
142   locations->SetInAt(0, Location::RequiresRegister());
143   locations->SetOut(Location::SameAsFirstInput());
144 }
145 
GenReverseBytes(LocationSummary * locations,Primitive::Type size,X86_64Assembler * assembler)146 static void GenReverseBytes(LocationSummary* locations,
147                             Primitive::Type size,
148                             X86_64Assembler* assembler) {
149   CpuRegister out = locations->Out().AsRegister<CpuRegister>();
150 
151   switch (size) {
152     case Primitive::kPrimShort:
153       // TODO: Can be done with an xchg of 8b registers. This is straight from Quick.
154       __ bswapl(out);
155       __ sarl(out, Immediate(16));
156       break;
157     case Primitive::kPrimInt:
158       __ bswapl(out);
159       break;
160     case Primitive::kPrimLong:
161       __ bswapq(out);
162       break;
163     default:
164       LOG(FATAL) << "Unexpected size for reverse-bytes: " << size;
165       UNREACHABLE();
166   }
167 }
168 
VisitIntegerReverseBytes(HInvoke * invoke)169 void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
170   CreateIntToIntLocations(arena_, invoke);
171 }
172 
VisitIntegerReverseBytes(HInvoke * invoke)173 void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
174   GenReverseBytes(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
175 }
176 
VisitLongReverseBytes(HInvoke * invoke)177 void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) {
178   CreateIntToIntLocations(arena_, invoke);
179 }
180 
VisitLongReverseBytes(HInvoke * invoke)181 void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) {
182   GenReverseBytes(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
183 }
184 
VisitShortReverseBytes(HInvoke * invoke)185 void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) {
186   CreateIntToIntLocations(arena_, invoke);
187 }
188 
VisitShortReverseBytes(HInvoke * invoke)189 void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) {
190   GenReverseBytes(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler());
191 }
192 
193 
194 // TODO: Consider Quick's way of doing Double abs through integer operations, as the immediate we
195 //       need is 64b.
196 
CreateFloatToFloatPlusTemps(ArenaAllocator * arena,HInvoke * invoke)197 static void CreateFloatToFloatPlusTemps(ArenaAllocator* arena, HInvoke* invoke) {
198   // TODO: Enable memory operations when the assembler supports them.
199   LocationSummary* locations = new (arena) LocationSummary(invoke,
200                                                            LocationSummary::kNoCall,
201                                                            kIntrinsified);
202   locations->SetInAt(0, Location::RequiresFpuRegister());
203   locations->SetOut(Location::SameAsFirstInput());
204   locations->AddTemp(Location::RequiresFpuRegister());  // FP reg to hold mask.
205 }
206 
MathAbsFP(LocationSummary * locations,bool is64bit,X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen)207 static void MathAbsFP(LocationSummary* locations,
208                       bool is64bit,
209                       X86_64Assembler* assembler,
210                       CodeGeneratorX86_64* codegen) {
211   Location output = locations->Out();
212 
213   DCHECK(output.IsFpuRegister());
214   XmmRegister xmm_temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
215 
216   // TODO: Can mask directly with constant area using pand if we can guarantee
217   // that the literal is aligned on a 16 byte boundary.  This will avoid a
218   // temporary.
219   if (is64bit) {
220     __ movsd(xmm_temp, codegen->LiteralInt64Address(INT64_C(0x7FFFFFFFFFFFFFFF)));
221     __ andpd(output.AsFpuRegister<XmmRegister>(), xmm_temp);
222   } else {
223     __ movss(xmm_temp, codegen->LiteralInt32Address(INT32_C(0x7FFFFFFF)));
224     __ andps(output.AsFpuRegister<XmmRegister>(), xmm_temp);
225   }
226 }
227 
VisitMathAbsDouble(HInvoke * invoke)228 void IntrinsicLocationsBuilderX86_64::VisitMathAbsDouble(HInvoke* invoke) {
229   CreateFloatToFloatPlusTemps(arena_, invoke);
230 }
231 
VisitMathAbsDouble(HInvoke * invoke)232 void IntrinsicCodeGeneratorX86_64::VisitMathAbsDouble(HInvoke* invoke) {
233   MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler(), codegen_);
234 }
235 
VisitMathAbsFloat(HInvoke * invoke)236 void IntrinsicLocationsBuilderX86_64::VisitMathAbsFloat(HInvoke* invoke) {
237   CreateFloatToFloatPlusTemps(arena_, invoke);
238 }
239 
VisitMathAbsFloat(HInvoke * invoke)240 void IntrinsicCodeGeneratorX86_64::VisitMathAbsFloat(HInvoke* invoke) {
241   MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler(), codegen_);
242 }
243 
CreateIntToIntPlusTemp(ArenaAllocator * arena,HInvoke * invoke)244 static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) {
245   LocationSummary* locations = new (arena) LocationSummary(invoke,
246                                                            LocationSummary::kNoCall,
247                                                            kIntrinsified);
248   locations->SetInAt(0, Location::RequiresRegister());
249   locations->SetOut(Location::SameAsFirstInput());
250   locations->AddTemp(Location::RequiresRegister());
251 }
252 
GenAbsInteger(LocationSummary * locations,bool is64bit,X86_64Assembler * assembler)253 static void GenAbsInteger(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
254   Location output = locations->Out();
255   CpuRegister out = output.AsRegister<CpuRegister>();
256   CpuRegister mask = locations->GetTemp(0).AsRegister<CpuRegister>();
257 
258   if (is64bit) {
259     // Create mask.
260     __ movq(mask, out);
261     __ sarq(mask, Immediate(63));
262     // Add mask.
263     __ addq(out, mask);
264     __ xorq(out, mask);
265   } else {
266     // Create mask.
267     __ movl(mask, out);
268     __ sarl(mask, Immediate(31));
269     // Add mask.
270     __ addl(out, mask);
271     __ xorl(out, mask);
272   }
273 }
274 
VisitMathAbsInt(HInvoke * invoke)275 void IntrinsicLocationsBuilderX86_64::VisitMathAbsInt(HInvoke* invoke) {
276   CreateIntToIntPlusTemp(arena_, invoke);
277 }
278 
VisitMathAbsInt(HInvoke * invoke)279 void IntrinsicCodeGeneratorX86_64::VisitMathAbsInt(HInvoke* invoke) {
280   GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
281 }
282 
VisitMathAbsLong(HInvoke * invoke)283 void IntrinsicLocationsBuilderX86_64::VisitMathAbsLong(HInvoke* invoke) {
284   CreateIntToIntPlusTemp(arena_, invoke);
285 }
286 
VisitMathAbsLong(HInvoke * invoke)287 void IntrinsicCodeGeneratorX86_64::VisitMathAbsLong(HInvoke* invoke) {
288   GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
289 }
290 
GenMinMaxFP(LocationSummary * locations,bool is_min,bool is_double,X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen)291 static void GenMinMaxFP(LocationSummary* locations,
292                         bool is_min,
293                         bool is_double,
294                         X86_64Assembler* assembler,
295                         CodeGeneratorX86_64* codegen) {
296   Location op1_loc = locations->InAt(0);
297   Location op2_loc = locations->InAt(1);
298   Location out_loc = locations->Out();
299   XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
300 
301   // Shortcut for same input locations.
302   if (op1_loc.Equals(op2_loc)) {
303     DCHECK(out_loc.Equals(op1_loc));
304     return;
305   }
306 
307   //  (out := op1)
308   //  out <=? op2
309   //  if Nan jmp Nan_label
310   //  if out is min jmp done
311   //  if op2 is min jmp op2_label
312   //  handle -0/+0
313   //  jmp done
314   // Nan_label:
315   //  out := NaN
316   // op2_label:
317   //  out := op2
318   // done:
319   //
320   // This removes one jmp, but needs to copy one input (op1) to out.
321   //
322   // TODO: This is straight from Quick. Make NaN an out-of-line slowpath?
323 
324   XmmRegister op2 = op2_loc.AsFpuRegister<XmmRegister>();
325 
326   NearLabel nan, done, op2_label;
327   if (is_double) {
328     __ ucomisd(out, op2);
329   } else {
330     __ ucomiss(out, op2);
331   }
332 
333   __ j(Condition::kParityEven, &nan);
334 
335   __ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label);
336   __ j(is_min ? Condition::kBelow : Condition::kAbove, &done);
337 
338   // Handle 0.0/-0.0.
339   if (is_min) {
340     if (is_double) {
341       __ orpd(out, op2);
342     } else {
343       __ orps(out, op2);
344     }
345   } else {
346     if (is_double) {
347       __ andpd(out, op2);
348     } else {
349       __ andps(out, op2);
350     }
351   }
352   __ jmp(&done);
353 
354   // NaN handling.
355   __ Bind(&nan);
356   if (is_double) {
357     __ movsd(out, codegen->LiteralInt64Address(INT64_C(0x7FF8000000000000)));
358   } else {
359     __ movss(out, codegen->LiteralInt32Address(INT32_C(0x7FC00000)));
360   }
361   __ jmp(&done);
362 
363   // out := op2;
364   __ Bind(&op2_label);
365   if (is_double) {
366     __ movsd(out, op2);
367   } else {
368     __ movss(out, op2);
369   }
370 
371   // Done.
372   __ Bind(&done);
373 }
374 
CreateFPFPToFP(ArenaAllocator * arena,HInvoke * invoke)375 static void CreateFPFPToFP(ArenaAllocator* arena, HInvoke* invoke) {
376   LocationSummary* locations = new (arena) LocationSummary(invoke,
377                                                            LocationSummary::kNoCall,
378                                                            kIntrinsified);
379   locations->SetInAt(0, Location::RequiresFpuRegister());
380   locations->SetInAt(1, Location::RequiresFpuRegister());
381   // The following is sub-optimal, but all we can do for now. It would be fine to also accept
382   // the second input to be the output (we can simply swap inputs).
383   locations->SetOut(Location::SameAsFirstInput());
384 }
385 
VisitMathMinDoubleDouble(HInvoke * invoke)386 void IntrinsicLocationsBuilderX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) {
387   CreateFPFPToFP(arena_, invoke);
388 }
389 
VisitMathMinDoubleDouble(HInvoke * invoke)390 void IntrinsicCodeGeneratorX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) {
391   GenMinMaxFP(
392       invoke->GetLocations(), /* is_min */ true, /* is_double */ true, GetAssembler(), codegen_);
393 }
394 
VisitMathMinFloatFloat(HInvoke * invoke)395 void IntrinsicLocationsBuilderX86_64::VisitMathMinFloatFloat(HInvoke* invoke) {
396   CreateFPFPToFP(arena_, invoke);
397 }
398 
VisitMathMinFloatFloat(HInvoke * invoke)399 void IntrinsicCodeGeneratorX86_64::VisitMathMinFloatFloat(HInvoke* invoke) {
400   GenMinMaxFP(
401       invoke->GetLocations(), /* is_min */ true, /* is_double */ false, GetAssembler(), codegen_);
402 }
403 
VisitMathMaxDoubleDouble(HInvoke * invoke)404 void IntrinsicLocationsBuilderX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) {
405   CreateFPFPToFP(arena_, invoke);
406 }
407 
VisitMathMaxDoubleDouble(HInvoke * invoke)408 void IntrinsicCodeGeneratorX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) {
409   GenMinMaxFP(
410       invoke->GetLocations(), /* is_min */ false, /* is_double */ true, GetAssembler(), codegen_);
411 }
412 
VisitMathMaxFloatFloat(HInvoke * invoke)413 void IntrinsicLocationsBuilderX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) {
414   CreateFPFPToFP(arena_, invoke);
415 }
416 
VisitMathMaxFloatFloat(HInvoke * invoke)417 void IntrinsicCodeGeneratorX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) {
418   GenMinMaxFP(
419       invoke->GetLocations(), /* is_min */ false, /* is_double */ false, GetAssembler(), codegen_);
420 }
421 
GenMinMax(LocationSummary * locations,bool is_min,bool is_long,X86_64Assembler * assembler)422 static void GenMinMax(LocationSummary* locations, bool is_min, bool is_long,
423                       X86_64Assembler* assembler) {
424   Location op1_loc = locations->InAt(0);
425   Location op2_loc = locations->InAt(1);
426 
427   // Shortcut for same input locations.
428   if (op1_loc.Equals(op2_loc)) {
429     // Can return immediately, as op1_loc == out_loc.
430     // Note: if we ever support separate registers, e.g., output into memory, we need to check for
431     //       a copy here.
