• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
3  * Released to public domain under terms of the BSD Simplified license.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *   * Redistributions of source code must retain the above copyright
8  *     notice, this list of conditions and the following disclaimer.
9  *   * Redistributions in binary form must reproduce the above copyright
10  *     notice, this list of conditions and the following disclaimer in the
11  *     documentation and/or other materials provided with the distribution.
12  *   * Neither the name of the organization nor the names of its contributors
13  *     may be used to endorse or promote products derived from this software
14  *     without specific prior written permission.
15  *
16  *   See <http://www.opensource.org/licenses/bsd-license>
17  */
18 
19 #include "precomp.hpp"
20 #include <iostream>
21 #include <map>
22 #include <set>
23 
24 namespace cv
25 {
26 
27 // Removes duplicate elements in a given vector.
28 template<typename _Tp>
remove_dups(const std::vector<_Tp> & src)29 inline std::vector<_Tp> remove_dups(const std::vector<_Tp>& src) {
30     typedef typename std::set<_Tp>::const_iterator constSetIterator;
31     typedef typename std::vector<_Tp>::const_iterator constVecIterator;
32     std::set<_Tp> set_elems;
33     for (constVecIterator it = src.begin(); it != src.end(); ++it)
34         set_elems.insert(*it);
35     std::vector<_Tp> elems;
36     for (constSetIterator it = set_elems.begin(); it != set_elems.end(); ++it)
37         elems.push_back(*it);
38     return elems;
39 }
40 
argsort(InputArray _src,bool ascending=true)41 static Mat argsort(InputArray _src, bool ascending=true)
42 {
43     Mat src = _src.getMat();
44     if (src.rows != 1 && src.cols != 1) {
45         String error_message = "Wrong shape of input matrix! Expected a matrix with one row or column.";
46         CV_Error(Error::StsBadArg, error_message);
47     }
48     int flags = SORT_EVERY_ROW | (ascending ? SORT_ASCENDING : SORT_DESCENDING);
49     Mat sorted_indices;
50     sortIdx(src.reshape(1,1),sorted_indices,flags);
51     return sorted_indices;
52 }
53 
asRowMatrix(InputArrayOfArrays src,int rtype,double alpha=1,double beta=0)54 static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double beta=0) {
55     // make sure the input data is a vector of matrices or vector of vector
56     if(src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR) {
57         String error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< std::vector<...> >).";
58         CV_Error(Error::StsBadArg, error_message);
59     }
60     // number of samples
61     size_t n = src.total();
62     // return empty matrix if no matrices given
63     if(n == 0)
64         return Mat();
65     // dimensionality of (reshaped) samples
66     size_t d = src.getMat(0).total();
67     // create data matrix
68     Mat data((int)n, (int)d, rtype);
69     // now copy data
70     for(int i = 0; i < (int)n; i++) {
71         // make sure data can be reshaped, throw exception if not!