432     DCHECK(locations->Out().Equals(op1_loc));
433     return;
434   }
435 
436   CpuRegister out = locations->Out().AsRegister<CpuRegister>();
437   CpuRegister op2 = op2_loc.AsRegister<CpuRegister>();
438 
439   //  (out := op1)
440   //  out <=? op2
441   //  if out is min jmp done
442   //  out := op2
443   // done:
444 
445   if (is_long) {
446     __ cmpq(out, op2);
447   } else {
448     __ cmpl(out, op2);
449   }
450 
451   __ cmov(is_min ? Condition::kGreater : Condition::kLess, out, op2, is_long);
452 }
453 
CreateIntIntToIntLocations(ArenaAllocator * arena,HInvoke * invoke)454 static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
455   LocationSummary* locations = new (arena) LocationSummary(invoke,
456                                                            LocationSummary::kNoCall,
457                                                            kIntrinsified);
458   locations->SetInAt(0, Location::RequiresRegister());
459   locations->SetInAt(1, Location::RequiresRegister());
460   locations->SetOut(Location::SameAsFirstInput());
461 }
462 
VisitMathMinIntInt(HInvoke * invoke)463 void IntrinsicLocationsBuilderX86_64::VisitMathMinIntInt(HInvoke* invoke) {
464   CreateIntIntToIntLocations(arena_, invoke);
465 }
466 
VisitMathMinIntInt(HInvoke * invoke)467 void IntrinsicCodeGeneratorX86_64::VisitMathMinIntInt(HInvoke* invoke) {
468   GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ false, GetAssembler());
469 }
470 
VisitMathMinLongLong(HInvoke * invoke)471 void IntrinsicLocationsBuilderX86_64::VisitMathMinLongLong(HInvoke* invoke) {
472   CreateIntIntToIntLocations(arena_, invoke);
473 }
474 
VisitMathMinLongLong(HInvoke * invoke)475 void IntrinsicCodeGeneratorX86_64::VisitMathMinLongLong(HInvoke* invoke) {
476   GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ true, GetAssembler());
477 }
478 
VisitMathMaxIntInt(HInvoke * invoke)479 void IntrinsicLocationsBuilderX86_64::VisitMathMaxIntInt(HInvoke* invoke) {
480   CreateIntIntToIntLocations(arena_, invoke);
481 }
482 
VisitMathMaxIntInt(HInvoke * invoke)483 void IntrinsicCodeGeneratorX86_64::VisitMathMaxIntInt(HInvoke* invoke) {
484   GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ false, GetAssembler());
485 }
486 
VisitMathMaxLongLong(HInvoke * invoke)487 void IntrinsicLocationsBuilderX86_64::VisitMathMaxLongLong(HInvoke* invoke) {
488   CreateIntIntToIntLocations(arena_, invoke);
489 }
490 
VisitMathMaxLongLong(HInvoke * invoke)491 void IntrinsicCodeGeneratorX86_64::VisitMathMaxLongLong(HInvoke* invoke) {
492   GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ true, GetAssembler());
493 }
494 
CreateFPToFPLocations(ArenaAllocator * arena,HInvoke * invoke)495 static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
496   LocationSummary* locations = new (arena) LocationSummary(invoke,
497                                                            LocationSummary::kNoCall,
498                                                            kIntrinsified);
499   locations->SetInAt(0, Location::RequiresFpuRegister());
500   locations->SetOut(Location::RequiresFpuRegister());
501 }
502 
VisitMathSqrt(HInvoke * invoke)503 void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) {
504   CreateFPToFPLocations(arena_, invoke);
505 }
506 
VisitMathSqrt(HInvoke * invoke)507 void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) {
508   LocationSummary* locations = invoke->GetLocations();
509   XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
510   XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
511 
512   GetAssembler()->sqrtsd(out, in);
513 }
514 
InvokeOutOfLineIntrinsic(CodeGeneratorX86_64 * codegen,HInvoke * invoke)515 static void InvokeOutOfLineIntrinsic(CodeGeneratorX86_64* codegen, HInvoke* invoke) {
516   MoveArguments(invoke, codegen);
517 
518   DCHECK(invoke->IsInvokeStaticOrDirect());
519   codegen->GenerateStaticOrDirectCall(
520       invoke->AsInvokeStaticOrDirect(), Location::RegisterLocation(RDI));
521   codegen->RecordPcInfo(invoke, invoke->GetDexPc());
522 
523   // Copy the result back to the expected output.
524   Location out = invoke->GetLocations()->Out();
525   if (out.IsValid()) {
526     DCHECK(out.IsRegister());
527     codegen->MoveFromReturnRegister(out, invoke->GetType());
528   }
529 }
530 
CreateSSE41FPToFPLocations(ArenaAllocator * arena,HInvoke * invoke,CodeGeneratorX86_64 * codegen)531 static void CreateSSE41FPToFPLocations(ArenaAllocator* arena,
532                                       HInvoke* invoke,
533                                       CodeGeneratorX86_64* codegen) {
534   // Do we have instruction support?
535   if (codegen->GetInstructionSetFeatures().HasSSE4_1()) {
536     CreateFPToFPLocations(arena, invoke);
537     return;
538   }
539 
540   // We have to fall back to a call to the intrinsic.
541   LocationSummary* locations = new (arena) LocationSummary(invoke,
542                                                            LocationSummary::kCall);
543   InvokeRuntimeCallingConvention calling_convention;
544   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0)));
545   locations->SetOut(Location::FpuRegisterLocation(XMM0));
546   // Needs to be RDI for the invoke.
547   locations->AddTemp(Location::RegisterLocation(RDI));
548 }
549 
GenSSE41FPToFPIntrinsic(CodeGeneratorX86_64 * codegen,HInvoke * invoke,X86_64Assembler * assembler,int round_mode)550 static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86_64* codegen,
551                                    HInvoke* invoke,
552                                    X86_64Assembler* assembler,
553                                    int round_mode) {
554   LocationSummary* locations = invoke->GetLocations();
555   if (locations->WillCall()) {
556     InvokeOutOfLineIntrinsic(codegen, invoke);
557   } else {
558     XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
559     XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
560     __ roundsd(out, in, Immediate(round_mode));
561   }
562 }
563 
VisitMathCeil(HInvoke * invoke)564 void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) {
565   CreateSSE41FPToFPLocations(arena_, invoke, codegen_);
566 }
567 
VisitMathCeil(HInvoke * invoke)568 void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) {
569   GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2);
570 }
571 
VisitMathFloor(HInvoke * invoke)572 void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) {
573   CreateSSE41FPToFPLocations(arena_, invoke, codegen_);
574 }
575 
VisitMathFloor(HInvoke * invoke)576 void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) {
577   GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1);
578 }
579 
VisitMathRint(HInvoke * invoke)580 void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) {
581   CreateSSE41FPToFPLocations(arena_, invoke, codegen_);
582 }
583 
VisitMathRint(HInvoke * invoke)584 void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) {
585   GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0);
586 }
587 
CreateSSE41FPToIntLocations(ArenaAllocator * arena,HInvoke * invoke,CodeGeneratorX86_64 * codegen)588 static void CreateSSE41FPToIntLocations(ArenaAllocator* arena,
589                                        HInvoke* invoke,
590                                        CodeGeneratorX86_64* codegen) {
591   // Do we have instruction support?
592   if (codegen->GetInstructionSetFeatures().HasSSE4_1()) {
593     LocationSummary* locations = new (arena) LocationSummary(invoke,
594                                                               LocationSummary::kNoCall,
595                                                               kIntrinsified);
596     locations->SetInAt(0, Location::RequiresFpuRegister());
597     locations->SetOut(Location::RequiresRegister());
598     locations->AddTemp(Location::RequiresFpuRegister());
599     return;
600   }
601 
602   // We have to fall back to a call to the intrinsic.
603   LocationSummary* locations = new (arena) LocationSummary(invoke,
604                                                            LocationSummary::kCall);
605   InvokeRuntimeCallingConvention calling_convention;
606   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0)));
607   locations->SetOut(Location::RegisterLocation(RAX));
608   // Needs to be RDI for the invoke.
609   locations->AddTemp(Location::RegisterLocation(RDI));
610 }
611 
VisitMathRoundFloat(HInvoke * invoke)612 void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) {
613   // See intrinsics.h.
614   if (kRoundIsPlusPointFive) {
615     CreateSSE41FPToIntLocations(arena_, invoke, codegen_);
616   }
617 }
618 
VisitMathRoundFloat(HInvoke * invoke)619 void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) {
620   LocationSummary* locations = invoke->GetLocations();
621   if (locations->WillCall()) {
622     InvokeOutOfLineIntrinsic(codegen_, invoke);
623     return;
624   }
625 
626   // Implement RoundFloat as t1 = floor(input + 0.5f);  convert to int.
627   XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
628   CpuRegister out = locations->Out().AsRegister<CpuRegister>();
629   XmmRegister inPlusPointFive = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
630   NearLabel done, nan;
631   X86_64Assembler* assembler = GetAssembler();
632 
633   // Load 0.5 into inPlusPointFive.
634   __ movss(inPlusPointFive, codegen_->LiteralFloatAddress(0.5f));
635 
636   // Add in the input.
637   __ addss(inPlusPointFive, in);
638 
639   // And truncate to an integer.
640   __ roundss(inPlusPointFive, inPlusPointFive, Immediate(1));
641 
642   // Load maxInt into out.
643   codegen_->Load64BitValue(out, kPrimIntMax);
644 
645   // if inPlusPointFive >= maxInt goto done
646   __ comiss(inPlusPointFive, codegen_->LiteralFloatAddress(static_cast<float>(kPrimIntMax)));
647   __ j(kAboveEqual, &done);
648 
649   // if input == NaN goto nan
650   __ j(kUnordered, &nan);
651 
652   // output = float-to-int-truncate(input)
653   __ cvttss2si(out, inPlusPointFive);
654   __ jmp(&done);
655   __ Bind(&nan);
656 
657   //  output = 0
658   __ xorl(out, out);
659   __ Bind(&done);
660 }
661 
VisitMathRoundDouble(HInvoke * invoke)662 void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) {
663   // See intrinsics.h.
664   if (kRoundIsPlusPointFive) {
665     CreateSSE41FPToIntLocations(arena_, invoke, codegen_);
666   }
667 }
668 
VisitMathRoundDouble(HInvoke * invoke)669 void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) {
670   LocationSummary* locations = invoke->GetLocations();
671   if (locations->WillCall()) {
672     InvokeOutOfLineIntrinsic(codegen_, invoke);
673     return;
674   }
675 
676   // Implement RoundDouble as t1 = floor(input + 0.5);  convert to long.
677   XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
678   CpuRegister out = locations->Out().AsRegister<CpuRegister>();
679   XmmRegister inPlusPointFive = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
680   NearLabel done, nan;
681   X86_64Assembler* assembler = GetAssembler();
682 
683   // Load 0.5 into inPlusPointFive.
684   __ movsd(inPlusPointFive, codegen_->LiteralDoubleAddress(0.5));
685 
686   // Add in the input.
687   __ addsd(inPlusPointFive, in);
688 
689   // And truncate to an integer.
690   __ roundsd(inPlusPointFive, inPlusPointFive, Immediate(1));
691 
692   // Load maxLong into out.
693   codegen_->Load64BitValue(out, kPrimLongMax);
694 
695   // if inPlusPointFive >= maxLong goto done
696   __ comisd(inPlusPointFive, codegen_->LiteralDoubleAddress(static_cast<double>(kPrimLongMax)));
697   __ j(kAboveEqual, &done);
698 
699   // if input == NaN goto nan
700   __ j(kUnordered, &nan);
701 
702   // output = double-to-long-truncate(input)
703   __ cvttsd2si(out, inPlusPointFive, /* is64bit */ true);
704   __ jmp(&done);
705   __ Bind(&nan);
706 
707   //  output = 0
708   __ xorl(out, out);
709   __ Bind(&done);
710 }
711 
CreateFPToFPCallLocations(ArenaAllocator * arena,HInvoke * invoke)712 static void CreateFPToFPCallLocations(ArenaAllocator* arena,
713                                       HInvoke* invoke) {
714   LocationSummary* locations = new (arena) LocationSummary(invoke,
715                                                            LocationSummary::kCall,
716                                                            kIntrinsified);
717   InvokeRuntimeCallingConvention calling_convention;
718   locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
719   locations->SetOut(Location::FpuRegisterLocation(XMM0));
720 
721   // We have to ensure that the native code doesn't clobber the XMM registers which are
722   // non-volatile for ART, but volatile for Native calls.  This will ensure that they are
723   // saved in the prologue and properly restored.
724   for (auto fp_reg : non_volatile_xmm_regs) {
725     locations->AddTemp(Location::FpuRegisterLocation(fp_reg));
726   }
727 }
728 
GenFPToFPCall(HInvoke * invoke,CodeGeneratorX86_64 * codegen,QuickEntrypointEnum entry)729 static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86_64* codegen,
730                           QuickEntrypointEnum entry) {
731   LocationSummary* locations = invoke->GetLocations();
732   DCHECK(locations->WillCall());
733   DCHECK(invoke->IsInvokeStaticOrDirect());
734   X86_64Assembler* assembler = codegen->GetAssembler();
735 
736   __ gs()->call(Address::Absolute(GetThreadOffset<kX86_64WordSize>(entry), true));
737   codegen->RecordPcInfo(invoke, invoke->GetDexPc());
738 }
739 
VisitMathCos(HInvoke * invoke)740 void IntrinsicLocationsBuilderX86_64::VisitMathCos(HInvoke* invoke) {
741   CreateFPToFPCallLocations(arena_, invoke);
742 }
743 
VisitMathCos(HInvoke * invoke)744 void IntrinsicCodeGeneratorX86_64::VisitMathCos(HInvoke* invoke) {
745   GenFPToFPCall(invoke, codegen_, kQuickCos);
746 }
747 
VisitMathSin(HInvoke * invoke)748 void IntrinsicLocationsBuilderX86_64::VisitMathSin(HInvoke* invoke) {
749   CreateFPToFPCallLocations(arena_, invoke);
750 }
751 
VisitMathSin(HInvoke * invoke)752 void IntrinsicCodeGeneratorX86_64::VisitMathSin(HInvoke* invoke) {
753   GenFPToFPCall(invoke, codegen_, kQuickSin);
754 }
755 
VisitMathAcos(HInvoke * invoke)756 void IntrinsicLocationsBuilderX86_64::VisitMathAcos(HInvoke* invoke) {
757   CreateFPToFPCallLocations(arena_, invoke);
758 }
759 
VisitMathAcos(HInvoke * invoke)760 void IntrinsicCodeGeneratorX86_64::VisitMathAcos(HInvoke* invoke) {
761   GenFPToFPCall(invoke, codegen_, kQuickAcos);
762 }
763 
VisitMathAsin(HInvoke * invoke)764 void IntrinsicLocationsBuilderX86_64::VisitMathAsin(HInvoke* invoke) {
765   CreateFPToFPCallLocations(arena_, invoke);
766 }
767 
VisitMathAsin(HInvoke * invoke)768 void IntrinsicCodeGeneratorX86_64::VisitMathAsin(HInvoke* invoke) {
769   GenFPToFPCall(invoke, codegen_, kQuickAsin);
770 }
771 
VisitMathAtan(HInvoke * invoke)772 void IntrinsicLocationsBuilderX86_64::VisitMathAtan(HInvoke* invoke) {
773   CreateFPToFPCallLocations(arena_, invoke);
774 }
775 
VisitMathAtan(HInvoke * invoke)776 void IntrinsicCodeGeneratorX86_64::VisitMathAtan(HInvoke* invoke) {
777   GenFPToFPCall(invoke, codegen_, kQuickAtan);
778 }
779 
VisitMathCbrt(HInvoke * invoke)780 void IntrinsicLocationsBuilderX86_64::VisitMathCbrt(HInvoke* invoke) {
781   CreateFPToFPCallLocations(arena_, invoke);
782 }
783 
VisitMathCbrt(HInvoke * invoke)784 void IntrinsicCodeGeneratorX86_64::VisitMathCbrt(HInvoke* invoke) {
785   GenFPToFPCall(invoke, codegen_, kQuickCbrt);
786 }
787 
VisitMathCosh(HInvoke * invoke)788 void IntrinsicLocationsBuilderX86_64::VisitMathCosh(HInvoke* invoke) {
789   CreateFPToFPCallLocations(arena_, invoke);
790 }
791 
VisitMathCosh(HInvoke * invoke)792 void IntrinsicCodeGeneratorX86_64::VisitMathCosh(HInvoke* invoke) {
793   GenFPToFPCall(invoke, codegen_, kQuickCosh);
794 }
795 
VisitMathExp(HInvoke * invoke)796 void IntrinsicLocationsBuilderX86_64::VisitMathExp(HInvoke* invoke) {
797   CreateFPToFPCallLocations(arena_, invoke);
798 }
799 
VisitMathExp(HInvoke * invoke)800 void IntrinsicCodeGeneratorX86_64::VisitMathExp(HInvoke* invoke) {
801   GenFPToFPCall(invoke, codegen_, kQuickExp);
802 }
803 
VisitMathExpm1(HInvoke * invoke)804 void IntrinsicLocationsBuilderX86_64::VisitMathExpm1(HInvoke* invoke) {
805   CreateFPToFPCallLocations(arena_, invoke);
806 }
807 
VisitMathExpm1(HInvoke * invoke)808 void IntrinsicCodeGeneratorX86_64::VisitMathExpm1(HInvoke* invoke) {
809   GenFPToFPCall(invoke, codegen_, kQuickExpm1);
810 }
811 
VisitMathLog(HInvoke * invoke)812 void IntrinsicLocationsBuilderX86_64::VisitMathLog(HInvoke* invoke) {
813   CreateFPToFPCallLocations(arena_, invoke);
814 }
815 
VisitMathLog(HInvoke * invoke)816 void IntrinsicCodeGeneratorX86_64::VisitMathLog(HInvoke* invoke) {
817   GenFPToFPCall(invoke, codegen_, kQuickLog);
818 }
819 
VisitMathLog10(HInvoke * invoke)820 void IntrinsicLocationsBuilderX86_64::VisitMathLog10(HInvoke* invoke) {
821   CreateFPToFPCallLocations(arena_, invoke);
822 }
823 
VisitMathLog10(HInvoke * invoke)824 void IntrinsicCodeGeneratorX86_64::VisitMathLog10(HInvoke* invoke) {
825   GenFPToFPCall(invoke, codegen_, kQuickLog10);
826 }
827 
VisitMathSinh(HInvoke * invoke)828 void IntrinsicLocationsBuilderX86_64::VisitMathSinh(HInvoke* invoke) {
829   CreateFPToFPCallLocations(arena_, invoke);
830 }
831 
VisitMathSinh(HInvoke * invoke)832 void IntrinsicCodeGeneratorX86_64::VisitMathSinh(HInvoke* invoke) {
833   GenFPToFPCall(invoke, codegen_, kQuickSinh);
834 }
835 
VisitMathTan(HInvoke * invoke)836 void IntrinsicLocationsBuilderX86_64::VisitMathTan(HInvoke* invoke) {
837   CreateFPToFPCallLocations(arena_, invoke);
838 }
839 
VisitMathTan(HInvoke * invoke)840 void IntrinsicCodeGeneratorX86_64::VisitMathTan(HInvoke* invoke) {
841   GenFPToFPCall(invoke, codegen_, kQuickTan);
842 }
843 
VisitMathTanh(HInvoke * invoke)844 void IntrinsicLocationsBuilderX86_64::VisitMathTanh(HInvoke* invoke) {
845   CreateFPToFPCallLocations(arena_, invoke);
846 }
847 
VisitMathTanh(HInvoke * invoke)848 void IntrinsicCodeGeneratorX86_64::VisitMathTanh(HInvoke* invoke) {
849   GenFPToFPCall(invoke, codegen_, kQuickTanh);
850 }
851 
CreateFPFPToFPCallLocations(ArenaAllocator * arena,HInvoke * invoke)852 static void CreateFPFPToFPCallLocations(ArenaAllocator* arena,
853                                         HInvoke* invoke) {
854   LocationSummary* locations = new (arena) LocationSummary(invoke,
855                                                            LocationSummary::kCall,
856                                                            kIntrinsified);
857   InvokeRuntimeCallingConvention calling_convention;
858   locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
859   locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
860   locations->SetOut(Location::FpuRegisterLocation(XMM0));
861 
862   // We have to ensure that the native code doesn't clobber the XMM registers which are
863   // non-volatile for ART, but volatile for Native calls.  This will ensure that they are
864   // saved in the prologue and properly restored.
865   for (auto fp_reg : non_volatile_xmm_regs) {
866     locations->AddTemp(Location::FpuRegisterLocation(fp_reg));
867   }
868 }
869 
VisitMathAtan2(HInvoke * invoke)870 void IntrinsicLocationsBuilderX86_64::VisitMathAtan2(HInvoke* invoke) {
871   CreateFPFPToFPCallLocations(arena_, invoke);
872 }
873 
VisitMathAtan2(HInvoke * invoke)874 void IntrinsicCodeGeneratorX86_64::VisitMathAtan2(HInvoke* invoke) {
875   GenFPToFPCall(invoke, codegen_, kQuickAtan2);
876 }
877 
VisitMathHypot(HInvoke * invoke)878 void IntrinsicLocationsBuilderX86_64::VisitMathHypot(HInvoke* invoke) {
879   CreateFPFPToFPCallLocations(arena_, invoke);
880 }
881 
VisitMathHypot(HInvoke * invoke)882 void IntrinsicCodeGeneratorX86_64::VisitMathHypot(HInvoke* invoke) {
883   GenFPToFPCall(invoke, codegen_, kQuickHypot);
884 }
885 
VisitMathNextAfter(HInvoke * invoke)886 void IntrinsicLocationsBuilderX86_64::VisitMathNextAfter(HInvoke* invoke) {
887   CreateFPFPToFPCallLocations(arena_, invoke);
888 }
889 
VisitMathNextAfter(HInvoke * invoke)890 void IntrinsicCodeGeneratorX86_64::VisitMathNextAfter(HInvoke* invoke) {
891   GenFPToFPCall(invoke, codegen_, kQuickNextAfter);
892 }
893 
VisitStringCharAt(HInvoke * invoke)894 void IntrinsicLocationsBuilderX86_64::VisitStringCharAt(HInvoke* invoke) {
895   // The inputs plus one temp.
896   LocationSummary* locations = new (arena_) LocationSummary(invoke,
897                                                             LocationSummary::kCallOnSlowPath,
898                                                             kIntrinsified);
899   locations->SetInAt(0, Location::RequiresRegister());
900   locations->SetInAt(1, Location::RequiresRegister());
901   locations->SetOut(Location::SameAsFirstInput());
902   locations->AddTemp(Location::RequiresRegister());
903 }
904 
VisitStringCharAt(HInvoke * invoke)905 void IntrinsicCodeGeneratorX86_64::VisitStringCharAt(HInvoke* invoke) {
906   LocationSummary* locations = invoke->GetLocations();
907 
908   // Location of reference to data array.
909   const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
910   // Location of count.
911   const int32_t count_offset = mirror::String::CountOffset().Int32Value();
912 
913   CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
914   CpuRegister idx = locations->InAt(1).AsRegister<CpuRegister>();
915   CpuRegister out = locations->Out().AsRegister<CpuRegister>();
916 
917   // TODO: Maybe we can support range check elimination. Overall, though, I think it's not worth
918   //       the cost.
919   // TODO: For simplicity, the index parameter is requested in a register, so different from Quick
920   //       we will not optimize the code for constants (which would save a register).
921 
922   SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
923   codegen_->AddSlowPath(slow_path);
924 
925   X86_64Assembler* assembler = GetAssembler();
926 
927   __ cmpl(idx, Address(obj, count_offset));
928   codegen_->MaybeRecordImplicitNullCheck(invoke);
929   __ j(kAboveEqual, slow_path->GetEntryLabel());
930 
931   // out = out[2*idx].
932   __ movzxw(out, Address(out, idx, ScaleFactor::TIMES_2, value_offset));
933 
934   __ Bind(slow_path->GetExitLabel());
935 }
936 
VisitSystemArrayCopyChar(HInvoke * invoke)937 void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) {
938   // Check to see if we have known failures that will cause us to have to bail out
939   // to the runtime, and just generate the runtime call directly.
940   HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
941   HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
942 
943   // The positions must be non-negative.
944   if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
945       (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
946     // We will have to fail anyways.
947     return;
948   }
949 
950   // The length must be > 0.
951   HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
952   if (length != nullptr) {
953     int32_t len = length->GetValue();
954     if (len < 0) {
955       // Just call as normal.
956       return;
957     }
958   }
959 
960   LocationSummary* locations = new (arena_) LocationSummary(invoke,
961                                                             LocationSummary::kCallOnSlowPath,
962                                                             kIntrinsified);
963   // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
964   locations->SetInAt(0, Location::RequiresRegister());
965   locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
966   locations->SetInAt(2, Location::RequiresRegister());
967   locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
968   locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
969 
970   // And we need some temporaries.  We will use REP MOVSW, so we need fixed registers.
971   locations->AddTemp(Location::RegisterLocation(RSI));
972   locations->AddTemp(Location::RegisterLocation(RDI));
973   locations->AddTemp(Location::RegisterLocation(RCX));
974 }
975 
CheckPosition(X86_64Assembler * assembler,Location pos,CpuRegister input,Location length,SlowPathCode * slow_path,CpuRegister input_len,CpuRegister temp,bool length_is_input_length=false)976 static void CheckPosition(X86_64Assembler* assembler,
977                           Location pos,
978                           CpuRegister input,
979                           Location length,
980                           SlowPathCode* slow_path,
981                           CpuRegister input_len,
982                           CpuRegister temp,
983                           bool length_is_input_length = false) {
984   // Where is the length in the Array?
985   const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
986 
987   if (pos.IsConstant()) {
988     int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
989     if (pos_const == 0) {
990       if (!length_is_input_length) {
991         // Check that length(input) >= length.
992         if (length.IsConstant()) {
993           __ cmpl(Address(input, length_offset),
994                   Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
995         } else {
996           __ cmpl(Address(input, length_offset), length.AsRegister<CpuRegister>());
997         }
998         __ j(kLess, slow_path->GetEntryLabel());
999       }
1000     } else {
1001       // Check that length(input) >= pos.
1002       __ movl(input_len, Address(input, length_offset));
1003       __ cmpl(input_len, Immediate(pos_const));
1004       __ j(kLess, slow_path->GetEntryLabel());
1005 
1006       // Check that (length(input) - pos) >= length.
1007       __ leal(temp, Address(input_len, -pos_const));
1008       if (length.IsConstant()) {
1009         __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
1010       } else {
1011         __ cmpl(temp, length.AsRegister<CpuRegister>());
1012       }
1013       __ j(kLess, slow_path->GetEntryLabel());
1014     }
1015   } else if (length_is_input_length) {
1016     // The only way the copy can succeed is if pos is zero.
1017     CpuRegister pos_reg = pos.AsRegister<CpuRegister>();
1018     __ testl(pos_reg, pos_reg);
1019     __ j(kNotEqual, slow_path->GetEntryLabel());
1020   } else {
1021     // Check that pos >= 0.
1022     CpuRegister pos_reg = pos.AsRegister<CpuRegister>();
1023     __ testl(pos_reg, pos_reg);
1024     __ j(kLess, slow_path->GetEntryLabel());
1025 
1026     // Check that pos <= length(input).
1027     __ cmpl(Address(input, length_offset), pos_reg);
1028     __ j(kLess, slow_path->GetEntryLabel());
1029 
1030     // Check that (length(input) - pos) >= length.
1031     __ movl(temp, Address(input, length_offset));
1032     __ subl(temp, pos_reg);
1033     if (length.IsConstant()) {
1034       __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
1035     } else {
1036       __ cmpl(temp, length.AsRegister<CpuRegister>());
1037     }
1038     __ j(kLess, slow_path->GetEntryLabel());
1039   }
1040 }
1041 
VisitSystemArrayCopyChar(HInvoke * invoke)1042 void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) {
1043   X86_64Assembler* assembler = GetAssembler();
1044   LocationSummary* locations = invoke->GetLocations();
1045 
1046   CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>();
1047   Location src_pos = locations->InAt(1);
1048   CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>();
1049   Location dest_pos = locations->InAt(3);
1050   Location length = locations->InAt(4);
1051 
1052   // Temporaries that we need for MOVSW.
1053   CpuRegister src_base = locations->GetTemp(0).AsRegister<CpuRegister>();
1054   DCHECK_EQ(src_base.AsRegister(), RSI);
1055   CpuRegister dest_base = locations->GetTemp(1).AsRegister<CpuRegister>();
1056   DCHECK_EQ(dest_base.AsRegister(), RDI);
1057   CpuRegister count = locations->GetTemp(2).AsRegister<CpuRegister>();
1058   DCHECK_EQ(count.AsRegister(), RCX);
1059 
1060   SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
1061   codegen_->AddSlowPath(slow_path);
1062 
1063   // Bail out if the source and destination are the same.
1064   __ cmpl(src, dest);
1065   __ j(kEqual, slow_path->GetEntryLabel());
1066 
1067   // Bail out if the source is null.