72         if(src.getMat(i).total() != d) {
73             String error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, (int)d, (int)src.getMat(i).total());
74             CV_Error(Error::StsBadArg, error_message);
75         }
76         // get a hold of the current row
77         Mat xi = data.row(i);
78         // make reshape happy by cloning for non-continuous matrices
79         if(src.getMat(i).isContinuous()) {
80             src.getMat(i).reshape(1, 1).convertTo(xi, rtype, alpha, beta);
81         } else {
82             src.getMat(i).clone().reshape(1, 1).convertTo(xi, rtype, alpha, beta);
83         }
84     }
85     return data;
86 }
87 
sortMatrixColumnsByIndices(InputArray _src,InputArray _indices,OutputArray _dst)88 static void sortMatrixColumnsByIndices(InputArray _src, InputArray _indices, OutputArray _dst) {
89     if(_indices.getMat().type() != CV_32SC1) {
90         CV_Error(Error::StsUnsupportedFormat, "cv::sortColumnsByIndices only works on integer indices!");
91     }
92     Mat src = _src.getMat();
93     std::vector<int> indices = _indices.getMat();
94     _dst.create(src.rows, src.cols, src.type());
95     Mat dst = _dst.getMat();
96     for(size_t idx = 0; idx < indices.size(); idx++) {
97         Mat originalCol = src.col(indices[idx]);
98         Mat sortedCol = dst.col((int)idx);
99         originalCol.copyTo(sortedCol);
100     }
101 }
102 
sortMatrixColumnsByIndices(InputArray src,InputArray indices)103 static Mat sortMatrixColumnsByIndices(InputArray src, InputArray indices) {
104     Mat dst;
105     sortMatrixColumnsByIndices(src, indices, dst);
106     return dst;
107 }
108 
109 
110 template<typename _Tp> static bool
isSymmetric_(InputArray src)111 isSymmetric_(InputArray src) {
112     Mat _src = src.getMat();
113     if(_src.cols != _src.rows)
114         return false;
115     for (int i = 0; i < _src.rows; i++) {
116         for (int j = 0; j < _src.cols; j++) {
117             _Tp a = _src.at<_Tp> (i, j);
118             _Tp b = _src.at<_Tp> (j, i);
119             if (a != b) {
120                 return false;
121             }
122         }
123     }
124     return true;
125 }
126 
127 template<typename _Tp> static bool
isSymmetric_(InputArray src,double eps)128 isSymmetric_(InputArray src, double eps) {
129     Mat _src = src.getMat();
130     if(_src.cols != _src.rows)
131         return false;
132     for (int i = 0; i < _src.rows; i++) {
133         for (int j = 0; j < _src.cols; j++) {
134             _Tp a = _src.at<_Tp> (i, j);
135             _Tp b = _src.at<_Tp> (j, i);
136             if (std::abs(a - b) > eps) {
137                 return false;
138             }
139         }
140     }
141     return true;
142 }
143 
isSymmetric(InputArray src,double eps=1e-16)144 static bool isSymmetric(InputArray src, double eps=1e-16)
145 {
146     Mat m = src.getMat();
147     switch (m.type()) {
148         case CV_8SC1: return isSymmetric_<char>(m); break;
149         case CV_8UC1:
150             return isSymmetric_<unsigned char>(m); break;
151         case CV_16SC1:
152             return isSymmetric_<short>(m); break;
153         case CV_16UC1:
154             return isSymmetric_<unsigned short>(m); break;
155         case CV_32SC1:
156             return isSymmetric_<int>(m); break;
157         case CV_32FC1:
158             return isSymmetric_<float>(m, eps); break;
159         case CV_64FC1:
160             return isSymmetric_<double>(m, eps); break;
161         default:
162             break;
163     }
164     return false;
165 }
166 
167 
168 //------------------------------------------------------------------------------
169 // cv::subspaceProject
170 //------------------------------------------------------------------------------
subspaceProject(InputArray _W,InputArray _mean,InputArray _src)171 Mat LDA::subspaceProject(InputArray _W, InputArray _mean, InputArray _src) {
172     // get data matrices
173     Mat W = _W.getMat();
174     Mat mean = _mean.getMat();
175     Mat src = _src.getMat();
176     // get number of samples and dimension