1068   __ testl(src, src);
1069   __ j(kEqual, slow_path->GetEntryLabel());
1070 
1071   // Bail out if the destination is null.
1072   __ testl(dest, dest);
1073   __ j(kEqual, slow_path->GetEntryLabel());
1074 
1075   // If the length is negative, bail out.
1076   // We have already checked in the LocationsBuilder for the constant case.
1077   if (!length.IsConstant()) {
1078     __ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>());
1079     __ j(kLess, slow_path->GetEntryLabel());
1080   }
1081 
1082   // Validity checks: source.
1083   CheckPosition(assembler, src_pos, src, length, slow_path, src_base, dest_base);
1084 
1085   // Validity checks: dest.
1086   CheckPosition(assembler, dest_pos, dest, length, slow_path, src_base, dest_base);
1087 
1088   // We need the count in RCX.
1089   if (length.IsConstant()) {
1090     __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
1091   } else {
1092     __ movl(count, length.AsRegister<CpuRegister>());
1093   }
1094 
1095   // Okay, everything checks out.  Finally time to do the copy.
1096   // Check assumption that sizeof(Char) is 2 (used in scaling below).
1097   const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
1098   DCHECK_EQ(char_size, 2u);
1099 
1100   const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
1101 
1102   if (src_pos.IsConstant()) {
1103     int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue();
1104     __ leal(src_base, Address(src, char_size * src_pos_const + data_offset));
1105   } else {
1106     __ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(),
1107                               ScaleFactor::TIMES_2, data_offset));
1108   }
1109   if (dest_pos.IsConstant()) {
1110     int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue();
1111     __ leal(dest_base, Address(dest, char_size * dest_pos_const + data_offset));
1112   } else {
1113     __ leal(dest_base, Address(dest, dest_pos.AsRegister<CpuRegister>(),
1114                                ScaleFactor::TIMES_2, data_offset));
1115   }
1116 
1117   // Do the move.
1118   __ rep_movsw();
1119 
1120   __ Bind(slow_path->GetExitLabel());
1121 }
1122 
1123 
VisitSystemArrayCopy(HInvoke * invoke)1124 void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
1125   CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
1126 }
1127 
1128 // TODO: Implement read barriers in the SystemArrayCopy intrinsic.
1129 // Note that this code path is not used (yet) because we do not
1130 // intrinsify methods that can go into the IntrinsicSlowPathX86_64
1131 // slow path.
VisitSystemArrayCopy(HInvoke * invoke)1132 void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
1133   X86_64Assembler* assembler = GetAssembler();
1134   LocationSummary* locations = invoke->GetLocations();
1135 
1136   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
1137   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
1138   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
1139   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
1140 
1141   CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>();
1142   Location src_pos = locations->InAt(1);
1143   CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>();
1144   Location dest_pos = locations->InAt(3);
1145   Location length = locations->InAt(4);
1146   CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>();
1147   CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>();
1148   CpuRegister temp3 = locations->GetTemp(2).AsRegister<CpuRegister>();
1149 
1150   SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
1151   codegen_->AddSlowPath(slow_path);
1152 
1153   NearLabel conditions_on_positions_validated;
1154   SystemArrayCopyOptimizations optimizations(invoke);
1155 
1156   if (!optimizations.GetDestinationIsSource() &&
1157       (!src_pos.IsConstant() || !dest_pos.IsConstant())) {
1158     __ cmpl(src, dest);
1159   }
1160   // If source and destination are the same, we go to slow path if we need to do
1161   // forward copying.
1162   if (src_pos.IsConstant()) {
1163     int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
1164     if (dest_pos.IsConstant()) {
1165       // Checked when building locations.
1166       DCHECK(!optimizations.GetDestinationIsSource()
1167              || (src_pos_constant >= dest_pos.GetConstant()->AsIntConstant()->GetValue()));
1168     } else {
1169       if (!optimizations.GetDestinationIsSource()) {
1170         __ j(kNotEqual, &conditions_on_positions_validated);
1171       }
1172       __ cmpl(dest_pos.AsRegister<CpuRegister>(), Immediate(src_pos_constant));
1173       __ j(kGreater, slow_path->GetEntryLabel());
1174     }
1175   } else {
1176     if (!optimizations.GetDestinationIsSource()) {
1177       __ j(kNotEqual, &conditions_on_positions_validated);
1178     }
1179     if (dest_pos.IsConstant()) {
1180       int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
1181       __ cmpl(src_pos.AsRegister<CpuRegister>(), Immediate(dest_pos_constant));
1182       __ j(kLess, slow_path->GetEntryLabel());
1183     } else {
1184       __ cmpl(src_pos.AsRegister<CpuRegister>(), dest_pos.AsRegister<CpuRegister>());
1185       __ j(kLess, slow_path->GetEntryLabel());
1186     }
1187   }
1188 
1189   __ Bind(&conditions_on_positions_validated);
1190 
1191   if (!optimizations.GetSourceIsNotNull()) {
1192     // Bail out if the source is null.
1193     __ testl(src, src);
1194     __ j(kEqual, slow_path->GetEntryLabel());
1195   }
1196 
1197   if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
1198     // Bail out if the destination is null.
1199     __ testl(dest, dest);
1200     __ j(kEqual, slow_path->GetEntryLabel());
1201   }
1202 
1203   // If the length is negative, bail out.
1204   // We have already checked in the LocationsBuilder for the constant case.
1205   if (!length.IsConstant() &&
1206       !optimizations.GetCountIsSourceLength() &&
1207       !optimizations.GetCountIsDestinationLength()) {
1208     __ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>());
1209     __ j(kLess, slow_path->GetEntryLabel());
1210   }
1211 
1212   // Validity checks: source.
1213   CheckPosition(assembler,
1214                 src_pos,
1215                 src,
1216                 length,
1217                 slow_path,
1218                 temp1,
1219                 temp2,
1220                 optimizations.GetCountIsSourceLength());
1221 
1222   // Validity checks: dest.
1223   CheckPosition(assembler,
1224                 dest_pos,
1225                 dest,
1226                 length,
1227                 slow_path,
1228                 temp1,
1229                 temp2,
1230                 optimizations.GetCountIsDestinationLength());
1231 
1232   if (!optimizations.GetDoesNotNeedTypeCheck()) {
1233     // Check whether all elements of the source array are assignable to the component
1234     // type of the destination array. We do two checks: the classes are the same,
1235     // or the destination is Object[]. If none of these checks succeed, we go to the
1236     // slow path.
1237     __ movl(temp1, Address(dest, class_offset));
1238     __ movl(temp2, Address(src, class_offset));
1239     bool did_unpoison = false;
1240     if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
1241         !optimizations.GetSourceIsNonPrimitiveArray()) {
1242       // One or two of the references need to be unpoisoned. Unpoison them
1243       // both to make the identity check valid.
1244       __ MaybeUnpoisonHeapReference(temp1);
1245       __ MaybeUnpoisonHeapReference(temp2);
1246       did_unpoison = true;
1247     }
1248 
1249     if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
1250       // Bail out if the destination is not a non primitive array.
1251       // /* HeapReference<Class> */ TMP = temp1->component_type_
1252       __ movl(CpuRegister(TMP), Address(temp1, component_offset));
1253       __ testl(CpuRegister(TMP), CpuRegister(TMP));
1254       __ j(kEqual, slow_path->GetEntryLabel());
1255       __ MaybeUnpoisonHeapReference(CpuRegister(TMP));
1256       __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
1257       __ j(kNotEqual, slow_path->GetEntryLabel());
1258     }
1259 
1260     if (!optimizations.GetSourceIsNonPrimitiveArray()) {
1261       // Bail out if the source is not a non primitive array.
1262       // /* HeapReference<Class> */ TMP = temp2->component_type_
1263       __ movl(CpuRegister(TMP), Address(temp2, component_offset));
1264       __ testl(CpuRegister(TMP), CpuRegister(TMP));
1265       __ j(kEqual, slow_path->GetEntryLabel());
1266       __ MaybeUnpoisonHeapReference(CpuRegister(TMP));
1267       __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
1268       __ j(kNotEqual, slow_path->GetEntryLabel());
1269     }
1270 
1271     __ cmpl(temp1, temp2);
1272 
1273     if (optimizations.GetDestinationIsTypedObjectArray()) {
1274       NearLabel do_copy;
1275       __ j(kEqual, &do_copy);
1276       if (!did_unpoison) {
1277         __ MaybeUnpoisonHeapReference(temp1);
1278       }
1279       // /* HeapReference<Class> */ temp1 = temp1->component_type_
1280       __ movl(temp1, Address(temp1, component_offset));
1281       __ MaybeUnpoisonHeapReference(temp1);
1282       // /* HeapReference<Class> */ temp1 = temp1->super_class_
1283       __ movl(temp1, Address(temp1, super_offset));
1284       // No need to unpoison the result, we're comparing against null.
1285       __ testl(temp1, temp1);
1286       __ j(kNotEqual, slow_path->GetEntryLabel());
1287       __ Bind(&do_copy);
1288     } else {
1289       __ j(kNotEqual, slow_path->GetEntryLabel());
1290     }
1291   } else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
1292     DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
1293     // Bail out if the source is not a non primitive array.
1294     // /* HeapReference<Class> */ temp1 = src->klass_
1295     __ movl(temp1, Address(src, class_offset));
1296     __ MaybeUnpoisonHeapReference(temp1);
1297     // /* HeapReference<Class> */ TMP = temp1->component_type_
1298     __ movl(CpuRegister(TMP), Address(temp1, component_offset));
1299     __ testl(CpuRegister(TMP), CpuRegister(TMP));
1300     __ j(kEqual, slow_path->GetEntryLabel());
1301     __ MaybeUnpoisonHeapReference(CpuRegister(TMP));
1302     __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
1303     __ j(kNotEqual, slow_path->GetEntryLabel());
1304   }
1305 
1306   // Compute base source address, base destination address, and end source address.
1307 
1308   uint32_t element_size = sizeof(int32_t);
1309   uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value();
1310   if (src_pos.IsConstant()) {
1311     int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
1312     __ leal(temp1, Address(src, element_size * constant + offset));
1313   } else {
1314     __ leal(temp1, Address(src, src_pos.AsRegister<CpuRegister>(), ScaleFactor::TIMES_4, offset));
1315   }
1316 
1317   if (dest_pos.IsConstant()) {
1318     int32_t constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
1319     __ leal(temp2, Address(dest, element_size * constant + offset));
1320   } else {
1321     __ leal(temp2, Address(dest, dest_pos.AsRegister<CpuRegister>(), ScaleFactor::TIMES_4, offset));
1322   }
1323 
1324   if (length.IsConstant()) {
1325     int32_t constant = length.GetConstant()->AsIntConstant()->GetValue();
1326     __ leal(temp3, Address(temp1, element_size * constant));
1327   } else {
1328     __ leal(temp3, Address(temp1, length.AsRegister<CpuRegister>(), ScaleFactor::TIMES_4, 0));
1329   }
1330 
1331   // Iterate over the arrays and do a raw copy of the objects. We don't need to
1332   // poison/unpoison, nor do any read barrier as the next uses of the destination
1333   // array will do it.
1334   NearLabel loop, done;
1335   __ cmpl(temp1, temp3);
1336   __ j(kEqual, &done);
1337   __ Bind(&loop);
1338   __ movl(CpuRegister(TMP), Address(temp1, 0));
1339   __ movl(Address(temp2, 0), CpuRegister(TMP));
1340   __ addl(temp1, Immediate(element_size));
1341   __ addl(temp2, Immediate(element_size));
1342   __ cmpl(temp1, temp3);
1343   __ j(kNotEqual, &loop);
1344   __ Bind(&done);
1345 
1346   // We only need one card marking on the destination array.
1347   codegen_->MarkGCCard(temp1,
1348                        temp2,
1349                        dest,
1350                        CpuRegister(kNoRegister),
1351                        /* value_can_be_null */ false);
1352 
1353   __ Bind(slow_path->GetExitLabel());
1354 }
1355 
VisitStringCompareTo(HInvoke * invoke)1356 void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) {
1357   LocationSummary* locations = new (arena_) LocationSummary(invoke,
1358                                                             LocationSummary::kCall,
1359                                                             kIntrinsified);
1360   InvokeRuntimeCallingConvention calling_convention;
1361   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1362   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
1363   locations->SetOut(Location::RegisterLocation(RAX));
1364 }
1365 
VisitStringCompareTo(HInvoke * invoke)1366 void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) {
1367   X86_64Assembler* assembler = GetAssembler();
1368   LocationSummary* locations = invoke->GetLocations();
1369 
1370   // Note that the null check must have been done earlier.
1371   DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1372 
1373   CpuRegister argument = locations->InAt(1).AsRegister<CpuRegister>();
1374   __ testl(argument, argument);
1375   SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
1376   codegen_->AddSlowPath(slow_path);
1377   __ j(kEqual, slow_path->GetEntryLabel());
1378 
1379   __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pStringCompareTo),
1380                                   /* no_rip */ true));
1381   __ Bind(slow_path->GetExitLabel());
1382 }
1383 
VisitStringEquals(HInvoke * invoke)1384 void IntrinsicLocationsBuilderX86_64::VisitStringEquals(HInvoke* invoke) {
1385   LocationSummary* locations = new (arena_) LocationSummary(invoke,
1386                                                             LocationSummary::kNoCall,
1387                                                             kIntrinsified);
1388   locations->SetInAt(0, Location::RequiresRegister());
1389   locations->SetInAt(1, Location::RequiresRegister());
1390 
1391   // Request temporary registers, RCX and RDI needed for repe_cmpsq instruction.
1392   locations->AddTemp(Location::RegisterLocation(RCX));
1393   locations->AddTemp(Location::RegisterLocation(RDI));
1394 
1395   // Set output, RSI needed for repe_cmpsq instruction anyways.
1396   locations->SetOut(Location::RegisterLocation(RSI), Location::kOutputOverlap);
1397 }
1398 
VisitStringEquals(HInvoke * invoke)1399 void IntrinsicCodeGeneratorX86_64::VisitStringEquals(HInvoke* invoke) {
1400   X86_64Assembler* assembler = GetAssembler();
1401   LocationSummary* locations = invoke->GetLocations();
1402 
1403   CpuRegister str = locations->InAt(0).AsRegister<CpuRegister>();
1404   CpuRegister arg = locations->InAt(1).AsRegister<CpuRegister>();
1405   CpuRegister rcx = locations->GetTemp(0).AsRegister<CpuRegister>();
1406   CpuRegister rdi = locations->GetTemp(1).AsRegister<CpuRegister>();
1407   CpuRegister rsi = locations->Out().AsRegister<CpuRegister>();
1408 
1409   NearLabel end, return_true, return_false;
1410 
1411   // Get offsets of count, value, and class fields within a string object.
1412   const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
1413   const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
1414   const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
1415 
1416   // Note that the null check must have been done earlier.
1417   DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1418 
1419   // Check if input is null, return false if it is.
1420   __ testl(arg, arg);
1421   __ j(kEqual, &return_false);
1422 
1423   // Instanceof check for the argument by comparing class fields.
1424   // All string objects must have the same type since String cannot be subclassed.
1425   // Receiver must be a string object, so its class field is equal to all strings' class fields.
1426   // If the argument is a string object, its class field must be equal to receiver's class field.
1427   __ movl(rcx, Address(str, class_offset));
1428   __ cmpl(rcx, Address(arg, class_offset));
1429   __ j(kNotEqual, &return_false);
1430 
1431   // Reference equality check, return true if same reference.
1432   __ cmpl(str, arg);
1433   __ j(kEqual, &return_true);
1434 
1435   // Load length of receiver string.
1436   __ movl(rcx, Address(str, count_offset));
1437   // Check if lengths are equal, return false if they're not.
1438   __ cmpl(rcx, Address(arg, count_offset));
1439   __ j(kNotEqual, &return_false);
1440   // Return true if both strings are empty.
1441   __ jrcxz(&return_true);
1442 
1443   // Load starting addresses of string values into RSI/RDI as required for repe_cmpsq instruction.
1444   __ leal(rsi, Address(str, value_offset));
1445   __ leal(rdi, Address(arg, value_offset));
1446 
1447   // Divide string length by 4 and adjust for lengths not divisible by 4.
1448   __ addl(rcx, Immediate(3));
1449   __ shrl(rcx, Immediate(2));
1450 
1451   // Assertions that must hold in order to compare strings 4 characters at a time.
1452   DCHECK_ALIGNED(value_offset, 8);
1453   static_assert(IsAligned<8>(kObjectAlignment), "String is not zero padded");
1454 
1455   // Loop to compare strings four characters at a time starting at the beginning of the string.
1456   __ repe_cmpsq();
1457   // If strings are not equal, zero flag will be cleared.
1458   __ j(kNotEqual, &return_false);
1459 
1460   // Return true and exit the function.
1461   // If loop does not result in returning false, we return true.
1462   __ Bind(&return_true);
1463   __ movl(rsi, Immediate(1));
1464   __ jmp(&end);
1465 
1466   // Return false and exit the function.
1467   __ Bind(&return_false);
1468   __ xorl(rsi, rsi);
1469   __ Bind(&end);
1470 }
1471 
CreateStringIndexOfLocations(HInvoke * invoke,ArenaAllocator * allocator,bool start_at_zero)1472 static void CreateStringIndexOfLocations(HInvoke* invoke,
1473                                          ArenaAllocator* allocator,
1474                                          bool start_at_zero) {
1475   LocationSummary* locations = new (allocator) LocationSummary(invoke,
1476                                                                LocationSummary::kCallOnSlowPath,
1477                                                                kIntrinsified);
1478   // The data needs to be in RDI for scasw. So request that the string is there, anyways.
1479   locations->SetInAt(0, Location::RegisterLocation(RDI));
1480   // If we look for a constant char, we'll still have to copy it into RAX. So just request the
1481   // allocator to do that, anyways. We can still do the constant check by checking the parameter
1482   // of the instruction explicitly.
1483   // Note: This works as we don't clobber RAX anywhere.
1484   locations->SetInAt(1, Location::RegisterLocation(RAX));
1485   if (!start_at_zero) {
1486     locations->SetInAt(2, Location::RequiresRegister());          // The starting index.
1487   }
1488   // As we clobber RDI during execution anyways, also use it as the output.
1489   locations->SetOut(Location::SameAsFirstInput());
1490 
1491   // repne scasw uses RCX as the counter.
1492   locations->AddTemp(Location::RegisterLocation(RCX));
1493   // Need another temporary to be able to compute the result.
1494   locations->AddTemp(Location::RequiresRegister());
1495 }
1496 
GenerateStringIndexOf(HInvoke * invoke,X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,ArenaAllocator * allocator,bool start_at_zero)1497 static void GenerateStringIndexOf(HInvoke* invoke,
1498                                   X86_64Assembler* assembler,
1499                                   CodeGeneratorX86_64* codegen,
1500                                   ArenaAllocator* allocator,
1501                                   bool start_at_zero) {
1502   LocationSummary* locations = invoke->GetLocations();
1503 
1504   // Note that the null check must have been done earlier.
1505   DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1506 
1507   CpuRegister string_obj = locations->InAt(0).AsRegister<CpuRegister>();
1508   CpuRegister search_value = locations->InAt(1).AsRegister<CpuRegister>();
1509   CpuRegister counter = locations->GetTemp(0).AsRegister<CpuRegister>();
1510   CpuRegister string_length = locations->GetTemp(1).AsRegister<CpuRegister>();
1511   CpuRegister out = locations->Out().AsRegister<CpuRegister>();
1512 
1513   // Check our assumptions for registers.
1514   DCHECK_EQ(string_obj.AsRegister(), RDI);
1515   DCHECK_EQ(search_value.AsRegister(), RAX);
1516   DCHECK_EQ(counter.AsRegister(), RCX);
1517   DCHECK_EQ(out.AsRegister(), RDI);
1518 
1519   // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
1520   // or directly dispatch if we have a constant.
1521   SlowPathCode* slow_path = nullptr;
1522   if (invoke->InputAt(1)->IsIntConstant()) {
1523     if (static_cast<uint32_t>(invoke->InputAt(1)->AsIntConstant()->GetValue()) >
1524     std::numeric_limits<uint16_t>::max()) {
1525       // Always needs the slow-path. We could directly dispatch to it, but this case should be
1526       // rare, so for simplicity just put the full slow-path down and branch unconditionally.
1527       slow_path = new (allocator) IntrinsicSlowPathX86_64(invoke);
1528       codegen->AddSlowPath(slow_path);
1529       __ jmp(slow_path->GetEntryLabel());
1530       __ Bind(slow_path->GetExitLabel());
1531       return;
1532     }
1533   } else {
1534     __ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max()));
1535     slow_path = new (allocator) IntrinsicSlowPathX86_64(invoke);
1536     codegen->AddSlowPath(slow_path);
1537     __ j(kAbove, slow_path->GetEntryLabel());
1538   }
1539 
1540   // From here down, we know that we are looking for a char that fits in 16 bits.
1541   // Location of reference to data array within the String object.
1542   int32_t value_offset = mirror::String::ValueOffset().Int32Value();
1543   // Location of count within the String object.
1544   int32_t count_offset = mirror::String::CountOffset().Int32Value();
1545 
1546   // Load string length, i.e., the count field of the string.
1547   __ movl(string_length, Address(string_obj, count_offset));
1548 
1549   // Do a length check.
1550   // TODO: Support jecxz.
1551   NearLabel not_found_label;
1552   __ testl(string_length, string_length);
1553   __ j(kEqual, &not_found_label);
1554 
1555   if (start_at_zero) {
1556     // Number of chars to scan is the same as the string length.
1557     __ movl(counter, string_length);
1558 
1559     // Move to the start of the string.
1560     __ addq(string_obj, Immediate(value_offset));
1561   } else {
1562     CpuRegister start_index = locations->InAt(2).AsRegister<CpuRegister>();
1563 
1564     // Do a start_index check.
1565     __ cmpl(start_index, string_length);
1566     __ j(kGreaterEqual, &not_found_label);
1567 
1568     // Ensure we have a start index >= 0;
1569     __ xorl(counter, counter);
1570     __ cmpl(start_index, Immediate(0));
1571     __ cmov(kGreater, counter, start_index, /* is64bit */ false);  // 32-bit copy is enough.
1572 
1573     // Move to the start of the string: string_obj + value_offset + 2 * start_index.
1574     __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
1575 
1576     // Now update ecx, the work counter: it's gonna be string.length - start_index.
1577     __ negq(counter);  // Needs to be 64-bit negation, as the address computation is 64-bit.
1578     __ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0));
1579   }
1580 
1581   // Everything is set up for repne scasw:
1582   //   * Comparison address in RDI.
1583   //   * Counter in ECX.
1584   __ repne_scasw();
1585 
1586   // Did we find a match?
1587   __ j(kNotEqual, &not_found_label);
1588 
1589   // Yes, we matched.  Compute the index of the result.
1590   __ subl(string_length, counter);
1591   __ leal(out, Address(string_length, -1));
1592 
1593   NearLabel done;
1594   __ jmp(&done);
1595 
1596   // Failed to match; return -1.
1597   __ Bind(&not_found_label);
1598   __ movl(out, Immediate(-1));
1599 
1600   // And join up at the end.
1601   __ Bind(&done);
1602   if (slow_path != nullptr) {
1603     __ Bind(slow_path->GetExitLabel());
1604   }
1605 }
1606 
VisitStringIndexOf(HInvoke * invoke)1607 void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) {
1608   CreateStringIndexOfLocations(invoke, arena_, /* start_at_zero */ true);
1609 }
1610 
VisitStringIndexOf(HInvoke * invoke)1611 void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) {
1612   GenerateStringIndexOf(invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true);
1613 }
1614 
VisitStringIndexOfAfter(HInvoke * invoke)1615 void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
1616   CreateStringIndexOfLocations(invoke, arena_, /* start_at_zero */ false);
1617 }
1618 
VisitStringIndexOfAfter(HInvoke * invoke)1619 void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
1620   GenerateStringIndexOf(
1621       invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false);
1622 }
1623 
VisitStringNewStringFromBytes(HInvoke * invoke)1624 void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
1625   LocationSummary* locations = new (arena_) LocationSummary(invoke,
1626                                                             LocationSummary::kCall,
1627                                                             kIntrinsified);
1628   InvokeRuntimeCallingConvention calling_convention;
1629   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1630   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
1631   locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
1632   locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
1633   locations->SetOut(Location::RegisterLocation(RAX));
1634 }
1635 
VisitStringNewStringFromBytes(HInvoke * invoke)1636 void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
1637   X86_64Assembler* assembler = GetAssembler();
1638   LocationSummary* locations = invoke->GetLocations();
1639 
1640   CpuRegister byte_array = locations->InAt(0).AsRegister<CpuRegister>();
1641   __ testl(byte_array, byte_array);
1642   SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
1643   codegen_->AddSlowPath(slow_path);
1644   __ j(kEqual, slow_path->GetEntryLabel());
1645 
1646   __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromBytes),
1647                                   /* no_rip */ true));
1648   CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
1649   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1650   __ Bind(slow_path->GetExitLabel());
1651 }
1652 
VisitStringNewStringFromChars(HInvoke * invoke)1653 void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
1654   LocationSummary* locations = new (arena_) LocationSummary(invoke,
1655                                                             LocationSummary::kCall,
1656                                                             kIntrinsified);
1657   InvokeRuntimeCallingConvention calling_convention;
1658   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1659   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
1660   locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
1661   locations->SetOut(Location::RegisterLocation(RAX));
1662 }
1663 
VisitStringNewStringFromChars(HInvoke * invoke)1664 void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
1665   X86_64Assembler* assembler = GetAssembler();
1666 
1667   // No need to emit code checking whether `locations->InAt(2)` is a null
1668   // pointer, as callers of the native method
1669   //
1670   //   java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
1671   //
1672   // all include a null check on `data` before calling that method.
1673   __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromChars),
1674                                   /* no_rip */ true));
1675   CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
1676   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1677 }
1678 
VisitStringNewStringFromString(HInvoke * invoke)1679 void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
1680   LocationSummary* locations = new (arena_) LocationSummary(invoke,
1681                                                             LocationSummary::kCall,
1682                                                             kIntrinsified);
1683   InvokeRuntimeCallingConvention calling_convention;
1684   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1685   locations->SetOut(Location::RegisterLocation(RAX));
1686 }
1687 
VisitStringNewStringFromString(HInvoke * invoke)1688 void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
1689   X86_64Assembler* assembler = GetAssembler();
1690   LocationSummary* locations = invoke->GetLocations();
1691 
1692   CpuRegister string_to_copy = locations->InAt(0).AsRegister<CpuRegister>();
1693   __ testl(string_to_copy, string_to_copy);
1694   SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
1695   codegen_->AddSlowPath(slow_path);
1696   __ j(kEqual, slow_path->GetEntryLabel());
1697 
1698   __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromString),
1699                                   /* no_rip */ true));
1700   CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
1701   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1702   __ Bind(slow_path->GetExitLabel());
1703 }
1704 
VisitStringGetCharsNoCheck(HInvoke * invoke)1705 void IntrinsicLocationsBuilderX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
1706   // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
1707   LocationSummary* locations = new (arena_) LocationSummary(invoke,
1708                                                             LocationSummary::kNoCall,
1709                                                             kIntrinsified);
1710   locations->SetInAt(0, Location::RequiresRegister());
1711   locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1712   locations->SetInAt(2, Location::RequiresRegister());
1713   locations->SetInAt(3, Location::RequiresRegister());
1714   locations->SetInAt(4, Location::RequiresRegister());
1715 
1716   // And we need some temporaries.  We will use REP MOVSW, so we need fixed registers.