177     int n = src.rows;
178     int d = src.cols;
179     // make sure the data has the correct shape
180     if(W.rows != d) {
181         String error_message = format("Wrong shapes for given matrices. Was size(src) = (%d,%d), size(W) = (%d,%d).", src.rows, src.cols, W.rows, W.cols);
182         CV_Error(Error::StsBadArg, error_message);
183     }
184     // make sure mean is correct if not empty
185     if(!mean.empty() && (mean.total() != (size_t) d)) {
186         String error_message = format("Wrong mean shape for the given data matrix. Expected %d, but was %d.", d, mean.total());
187         CV_Error(Error::StsBadArg, error_message);
188     }
189     // create temporary matrices
190     Mat X, Y;
191     // make sure you operate on correct type
192     src.convertTo(X, W.type());
193     // safe to do, because of above assertion
194     if(!mean.empty()) {
195         for(int i=0; i<n; i++) {
196             Mat r_i = X.row(i);
197             subtract(r_i, mean.reshape(1,1), r_i);
198         }
199     }
200     // finally calculate projection as Y = (X-mean)*W
201     gemm(X, W, 1.0, Mat(), 0.0, Y);
202     return Y;
203 }
204 
205 //------------------------------------------------------------------------------
206 // cv::subspaceReconstruct
207 //------------------------------------------------------------------------------
subspaceReconstruct(InputArray _W,InputArray _mean,InputArray _src)208 Mat LDA::subspaceReconstruct(InputArray _W, InputArray _mean, InputArray _src)
209 {
210     // get data matrices
211     Mat W = _W.getMat();
212     Mat mean = _mean.getMat();
213     Mat src = _src.getMat();
214     // get number of samples and dimension
215     int n = src.rows;
216     int d = src.cols;
217     // make sure the data has the correct shape
218     if(W.cols != d) {
219         String error_message = format("Wrong shapes for given matrices. Was size(src) = (%d,%d), size(W) = (%d,%d).", src.rows, src.cols, W.rows, W.cols);
220         CV_Error(Error::StsBadArg, error_message);
221     }
222     // make sure mean is correct if not empty
223     if(!mean.empty() && (mean.total() != (size_t) W.rows)) {
224         String error_message = format("Wrong mean shape for the given eigenvector matrix. Expected %d, but was %d.", W.cols, mean.total());
225         CV_Error(Error::StsBadArg, error_message);
226     }
227     // initialize temporary matrices
228     Mat X, Y;
229     // copy data & make sure we are using the correct type
230     src.convertTo(Y, W.type());
231     // calculate the reconstruction
232     gemm(Y, W, 1.0, Mat(), 0.0, X, GEMM_2_T);
233     // safe to do because of above assertion
234     if(!mean.empty()) {
235         for(int i=0; i<n; i++) {
236             Mat r_i = X.row(i);
237             add(r_i, mean.reshape(1,1), r_i);
238         }
239     }
240     return X;
241 }
242 
243 
244 class EigenvalueDecomposition {
245 private:
246 
247     // Holds the data dimension.
248     int n;
249 
250     // Stores real/imag part of a complex division.
251     double cdivr, cdivi;
252 
253     // Pointer to internal memory.
254     double *d, *e, *ort;
255     double **V, **H;
256 
257     // Holds the computed eigenvalues.
258     Mat _eigenvalues;
259 
260     // Holds the computed eigenvectors.
261     Mat _eigenvectors;
262 
263     // Allocates memory.
264     template<typename _Tp>
alloc_1d(int m)265     _Tp *alloc_1d(int m) {
266         return new _Tp[m];
267     }
268 
269     // Allocates memory.
270     template<typename _Tp>
alloc_1d(int m,_Tp val)271     _Tp *alloc_1d(int m, _Tp val) {
272         _Tp *arr = alloc_1d<_Tp> (m);
273         for (int i = 0; i < m; i++)
274             arr[i] = val;
275         return arr;
276     }
277 
278     // Allocates memory.
279     template<typename _Tp>
alloc_2d(int m,int _n)280     _Tp **alloc_2d(int m, int _n) {
281         _Tp **arr = new _Tp*[m];
282         for (int i = 0; i < m; i++)
283             arr[i] = new _Tp[_n];
284         return arr;
285     }
286 
287     // Allocates memory.
288     template<typename _Tp>
alloc_2d(int m,int _n,_Tp val)289     _Tp **alloc_2d(int m, int _n, _Tp val) {
290         _Tp **arr = alloc_2d<_Tp> (m, _n);
291         for (int i = 0; i < m; i++) {
292             for (int j = 0; j < _n; j++) {
293                 arr[i][j] = val;
294             }
295         }
296         return arr;
297     }
298 
cdiv(double xr,double xi,double yr,double yi)299     void cdiv(double xr, double xi, double yr, double yi) {
300         double r, dv;
301         if (std::abs(yr) > std::abs(yi)) {
302             r = yi / yr;
303             dv = yr + r * yi;
304             cdivr = (xr + r * xi) / dv;
305             cdivi = (xi - r * xr) / dv;
306         } else {
307             r = yr / yi;
308             dv = yi + r * yr;
309             cdivr = (r * xr + xi) / dv;
310             cdivi = (r * xi - xr) / dv;
311         }
312     }
313 
314     // Nonsymmetric reduction from Hessenberg to real Schur form.
315 
hqr2()316     void hqr2() {
317 
318         //  This is derived from the Algol procedure hqr2,
319         //  by Martin and Wilkinson, Handbook for Auto. Comp.,
320         //  Vol.ii-Linear Algebra, and the corresponding
321         //  Fortran subroutine in EISPACK.
322 
323         // Initialize
324         int nn = this->n;
325         int n1 = nn - 1;
326         int low = 0;
327         int high = nn - 1;
328         double eps = std::pow(2.0, -52.0);
329         double exshift = 0.0;
330         double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y;
331 
332         // Store roots isolated by balanc and compute matrix norm
333 
334         double norm = 0.0;
335         for (int i = 0; i < nn; i++) {
336             if (i < low || i > high) {
337                 d[i] = H[i][i];
338                 e[i] = 0.0;
339             }
340             for (int j = std::max(i - 1, 0); j < nn; j++) {
341                 norm = norm + std::abs(H[i][j]);
342             }
343         }
344 
345         // Outer loop over eigenvalue index
346         int iter = 0;
347         while (n1 >= low) {
348 
349             // Look for single small sub-diagonal element
350             int l = n1;
351             while (l > low) {
352                 s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]);
353                 if (s == 0.0) {
354                     s = norm;
355                 }
356                 if (std::abs(H[l][l - 1]) < eps * s) {
357                     break;
358                 }
359                 l--;
360             }
361 
362             // Check for convergence
363             // One root found
364 
365             if (l == n1) {
366                 H[n1][n1] = H[n1][n1] + exshift;
367                 d[n1] = H[n1][n1];
368                 e[n1] = 0.0;
369                 n1--;
370                 iter = 0;
371 
372                 // Two roots found
373 
374             } else if (l == n1 - 1) {
375                 w = H[n1][n1 - 1] * H[n1 - 1][n1];
376                 p = (H[n1 - 1][n1 - 1] - H[n1][n1]) / 2.0;
377                 q = p * p + w;
378                 z = std::sqrt(std::abs(q));
379                 H[n1][n1] = H[n1][n1] + exshift;
380                 H[n1 - 1][n1 - 1] = H[n1 - 1][n1 - 1] + exshift;
381                 x = H[n1][n1];
382 
383                 // Real pair
384 
385                 if (q >= 0) {
386                     if (p >= 0) {
387                         z = p + z;
388                     } else {
389                         z = p - z;
390                     }
391                     d[n1 - 1] = x + z;
392                     d[n1] = d[n1 - 1];
393                     if (z != 0.0) {
394                         d[n1] = x - w / z;
395                     }
396                     e[n1 - 1] = 0.0;
397                     e[n1] = 0.0;
398                     x = H[n1][n1 - 1];
399                     s = std::abs(x) + std::abs(z);
400                     p = x / s;
401                     q = z / s;
402                     r = std::sqrt(p * p + q * q);
403                     p = p / r;
404                     q = q / r;
405 
406                     // Row modification
407 
408                     for (int j = n1 - 1; j < nn; j++) {
409                         z = H[n1 - 1][j];
410                         H[n1 - 1][j] = q * z + p * H[n1][j];
411                         H[n1][j] = q * H[n1][j] - p * z;
412                     }
413 
414                     // Column modification
415 
416                     for (int i = 0; i <= n1; i++) {
417                         z = H[i][n1 - 1];