1717   locations->AddTemp(Location::RegisterLocation(RSI));
1718   locations->AddTemp(Location::RegisterLocation(RDI));
1719   locations->AddTemp(Location::RegisterLocation(RCX));
1720 }
1721 
VisitStringGetCharsNoCheck(HInvoke * invoke)1722 void IntrinsicCodeGeneratorX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
1723   X86_64Assembler* assembler = GetAssembler();
1724   LocationSummary* locations = invoke->GetLocations();
1725 
1726   size_t char_component_size = Primitive::ComponentSize(Primitive::kPrimChar);
1727   // Location of data in char array buffer.
1728   const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value();
1729   // Location of char array data in string.
1730   const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
1731 
1732   // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
1733   CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
1734   Location srcBegin = locations->InAt(1);
1735   int srcBegin_value =
1736     srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0;
1737   CpuRegister srcEnd = locations->InAt(2).AsRegister<CpuRegister>();
1738   CpuRegister dst = locations->InAt(3).AsRegister<CpuRegister>();
1739   CpuRegister dstBegin = locations->InAt(4).AsRegister<CpuRegister>();
1740 
1741   // Check assumption that sizeof(Char) is 2 (used in scaling below).
1742   const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
1743   DCHECK_EQ(char_size, 2u);
1744 
1745   // Compute the address of the destination buffer.
1746   __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
1747 
1748   // Compute the address of the source string.
1749   if (srcBegin.IsConstant()) {
1750     // Compute the address of the source string by adding the number of chars from
1751     // the source beginning to the value offset of a string.
1752     __ leaq(CpuRegister(RSI), Address(obj, srcBegin_value * char_size + value_offset));
1753   } else {
1754     __ leaq(CpuRegister(RSI), Address(obj, srcBegin.AsRegister<CpuRegister>(),
1755                                       ScaleFactor::TIMES_2, value_offset));
1756   }
1757 
1758   // Compute the number of chars (words) to move.
1759   __ movl(CpuRegister(RCX), srcEnd);
1760   if (srcBegin.IsConstant()) {
1761     if (srcBegin_value != 0) {
1762       __ subl(CpuRegister(RCX), Immediate(srcBegin_value));
1763     }
1764   } else {
1765     DCHECK(srcBegin.IsRegister());
1766     __ subl(CpuRegister(RCX), srcBegin.AsRegister<CpuRegister>());
1767   }
1768 
1769   // Do the move.
1770   __ rep_movsw();
1771 }
1772 
GenPeek(LocationSummary * locations,Primitive::Type size,X86_64Assembler * assembler)1773 static void GenPeek(LocationSummary* locations, Primitive::Type size, X86_64Assembler* assembler) {
1774   CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
1775   CpuRegister out = locations->Out().AsRegister<CpuRegister>();  // == address, here for clarity.
1776   // x86 allows unaligned access. We do not have to check the input or use specific instructions
1777   // to avoid a SIGBUS.
1778   switch (size) {
1779     case Primitive::kPrimByte:
1780       __ movsxb(out, Address(address, 0));
1781       break;
1782     case Primitive::kPrimShort:
1783       __ movsxw(out, Address(address, 0));
1784       break;
1785     case Primitive::kPrimInt:
1786       __ movl(out, Address(address, 0));
1787       break;
1788     case Primitive::kPrimLong:
1789       __ movq(out, Address(address, 0));
1790       break;
1791     default:
1792       LOG(FATAL) << "Type not recognized for peek: " << size;
1793       UNREACHABLE();
1794   }
1795 }
1796 
VisitMemoryPeekByte(HInvoke * invoke)1797 void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
1798   CreateIntToIntLocations(arena_, invoke);
1799 }
1800 
VisitMemoryPeekByte(HInvoke * invoke)1801 void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
1802   GenPeek(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler());
1803 }
1804 
VisitMemoryPeekIntNative(HInvoke * invoke)1805 void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
1806   CreateIntToIntLocations(arena_, invoke);
1807 }
1808 
VisitMemoryPeekIntNative(HInvoke * invoke)1809 void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
1810   GenPeek(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
1811 }
1812 
VisitMemoryPeekLongNative(HInvoke * invoke)1813 void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
1814   CreateIntToIntLocations(arena_, invoke);
1815 }
1816 
VisitMemoryPeekLongNative(HInvoke * invoke)1817 void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
1818   GenPeek(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
1819 }
1820 
VisitMemoryPeekShortNative(HInvoke * invoke)1821 void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
1822   CreateIntToIntLocations(arena_, invoke);
1823 }
1824 
VisitMemoryPeekShortNative(HInvoke * invoke)1825 void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
1826   GenPeek(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler());
1827 }
1828 
CreateIntIntToVoidLocations(ArenaAllocator * arena,HInvoke * invoke)1829 static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
1830   LocationSummary* locations = new (arena) LocationSummary(invoke,
1831                                                            LocationSummary::kNoCall,
1832                                                            kIntrinsified);
1833   locations->SetInAt(0, Location::RequiresRegister());
1834   locations->SetInAt(1, Location::RegisterOrInt32Constant(invoke->InputAt(1)));
1835 }
1836 
GenPoke(LocationSummary * locations,Primitive::Type size,X86_64Assembler * assembler)1837 static void GenPoke(LocationSummary* locations, Primitive::Type size, X86_64Assembler* assembler) {
1838   CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
1839   Location value = locations->InAt(1);
1840   // x86 allows unaligned access. We do not have to check the input or use specific instructions
1841   // to avoid a SIGBUS.
1842   switch (size) {
1843     case Primitive::kPrimByte:
1844       if (value.IsConstant()) {
1845         __ movb(Address(address, 0),
1846                 Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
1847       } else {
1848         __ movb(Address(address, 0), value.AsRegister<CpuRegister>());
1849       }
1850       break;
1851     case Primitive::kPrimShort:
1852       if (value.IsConstant()) {
1853         __ movw(Address(address, 0),
1854                 Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
1855       } else {
1856         __ movw(Address(address, 0), value.AsRegister<CpuRegister>());
1857       }
1858       break;
1859     case Primitive::kPrimInt:
1860       if (value.IsConstant()) {
1861         __ movl(Address(address, 0),
1862                 Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
1863       } else {
1864         __ movl(Address(address, 0), value.AsRegister<CpuRegister>());
1865       }
1866       break;
1867     case Primitive::kPrimLong:
1868       if (value.IsConstant()) {
1869         int64_t v = value.GetConstant()->AsLongConstant()->GetValue();
1870         DCHECK(IsInt<32>(v));
1871         int32_t v_32 = v;
1872         __ movq(Address(address, 0), Immediate(v_32));
1873       } else {
1874         __ movq(Address(address, 0), value.AsRegister<CpuRegister>());
1875       }
1876       break;
1877     default:
1878       LOG(FATAL) << "Type not recognized for poke: " << size;
1879       UNREACHABLE();
1880   }
1881 }
1882 
VisitMemoryPokeByte(HInvoke * invoke)1883 void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
1884   CreateIntIntToVoidLocations(arena_, invoke);
1885 }
1886 
VisitMemoryPokeByte(HInvoke * invoke)1887 void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
1888   GenPoke(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler());
1889 }
1890 
VisitMemoryPokeIntNative(HInvoke * invoke)1891 void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
1892   CreateIntIntToVoidLocations(arena_, invoke);
1893 }
1894 
VisitMemoryPokeIntNative(HInvoke * invoke)1895 void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
1896   GenPoke(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
1897 }
1898 
VisitMemoryPokeLongNative(HInvoke * invoke)1899 void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
1900   CreateIntIntToVoidLocations(arena_, invoke);
1901 }
1902 
VisitMemoryPokeLongNative(HInvoke * invoke)1903 void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
1904   GenPoke(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
1905 }
1906 
VisitMemoryPokeShortNative(HInvoke * invoke)1907 void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
1908   CreateIntIntToVoidLocations(arena_, invoke);
1909 }
1910 
VisitMemoryPokeShortNative(HInvoke * invoke)1911 void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
1912   GenPoke(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler());
1913 }
1914 
VisitThreadCurrentThread(HInvoke * invoke)1915 void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
1916   LocationSummary* locations = new (arena_) LocationSummary(invoke,
1917                                                             LocationSummary::kNoCall,
1918                                                             kIntrinsified);
1919   locations->SetOut(Location::RequiresRegister());
1920 }
1921 
VisitThreadCurrentThread(HInvoke * invoke)1922 void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
1923   CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>();
1924   GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86_64WordSize>(),
1925                                                     /* no_rip */ true));
1926 }
1927 
GenUnsafeGet(HInvoke * invoke,Primitive::Type type,bool is_volatile ATTRIBUTE_UNUSED,CodeGeneratorX86_64 * codegen)1928 static void GenUnsafeGet(HInvoke* invoke,
1929                          Primitive::Type type,
1930                          bool is_volatile ATTRIBUTE_UNUSED,
1931                          CodeGeneratorX86_64* codegen) {
1932   X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
1933   LocationSummary* locations = invoke->GetLocations();
1934   Location base_loc = locations->InAt(1);
1935   CpuRegister base = base_loc.AsRegister<CpuRegister>();
1936   Location offset_loc = locations->InAt(2);
1937   CpuRegister offset = offset_loc.AsRegister<CpuRegister>();
1938   Location output_loc = locations->Out();
1939   CpuRegister output = output_loc.AsRegister<CpuRegister>();
1940 
1941   switch (type) {
1942     case Primitive::kPrimInt:
1943       __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
1944       break;
1945 
1946     case Primitive::kPrimNot: {
1947       if (kEmitCompilerReadBarrier) {
1948         if (kUseBakerReadBarrier) {
1949           Location temp = locations->GetTemp(0);
1950           codegen->GenerateArrayLoadWithBakerReadBarrier(
1951               invoke, output_loc, base, 0U, offset_loc, temp, /* needs_null_check */ false);
1952         } else {
1953           __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
1954           codegen->GenerateReadBarrierSlow(
1955               invoke, output_loc, output_loc, base_loc, 0U, offset_loc);
1956         }
1957       } else {
1958         __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
1959         __ MaybeUnpoisonHeapReference(output);
1960       }
1961       break;
1962     }
1963 
1964     case Primitive::kPrimLong:
1965       __ movq(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
1966       break;
1967 
1968     default:
1969       LOG(FATAL) << "Unsupported op size " << type;
1970       UNREACHABLE();
1971   }
1972 }
1973 
CreateIntIntIntToIntLocations(ArenaAllocator * arena,HInvoke * invoke,Primitive::Type type)1974 static void CreateIntIntIntToIntLocations(ArenaAllocator* arena,
1975                                           HInvoke* invoke,
1976                                           Primitive::Type type) {
1977   bool can_call = kEmitCompilerReadBarrier &&
1978       (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
1979        invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
1980   LocationSummary* locations = new (arena) LocationSummary(invoke,
1981                                                            can_call ?
1982                                                                LocationSummary::kCallOnSlowPath :
1983                                                                LocationSummary::kNoCall,
1984                                                            kIntrinsified);
1985   locations->SetInAt(0, Location::NoLocation());        // Unused receiver.
1986   locations->SetInAt(1, Location::RequiresRegister());
1987   locations->SetInAt(2, Location::RequiresRegister());
1988   locations->SetOut(Location::RequiresRegister());
1989   if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1990     // We need a temporary register for the read barrier marking slow
1991     // path in InstructionCodeGeneratorX86_64::GenerateArrayLoadWithBakerReadBarrier.
1992     locations->AddTemp(Location::RequiresRegister());
1993   }
1994 }
1995 
VisitUnsafeGet(HInvoke * invoke)1996 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) {
1997   CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
1998 }
VisitUnsafeGetVolatile(HInvoke * invoke)1999 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
2000   CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
2001 }
VisitUnsafeGetLong(HInvoke * invoke)2002 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
2003   CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
2004 }
VisitUnsafeGetLongVolatile(HInvoke * invoke)2005 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
2006   CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
2007 }
VisitUnsafeGetObject(HInvoke * invoke)2008 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
2009   CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
2010 }
VisitUnsafeGetObjectVolatile(HInvoke * invoke)2011 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
2012   CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
2013 }
2014 
2015 
VisitUnsafeGet(HInvoke * invoke)2016 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) {
2017   GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_);
2018 }
VisitUnsafeGetVolatile(HInvoke * invoke)2019 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
2020   GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_);
2021 }
VisitUnsafeGetLong(HInvoke * invoke)2022 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
2023   GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_);
2024 }
VisitUnsafeGetLongVolatile(HInvoke * invoke)2025 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
2026   GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_);
2027 }
VisitUnsafeGetObject(HInvoke * invoke)2028 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
2029   GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_);
2030 }
VisitUnsafeGetObjectVolatile(HInvoke * invoke)2031 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
2032   GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_);
2033 }
2034 
2035 
CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator * arena,Primitive::Type type,HInvoke * invoke)2036 static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* arena,
2037                                                        Primitive::Type type,
2038                                                        HInvoke* invoke) {
2039   LocationSummary* locations = new (arena) LocationSummary(invoke,
2040                                                            LocationSummary::kNoCall,
2041                                                            kIntrinsified);
2042   locations->SetInAt(0, Location::NoLocation());        // Unused receiver.
2043   locations->SetInAt(1, Location::RequiresRegister());
2044   locations->SetInAt(2, Location::RequiresRegister());
2045   locations->SetInAt(3, Location::RequiresRegister());
2046   if (type == Primitive::kPrimNot) {
2047     // Need temp registers for card-marking.
2048     locations->AddTemp(Location::RequiresRegister());  // Possibly used for reference poisoning too.
2049     locations->AddTemp(Location::RequiresRegister());
2050   }
2051 }
2052 
VisitUnsafePut(HInvoke * invoke)2053 void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) {
2054   CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke);
2055 }
VisitUnsafePutOrdered(HInvoke * invoke)2056 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
2057   CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke);
2058 }
VisitUnsafePutVolatile(HInvoke * invoke)2059 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
2060   CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke);
2061 }
VisitUnsafePutObject(HInvoke * invoke)2062 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) {
2063   CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke);
2064 }
VisitUnsafePutObjectOrdered(HInvoke * invoke)2065 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
2066   CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke);
2067 }
VisitUnsafePutObjectVolatile(HInvoke * invoke)2068 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
2069   CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke);
2070 }
VisitUnsafePutLong(HInvoke * invoke)2071 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) {
2072   CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke);
2073 }
VisitUnsafePutLongOrdered(HInvoke * invoke)2074 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
2075   CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke);
2076 }
VisitUnsafePutLongVolatile(HInvoke * invoke)2077 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
2078   CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke);
2079 }
2080 
2081 // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86
2082 // memory model.