418                         H[i][n1 - 1] = q * z + p * H[i][n1];
419                         H[i][n1] = q * H[i][n1] - p * z;
420                     }
421 
422                     // Accumulate transformations
423 
424                     for (int i = low; i <= high; i++) {
425                         z = V[i][n1 - 1];
426                         V[i][n1 - 1] = q * z + p * V[i][n1];
427                         V[i][n1] = q * V[i][n1] - p * z;
428                     }
429 
430                     // Complex pair
431 
432                 } else {
433                     d[n1 - 1] = x + p;
434                     d[n1] = x + p;
435                     e[n1 - 1] = z;
436                     e[n1] = -z;
437                 }
438                 n1 = n1 - 2;
439                 iter = 0;
440 
441                 // No convergence yet
442 
443             } else {
444 
445                 // Form shift
446 
447                 x = H[n1][n1];
448                 y = 0.0;
449                 w = 0.0;
450                 if (l < n1) {
451                     y = H[n1 - 1][n1 - 1];
452                     w = H[n1][n1 - 1] * H[n1 - 1][n1];
453                 }
454 
455                 // Wilkinson's original ad hoc shift
456 
457                 if (iter == 10) {
458                     exshift += x;
459                     for (int i = low; i <= n1; i++) {
460                         H[i][i] -= x;
461                     }
462                     s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]);
463                     x = y = 0.75 * s;
464                     w = -0.4375 * s * s;
465                 }
466 
467                 // MATLAB's new ad hoc shift
468 
469                 if (iter == 30) {
470                     s = (y - x) / 2.0;
471                     s = s * s + w;
472                     if (s > 0) {
473                         s = std::sqrt(s);
474                         if (y < x) {
475                             s = -s;
476                         }
477                         s = x - w / ((y - x) / 2.0 + s);
478                         for (int i = low; i <= n1; i++) {
479                             H[i][i] -= s;
480                         }
481                         exshift += s;
482                         x = y = w = 0.964;
483                     }
484                 }
485 
486                 iter = iter + 1; // (Could check iteration count here.)
487 
488                 // Look for two consecutive small sub-diagonal elements
489                 int m = n1 - 2;
490                 while (m >= l) {
491                     z = H[m][m];
492                     r = x - z;
493                     s = y - z;
494                     p = (r * s - w) / H[m + 1][m] + H[m][m + 1];
495                     q = H[m + 1][m + 1] - z - r - s;
496                     r = H[m + 2][m + 1];
497                     s = std::abs(p) + std::abs(q) + std::abs(r);
498                     p = p / s;
499                     q = q / s;
500                     r = r / s;
501                     if (m == l) {
502                         break;
503                     }
504                     if (std::abs(H[m][m - 1]) * (std::abs(q) + std::abs(r)) < eps * (std::abs(p)
505                                                                                      * (std::abs(H[m - 1][m - 1]) + std::abs(z) + std::abs(
506                                                                                                                                            H[m + 1][m + 1])))) {
507                         break;
508                     }
509                     m--;
510                 }
511 
512                 for (int i = m + 2; i <= n1; i++) {
513                     H[i][i - 2] = 0.0;
514                     if (i > m + 2) {
515                         H[i][i - 3] = 0.0;
516                     }
517                 }
518 
519                 // Double QR step involving rows l:n and columns m:n
520 
521                 for (int k = m; k <= n1 - 1; k++) {
522                     bool notlast = (k != n1 - 1);
523                     if (k != m) {
524                         p = H[k][k - 1];
525                         q = H[k + 1][k - 1];
526                         r = (notlast ? H[k + 2][k - 1] : 0.0);
527                         x = std::abs(p) + std::abs(q) + std::abs(r);
528                         if (x != 0.0) {
529                             p = p / x;
530                             q = q / x;
531                             r = r / x;
532                         }