GenUnsafePut(LocationSummary * locations,Primitive::Type type,bool is_volatile,CodeGeneratorX86_64 * codegen)2083 static void GenUnsafePut(LocationSummary* locations, Primitive::Type type, bool is_volatile,
2084                          CodeGeneratorX86_64* codegen) {
2085   X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
2086   CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
2087   CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
2088   CpuRegister value = locations->InAt(3).AsRegister<CpuRegister>();
2089 
2090   if (type == Primitive::kPrimLong) {
2091     __ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
2092   } else if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
2093     CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
2094     __ movl(temp, value);
2095     __ PoisonHeapReference(temp);
2096     __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp);
2097   } else {
2098     __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
2099   }
2100 
2101   if (is_volatile) {
2102     codegen->MemoryFence();
2103   }
2104 
2105   if (type == Primitive::kPrimNot) {
2106     bool value_can_be_null = true;  // TODO: Worth finding out this information?
2107     codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(),
2108                         locations->GetTemp(1).AsRegister<CpuRegister>(),
2109                         base,
2110                         value,
2111                         value_can_be_null);
2112   }
2113 }
2114 
VisitUnsafePut(HInvoke * invoke)2115 void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) {
2116   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, codegen_);
2117 }
VisitUnsafePutOrdered(HInvoke * invoke)2118 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
2119   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, codegen_);
2120 }
VisitUnsafePutVolatile(HInvoke * invoke)2121 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
2122   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ true, codegen_);
2123 }
VisitUnsafePutObject(HInvoke * invoke)2124 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) {
2125   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, codegen_);
2126 }
VisitUnsafePutObjectOrdered(HInvoke * invoke)2127 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
2128   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, codegen_);
2129 }
VisitUnsafePutObjectVolatile(HInvoke * invoke)2130 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
2131   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ true, codegen_);
2132 }
VisitUnsafePutLong(HInvoke * invoke)2133 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) {
2134   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, codegen_);
2135 }
VisitUnsafePutLongOrdered(HInvoke * invoke)2136 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
2137   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, codegen_);
2138 }
VisitUnsafePutLongVolatile(HInvoke * invoke)2139 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
2140   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ true, codegen_);
2141 }
2142 
CreateIntIntIntIntIntToInt(ArenaAllocator * arena,Primitive::Type type,HInvoke * invoke)2143 static void CreateIntIntIntIntIntToInt(ArenaAllocator* arena, Primitive::Type type,
2144                                        HInvoke* invoke) {
2145   LocationSummary* locations = new (arena) LocationSummary(invoke,
2146                                                            LocationSummary::kNoCall,
2147                                                            kIntrinsified);
2148   locations->SetInAt(0, Location::NoLocation());        // Unused receiver.
2149   locations->SetInAt(1, Location::RequiresRegister());
2150   locations->SetInAt(2, Location::RequiresRegister());
2151   // expected value must be in EAX/RAX.
2152   locations->SetInAt(3, Location::RegisterLocation(RAX));
2153   locations->SetInAt(4, Location::RequiresRegister());
2154 
2155   locations->SetOut(Location::RequiresRegister());
2156   if (type == Primitive::kPrimNot) {
2157     // Need temp registers for card-marking.
2158     locations->AddTemp(Location::RequiresRegister());  // Possibly used for reference poisoning too.
2159     locations->AddTemp(Location::RequiresRegister());
2160   }
2161 }
2162 
VisitUnsafeCASInt(HInvoke * invoke)2163 void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
2164   CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimInt, invoke);
2165 }
2166 
VisitUnsafeCASLong(HInvoke * invoke)2167 void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
2168   CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimLong, invoke);
2169 }
2170 
VisitUnsafeCASObject(HInvoke * invoke)2171 void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
2172   // The UnsafeCASObject intrinsic is missing a read barrier, and
2173   // therefore sometimes does not work as expected (b/25883050).
2174   // Turn it off temporarily as a quick fix, until the read barrier is
2175   // implemented.
2176   //
2177   // TODO(rpl): Implement a read barrier in GenCAS below and re-enable
2178   // this intrinsic.
2179   if (kEmitCompilerReadBarrier) {
2180     return;
2181   }
2182 
2183   CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimNot, invoke);
2184 }
2185 
GenCAS(Primitive::Type type,HInvoke * invoke,CodeGeneratorX86_64 * codegen)2186 static void GenCAS(Primitive::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) {
2187   X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
2188   LocationSummary* locations = invoke->GetLocations();
2189 
2190   CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
2191   CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
2192   CpuRegister expected = locations->InAt(3).AsRegister<CpuRegister>();
2193   // Ensure `expected` is in RAX (required by the CMPXCHG instruction).
2194   DCHECK_EQ(expected.AsRegister(), RAX);
2195   CpuRegister value = locations->InAt(4).AsRegister<CpuRegister>();
2196   CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2197 
2198   if (type == Primitive::kPrimNot) {
2199     // Mark card for object assuming new value is stored.
2200     bool value_can_be_null = true;  // TODO: Worth finding out this information?
2201     codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(),
2202                         locations->GetTemp(1).AsRegister<CpuRegister>(),
2203                         base,
2204                         value,
2205                         value_can_be_null);
2206 
2207     bool base_equals_value = (base.AsRegister() == value.AsRegister());
2208     Register value_reg = value.AsRegister();
2209     if (kPoisonHeapReferences) {
2210       if (base_equals_value) {
2211         // If `base` and `value` are the same register location, move
2212         // `value_reg` to a temporary register.  This way, poisoning
2213         // `value_reg` won't invalidate `base`.
2214         value_reg = locations->GetTemp(0).AsRegister<CpuRegister>().AsRegister();
2215         __ movl(CpuRegister(value_reg), base);
2216       }
2217 
2218       // Check that the register allocator did not assign the location
2219       // of `expected` (RAX) to `value` nor to `base`, so that heap
2220       // poisoning (when enabled) works as intended below.
2221       // - If `value` were equal to `expected`, both references would
2222       //   be poisoned twice, meaning they would not be poisoned at
2223       //   all, as heap poisoning uses address negation.
2224       // - If `base` were equal to `expected`, poisoning `expected`
2225       //   would invalidate `base`.
2226       DCHECK_NE(value_reg, expected.AsRegister());
2227       DCHECK_NE(base.AsRegister(), expected.AsRegister());
2228 
2229       __ PoisonHeapReference(expected);
2230       __ PoisonHeapReference(CpuRegister(value_reg));
2231     }
2232 
2233     // TODO: Add a read barrier for the reference stored in the object
2234     // before attempting the CAS, similar to the one in the
2235     // art::Unsafe_compareAndSwapObject JNI implementation.
2236     //
2237     // Note that this code is not (yet) used when read barriers are
2238     // enabled (see IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject).
2239     DCHECK(!kEmitCompilerReadBarrier);
2240     __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), CpuRegister(value_reg));
2241 
2242     // LOCK CMPXCHG has full barrier semantics, and we don't need
2243     // scheduling barriers at this time.
2244 
2245     // Convert ZF into the boolean result.
2246     __ setcc(kZero, out);
2247     __ movzxb(out, out);
2248 
2249     // If heap poisoning is enabled, we need to unpoison the values
2250     // that were poisoned earlier.
2251     if (kPoisonHeapReferences) {
2252       if (base_equals_value) {
2253         // `value_reg` has been moved to a temporary register, no need
2254         // to unpoison it.
2255       } else {
2256         // Ensure `value` is different from `out`, so that unpoisoning
2257         // the former does not invalidate the latter.
2258         DCHECK_NE(value_reg, out.AsRegister());
2259         __ UnpoisonHeapReference(CpuRegister(value_reg));
2260       }
2261       // Ensure `expected` is different from `out`, so that unpoisoning
2262       // the former does not invalidate the latter.
2263       DCHECK_NE(expected.AsRegister(), out.AsRegister());
2264       __ UnpoisonHeapReference(expected);
2265     }
2266   } else {
2267     if (type == Primitive::kPrimInt) {
2268       __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value);
2269     } else if (type == Primitive::kPrimLong) {
2270       __ LockCmpxchgq(Address(base, offset, TIMES_1, 0), value);
2271     } else {
2272       LOG(FATAL) << "Unexpected CAS type " << type;
2273     }
2274 
2275     // LOCK CMPXCHG has full barrier semantics, and we don't need
2276     // scheduling barriers at this time.
2277 
2278     // Convert ZF into the boolean result.
2279     __ setcc(kZero, out);
2280     __ movzxb(out, out);
2281   }
2282 }
2283 
VisitUnsafeCASInt(HInvoke * invoke)2284 void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
2285   GenCAS(Primitive::kPrimInt, invoke, codegen_);
2286 }
2287 
VisitUnsafeCASLong(HInvoke * invoke)2288 void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
2289   GenCAS(Primitive::kPrimLong, invoke, codegen_);
2290 }
2291 
VisitUnsafeCASObject(HInvoke * invoke)2292 void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
2293   GenCAS(Primitive::kPrimNot, invoke, codegen_);
2294 }
2295 
VisitIntegerReverse(HInvoke * invoke)2296 void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) {
2297   LocationSummary* locations = new (arena_) LocationSummary(invoke,
2298                                                            LocationSummary::kNoCall,
2299                                                            kIntrinsified);
2300   locations->SetInAt(0, Location::RequiresRegister());
2301   locations->SetOut(Location::SameAsFirstInput());
2302   locations->AddTemp(Location::RequiresRegister());
2303 }
2304 
SwapBits(CpuRegister reg,CpuRegister temp,int32_t shift,int32_t mask,X86_64Assembler * assembler)2305 static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask,
2306                      X86_64Assembler* assembler) {
2307   Immediate imm_shift(shift);
2308   Immediate imm_mask(mask);
2309   __ movl(temp, reg);
2310   __ shrl(reg, imm_shift);
2311   __ andl(temp, imm_mask);
2312   __ andl(reg, imm_mask);
2313   __ shll(temp, imm_shift);
2314   __ orl(reg, temp);
2315 }
2316 
VisitIntegerReverse(HInvoke * invoke)2317 void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) {
2318   X86_64Assembler* assembler = GetAssembler();
2319   LocationSummary* locations = invoke->GetLocations();
2320 
2321   CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
2322   CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
2323 
2324   /*
2325    * Use one bswap instruction to reverse byte order first and then use 3 rounds of
2326    * swapping bits to reverse bits in a number x. Using bswap to save instructions
2327    * compared to generic luni implementation which has 5 rounds of swapping bits.
2328    * x = bswap x
2329    * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555;
2330    * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333;
2331    * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F;
2332    */
2333   __ bswapl(reg);
2334   SwapBits(reg, temp, 1, 0x55555555, assembler);
2335   SwapBits(reg, temp, 2, 0x33333333, assembler);
2336   SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler);
2337 }
2338 
VisitLongReverse(HInvoke * invoke)2339 void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) {
2340   LocationSummary* locations = new (arena_) LocationSummary(invoke,
2341                                                            LocationSummary::kNoCall,
2342                                                            kIntrinsified);
2343   locations->SetInAt(0, Location::RequiresRegister());
2344   locations->SetOut(Location::SameAsFirstInput());
2345   locations->AddTemp(Location::RequiresRegister());
2346   locations->AddTemp(Location::RequiresRegister());
2347 }
2348 
SwapBits64(CpuRegister reg,CpuRegister temp,CpuRegister temp_mask,int32_t shift,int64_t mask,X86_64Assembler * assembler)2349 static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask,
2350                        int32_t shift, int64_t mask, X86_64Assembler* assembler) {
2351   Immediate imm_shift(shift);
2352   __ movq(temp_mask, Immediate(mask));
2353   __ movq(temp, reg);
2354   __ shrq(reg, imm_shift);
2355   __ andq(temp, temp_mask);
2356   __ andq(reg, temp_mask);
2357   __ shlq(temp, imm_shift);
2358   __ orq(reg, temp);
2359 }
2360 
VisitLongReverse(HInvoke * invoke)2361 void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) {
2362   X86_64Assembler* assembler = GetAssembler();
2363   LocationSummary* locations = invoke->GetLocations();
2364 
2365   CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
2366   CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>();
2367   CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>();
2368 
2369   /*
2370    * Use one bswap instruction to reverse byte order first and then use 3 rounds of
2371    * swapping bits to reverse bits in a long number x. Using bswap to save instructions
2372    * compared to generic luni implementation which has 5 rounds of swapping bits.
2373    * x = bswap x
2374    * x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555;
2375    * x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333;
2376    * x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F;
2377    */
2378   __ bswapq(reg);
2379   SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler);
2380   SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler);
2381   SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler);
2382 }
2383 
CreateBitCountLocations(ArenaAllocator * arena,CodeGeneratorX86_64 * codegen,HInvoke * invoke)2384 static void CreateBitCountLocations(
2385     ArenaAllocator* arena, CodeGeneratorX86_64* codegen, HInvoke* invoke) {
2386   if (!codegen->GetInstructionSetFeatures().HasPopCnt()) {
2387     // Do nothing if there is no popcnt support. This results in generating
2388     // a call for the intrinsic rather than direct code.
2389     return;
2390   }
2391   LocationSummary* locations = new (arena) LocationSummary(invoke,
2392                                                            LocationSummary::kNoCall,
2393                                                            kIntrinsified);
2394   locations->SetInAt(0, Location::Any());
2395   locations->SetOut(Location::RequiresRegister());
2396 }
2397 
GenBitCount(X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,HInvoke * invoke,bool is_long)2398 static void GenBitCount(X86_64Assembler* assembler,
2399                         CodeGeneratorX86_64* codegen,
2400                         HInvoke* invoke,
2401                         bool is_long) {
2402   LocationSummary* locations = invoke->GetLocations();
2403   Location src = locations->InAt(0);
2404   CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2405 
2406   if (invoke->InputAt(0)->IsConstant()) {
2407     // Evaluate this at compile time.
2408     int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
2409     int32_t result = is_long
2410         ? POPCOUNT(static_cast<uint64_t>(value))
2411         : POPCOUNT(static_cast<uint32_t>(value));
2412     codegen->Load32BitValue(out, result);
2413     return;
2414   }
2415 
2416   if (src.IsRegister()) {
2417     if (is_long) {
2418       __ popcntq(out, src.AsRegister<CpuRegister>());
2419     } else {
2420       __ popcntl(out, src.AsRegister<CpuRegister>());
2421     }
2422   } else if (is_long) {
2423     DCHECK(src.IsDoubleStackSlot());
2424     __ popcntq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2425   } else {
2426     DCHECK(src.IsStackSlot());
2427     __ popcntl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2428   }
2429 }
2430 
VisitIntegerBitCount(HInvoke * invoke)2431 void IntrinsicLocationsBuilderX86_64::VisitIntegerBitCount(HInvoke* invoke) {
2432   CreateBitCountLocations(arena_, codegen_, invoke);
2433 }
2434 
VisitIntegerBitCount(HInvoke * invoke)2435 void IntrinsicCodeGeneratorX86_64::VisitIntegerBitCount(HInvoke* invoke) {
2436   GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ false);
2437 }
2438 
VisitLongBitCount(HInvoke * invoke)2439 void IntrinsicLocationsBuilderX86_64::VisitLongBitCount(HInvoke* invoke) {
2440   CreateBitCountLocations(arena_, codegen_, invoke);
2441 }
2442 
VisitLongBitCount(HInvoke * invoke)2443 void IntrinsicCodeGeneratorX86_64::VisitLongBitCount(HInvoke* invoke) {
2444   GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ true);
2445 }
2446 
CreateOneBitLocations(ArenaAllocator * arena,HInvoke * invoke,bool is_high)2447 static void CreateOneBitLocations(ArenaAllocator* arena, HInvoke* invoke, bool is_high) {
2448   LocationSummary* locations = new (arena) LocationSummary(invoke,
2449                                                            LocationSummary::kNoCall,
2450                                                            kIntrinsified);
2451   locations->SetInAt(0, Location::Any());
2452   locations->SetOut(Location::RequiresRegister());
2453   locations->AddTemp(is_high ? Location::RegisterLocation(RCX)  // needs CL
2454                              : Location::RequiresRegister());  // any will do
2455 }
2456 
GenOneBit(X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,HInvoke * invoke,bool is_high,bool is_long)2457 static void GenOneBit(X86_64Assembler* assembler,
2458                       CodeGeneratorX86_64* codegen,
2459                       HInvoke* invoke,
2460                       bool is_high, bool is_long) {
2461   LocationSummary* locations = invoke->GetLocations();
2462   Location src = locations->InAt(0);
2463   CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2464 
2465   if (invoke->InputAt(0)->IsConstant()) {
2466     // Evaluate this at compile time.
2467     int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
2468     if (value == 0) {
2469       __ xorl(out, out);  // Clears upper bits too.
2470       return;
2471     }
2472     // Nonzero value.
2473     if (is_high) {
2474       value = is_long ? 63 - CLZ(static_cast<uint64_t>(value))
2475                       : 31 - CLZ(static_cast<uint32_t>(value));
2476     } else {
2477       value = is_long ? CTZ(static_cast<uint64_t>(value))
2478                       : CTZ(static_cast<uint32_t>(value));
2479     }
2480     if (is_long) {
2481       codegen->Load64BitValue(out, 1L << value);
2482     } else {
2483       codegen->Load32BitValue(out, 1 << value);
2484     }
2485     return;
2486   }
2487 
2488   // Handle the non-constant cases.
2489   CpuRegister tmp = locations->GetTemp(0).AsRegister<CpuRegister>();
2490   if (is_high) {
2491     // Use architectural support: basically 1 << bsr.
2492     if (src.IsRegister()) {
2493       if (is_long) {
2494         __ bsrq(tmp, src.AsRegister<CpuRegister>());
2495       } else {
2496         __ bsrl(tmp, src.AsRegister<CpuRegister>());
2497       }
2498     } else if (is_long) {
2499       DCHECK(src.IsDoubleStackSlot());
2500       __ bsrq(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
2501     } else {
2502       DCHECK(src.IsStackSlot());
2503       __ bsrl(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
2504     }
2505     // BSR sets ZF if the input was zero.
2506     NearLabel is_zero, done;
2507     __ j(kEqual, &is_zero);
2508     __ movl(out, Immediate(1));  // Clears upper bits too.
2509     if (is_long) {
2510       __ shlq(out, tmp);
2511     } else {
2512       __ shll(out, tmp);
2513     }
2514     __ jmp(&done);
2515     __ Bind(&is_zero);
2516     __ xorl(out, out);  // Clears upper bits too.
2517     __ Bind(&done);
2518   } else  {
2519     // Copy input into temporary.
2520     if (src.IsRegister()) {
2521       if (is_long) {
2522         __ movq(tmp, src.AsRegister<CpuRegister>());
2523       } else {
2524         __ movl(tmp, src.AsRegister<CpuRegister>());
2525       }
2526     } else if (is_long) {
2527       DCHECK(src.IsDoubleStackSlot());
2528       __ movq(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
2529     } else {
2530       DCHECK(src.IsStackSlot());
2531       __ movl(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
2532     }
2533     // Do the bit twiddling: basically tmp & -tmp;
2534     if (is_long) {
2535       __ movq(out, tmp);
2536       __ negq(tmp);
2537       __ andq(out, tmp);
2538     } else {
2539       __ movl(out, tmp);
2540       __ negl(tmp);
2541       __ andl(out, tmp);
2542     }
2543   }
2544 }
2545 
VisitIntegerHighestOneBit(HInvoke * invoke)2546 void IntrinsicLocationsBuilderX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) {
2547   CreateOneBitLocations(arena_, invoke, /* is_high */ true);
2548 }
2549 
VisitIntegerHighestOneBit(HInvoke * invoke)2550 void IntrinsicCodeGeneratorX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) {
2551   GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ true, /* is_long */ false);
2552 }
2553 
VisitLongHighestOneBit(HInvoke * invoke)2554 void IntrinsicLocationsBuilderX86_64::VisitLongHighestOneBit(HInvoke* invoke) {
2555   CreateOneBitLocations(arena_, invoke, /* is_high */ true);
2556 }
2557 
VisitLongHighestOneBit(HInvoke * invoke)2558 void IntrinsicCodeGeneratorX86_64::VisitLongHighestOneBit(HInvoke* invoke) {
2559   GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ true, /* is_long */ true);
2560 }
2561 
VisitIntegerLowestOneBit(HInvoke * invoke)2562 void IntrinsicLocationsBuilderX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) {
2563   CreateOneBitLocations(arena_, invoke, /* is_high */ false);
2564 }
2565 
VisitIntegerLowestOneBit(HInvoke * invoke)2566 void IntrinsicCodeGeneratorX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) {
2567   GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ false, /* is_long */ false);
2568 }
2569 
VisitLongLowestOneBit(HInvoke * invoke)2570 void IntrinsicLocationsBuilderX86_64::VisitLongLowestOneBit(HInvoke* invoke) {
2571   CreateOneBitLocations(arena_, invoke, /* is_high */ false);
2572 }
2573 
VisitLongLowestOneBit(HInvoke * invoke)2574 void IntrinsicCodeGeneratorX86_64::VisitLongLowestOneBit(HInvoke* invoke) {
2575   GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ false, /* is_long */ true);
2576 }
2577 
CreateLeadingZeroLocations(ArenaAllocator * arena,HInvoke * invoke)2578 static void CreateLeadingZeroLocations(ArenaAllocator* arena, HInvoke* invoke) {
2579   LocationSummary* locations = new (arena) LocationSummary(invoke,
2580                                                            LocationSummary::kNoCall,
2581                                                            kIntrinsified);
2582   locations->SetInAt(0, Location::Any());
2583   locations->SetOut(Location::RequiresRegister());
2584 }
2585 
GenLeadingZeros(X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,HInvoke * invoke,bool is_long)2586 static void GenLeadingZeros(X86_64Assembler* assembler,
2587                             CodeGeneratorX86_64* codegen,
2588                             HInvoke* invoke, bool is_long) {
2589   LocationSummary* locations = invoke->GetLocations();
2590   Location src = locations->InAt(0);
2591   CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2592 
2593   int zero_value_result = is_long ? 64 : 32;
2594   if (invoke->InputAt(0)->IsConstant()) {
2595     // Evaluate this at compile time.
2596     int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
2597     if (value == 0) {
2598       value = zero_value_result;
2599     } else {
2600       value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value));
2601     }
2602     codegen->Load32BitValue(out, value);
2603     return;
2604   }
2605 
2606   // Handle the non-constant cases.
2607   if (src.IsRegister()) {
2608     if (is_long) {
2609       __ bsrq(out, src.AsRegister<CpuRegister>());
2610     } else {
2611       __ bsrl(out, src.AsRegister<CpuRegister>());
2612     }
2613   } else if (is_long) {
2614     DCHECK(src.IsDoubleStackSlot());
2615     __ bsrq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2616   } else {
2617     DCHECK(src.IsStackSlot());
2618     __ bsrl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2619   }
2620 
2621   // BSR sets ZF if the input was zero, and the output is undefined.
2622   NearLabel is_zero, done;
2623   __ j(kEqual, &is_zero);
2624 
2625   // Correct the result from BSR to get the CLZ result.
2626   __ xorl(out, Immediate(zero_value_result - 1));
2627   __ jmp(&done);
2628 
2629   // Fix the zero case with the expected result.
2630   __ Bind(&is_zero);
2631   __ movl(out, Immediate(zero_value_result));
2632 
2633   __ Bind(&done);
2634 }
2635 
VisitIntegerNumberOfLeadingZeros(HInvoke * invoke)2636 void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
2637   CreateLeadingZeroLocations(arena_, invoke);
2638 }
2639 
VisitIntegerNumberOfLeadingZeros(HInvoke * invoke)2640 void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
2641   GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false);
2642 }
2643 
VisitLongNumberOfLeadingZeros(HInvoke * invoke)2644 void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
2645   CreateLeadingZeroLocations(arena_, invoke);
2646 }
2647 
VisitLongNumberOfLeadingZeros(HInvoke * invoke)2648 void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
2649   GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true);
2650 }
2651 
CreateTrailingZeroLocations(ArenaAllocator * arena,HInvoke * invoke)2652 static void CreateTrailingZeroLocations(ArenaAllocator* arena, HInvoke* invoke) {
2653   LocationSummary* locations = new (arena) LocationSummary(invoke,
2654                                                            LocationSummary::kNoCall,
2655                                                            kIntrinsified);
2656   locations->SetInAt(0, Location::Any());
2657   locations->SetOut(Location::RequiresRegister());
2658 }
2659 
GenTrailingZeros(X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,HInvoke * invoke,bool is_long)2660 static void GenTrailingZeros(X86_64Assembler* assembler,
2661                              CodeGeneratorX86_64* codegen,
2662                              HInvoke* invoke, bool is_long) {
2663   LocationSummary* locations = invoke->GetLocations();
2664   Location src = locations->InAt(0);
2665   CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2666 
2667   int zero_value_result = is_long ? 64 : 32;
2668   if (invoke->InputAt(0)->IsConstant()) {
2669     // Evaluate this at compile time.
2670     int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
2671     if (value == 0) {
2672       value = zero_value_result;
2673     } else {
2674       value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value));
2675     }
2676     codegen->Load32BitValue(out, value);
2677     return;
2678   }
2679 
2680   // Handle the non-constant cases.
2681   if (src.IsRegister()) {
2682     if (is_long) {
2683       __ bsfq(out, src.AsRegister<CpuRegister>());
2684     } else {
2685       __ bsfl(out, src.AsRegister<CpuRegister>());
2686     }
2687   } else if (is_long) {
2688     DCHECK(src.IsDoubleStackSlot());
2689     __ bsfq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2690   } else {
2691     DCHECK(src.IsStackSlot());
2692     __ bsfl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2693   }
2694 
2695   // BSF sets ZF if the input was zero, and the output is undefined.
2696   NearLabel done;
2697   __ j(kNotEqual, &done);
2698 
2699   // Fix the zero case with the expected result.
2700   __ movl(out, Immediate(zero_value_result));
2701 
2702   __ Bind(&done);
2703 }
2704 
VisitIntegerNumberOfTrailingZeros(HInvoke * invoke)2705 void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
2706   CreateTrailingZeroLocations(arena_, invoke);
2707 }
2708 
VisitIntegerNumberOfTrailingZeros(HInvoke * invoke)2709 void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
2710   GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false);
2711 }
2712 
VisitLongNumberOfTrailingZeros(HInvoke * invoke)2713 void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
2714   CreateTrailingZeroLocations(arena_, invoke);
2715 }
2716 
VisitLongNumberOfTrailingZeros(HInvoke * invoke)2717 void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
2718   GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true);
2719 }
2720 
2721 UNIMPLEMENTED_INTRINSIC(X86_64, ReferenceGetReferent)
2722 UNIMPLEMENTED_INTRINSIC(X86_64, FloatIsInfinite)
2723 UNIMPLEMENTED_INTRINSIC(X86_64, DoubleIsInfinite)
2724 
2725 // 1.8.
2726 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddInt)
2727 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddLong)
2728 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetInt)
2729 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetLong)
2730 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetObject)
2731 
2732 UNREACHABLE_INTRINSICS(X86_64)
2733 
2734 #undef __
2735 
2736 }  // namespace x86_64
2737 }  // namespace art
2738