533                     }
534                     if (x == 0.0) {
535                         break;
536                     }
537                     s = std::sqrt(p * p + q * q + r * r);
538                     if (p < 0) {
539                         s = -s;
540                     }
541                     if (s != 0) {
542                         if (k != m) {
543                             H[k][k - 1] = -s * x;
544                         } else if (l != m) {
545                             H[k][k - 1] = -H[k][k - 1];
546                         }
547                         p = p + s;
548                         x = p / s;
549                         y = q / s;
550                         z = r / s;
551                         q = q / p;
552                         r = r / p;
553 
554                         // Row modification
555 
556                         for (int j = k; j < nn; j++) {
557                             p = H[k][j] + q * H[k + 1][j];
558                             if (notlast) {
559                                 p = p + r * H[k + 2][j];
560                                 H[k + 2][j] = H[k + 2][j] - p * z;
561                             }
562                             H[k][j] = H[k][j] - p * x;
563                             H[k + 1][j] = H[k + 1][j] - p * y;
564                         }
565 
566                         // Column modification
567 
568                         for (int i = 0; i <= std::min(n1, k + 3); i++) {
569                             p = x * H[i][k] + y * H[i][k + 1];
570                             if (notlast) {
571                                 p = p + z * H[i][k + 2];
572                                 H[i][k + 2] = H[i][k + 2] - p * r;
573                             }
574                             H[i][k] = H[i][k] - p;
575                             H[i][k + 1] = H[i][k + 1] - p * q;
576                         }
577 
578                         // Accumulate transformations
579 
580                         for (int i = low; i <= high; i++) {
581                             p = x * V[i][k] + y * V[i][k + 1];
582                             if (notlast) {
583                                 p = p + z * V[i][k + 2];
584                                 V[i][k + 2] = V[i][k + 2] - p * r;
585                             }
586                             V[i][k] = V[i][k] - p;
587                             V[i][k + 1] = V[i][k + 1] - p * q;
588                         }
589                     } // (s != 0)
590                 } // k loop
591             } // check convergence
592         } // while (n1 >= low)
593 
594         // Backsubstitute to find vectors of upper triangular form
595 
596         if (norm == 0.0) {
597             return;
598         }
599 
600         for (n1 = nn - 1; n1 >= 0; n1--) {
601             p = d[n1];
602             q = e[n1];
603 
604             // Real vector
605 
606             if (q == 0) {
607                 int l = n1;
608                 H[n1][n1] = 1.0;
609                 for (int i = n1 - 1; i >= 0; i--) {
610                     w = H[i][i] - p;
611                     r = 0.0;
612                     for (int j = l; j <= n1; j++) {
613                         r = r + H[i][j] * H[j][n1];
614                     }
615                     if (e[i] < 0.0) {
616                         z = w;
617                         s = r;
618                     } else {
619                         l = i;
620                         if (e[i] == 0.0) {
621                             if (w != 0.0) {
622                                 H[i][n1] = -r / w;
623                             } else {
624                                 H[i][n1] = -r / (eps * norm);
625                             }
626 
627                             // Solve real equations
628 
629                         } else {
630                             x = H[i][i + 1];
631                             y = H[i + 1][i];
632                             q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
633                             t = (x * s - z * r) / q;
634                             H[i][n1] = t;
635                             if (std::abs(x) > std::abs(z)) {
636                                 H[i + 1][n1] = (-r - w * t) / x;
637                             } else {
638                                 H[i + 1][n1] = (-s - y * t) / z;
639                             }
640                         }
641 
642                         // Overflow control
643 
644                         t = std::abs(H[i][n1]);
645                         if ((eps * t) * t > 1) {
646                             for (int j = i; j <= n1; j++) {
647                                 H[j][n1] = H[j][n1] / t;
648                             }
649                         }
650                     }
651                 }
652                 // Complex vector
653             } else if (q < 0) {
654                 int l = n1 - 1;
655 
656                 // Last vector component imaginary so matrix is triangular
657 
658                 if (std::abs(H[n1][n1 - 1]) > std::abs(H[n1 - 1][n1])) {
659                     H[n1 - 1][n1 - 1] = q / H[n1][n1 - 1];
660                     H[n1 - 1][n1] = -(H[n1][n1] - p) / H[n1][n1 - 1];
661                 } else {
662                     cdiv(0.0, -H[n1 - 1][n1], H[n1 - 1][n1 - 1] - p, q);
663                     H[n1 - 1][n1 - 1] = cdivr;
664                     H[n1 - 1][n1] = cdivi;
665                 }
666                 H[n1][n1 - 1] = 0.0;
667                 H[n1][n1] = 1.0;
668                 for (int i = n1 - 2; i >= 0; i--) {
669                     double ra, sa, vr, vi;
670                     ra = 0.0;
671                     sa = 0.0;
672                     for (int j = l; j <= n1; j++) {
673                         ra = ra + H[i][j] * H[j][n1 - 1];
674                         sa = sa + H[i][j] * H[j][n1];
675                     }
676                     w = H[i][i] - p;
677 
678                     if (e[i] < 0.0) {
679                         z = w;
680                         r = ra;
681                         s = sa;
682                     } else {
683                         l = i;
684                         if (e[i] == 0) {
685                             cdiv(-ra, -sa, w, q);
686                             H[i][n1 - 1] = cdivr;
687                             H[i][n1] = cdivi;
688                         } else {
689 
690                             // Solve complex equations
691 
692                             x = H[i][i + 1];
693                             y = H[i + 1][i];
694                             vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
695                             vi = (d[i] - p) * 2.0 * q;
696                             if (vr == 0.0 && vi == 0.0) {
697                                 vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x)
698                                                    + std::abs(y) + std::abs(z));
699                             }
700                             cdiv(x * r - z * ra + q * sa,
701                                  x * s - z * sa - q * ra, vr, vi);
702                             H[i][n1 - 1] = cdivr;
703                             H[i][n1] = cdivi;
704                             if (std::abs(x) > (std::abs(z) + std::abs(q))) {
705                                 H[i + 1][n1 - 1] = (-ra - w * H[i][n1 - 1] + q
706                                                    * H[i][n1]) / x;
707                                 H[i + 1][n1] = (-sa - w * H[i][n1] - q * H[i][n1
708                                                                             - 1]) / x;
709                             } else {
710                                 cdiv(-r - y * H[i][n1 - 1], -s - y * H[i][n1], z,
711                                      q);
712                                 H[i + 1][n1 - 1] = cdivr;
713                                 H[i + 1][n1] = cdivi;
714                             }
715                         }
716 
717                         // Overflow control
718 
719                         t = std::max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1]));
720                         if ((eps * t) * t > 1) {
721                             for (int j = i; j <= n1; j++) {
722                                 H[j][n1 - 1] = H[j][n1 - 1] / t;
723                                 H[j][n1] = H[j][n1] / t;
724                             }
725                         }
726                     }
727                 }
728             }
729         }
730 
731         // Vectors of isolated roots
732 
733         for (int i = 0; i < nn; i++) {
734             if (i < low || i > high) {
735                 for (int j = i; j < nn; j++) {
736                     V[i][j] = H[i][j];
737                 }
738             }
739         }
740 
741         // Back transformation to get eigenvectors of original matrix
742 
743         for (int j = nn - 1; j >= low; j--) {
744             for (int i = low; i <= high; i++) {
745                 z = 0.0;
746                 for (int k = low; k <= std::min(j, high); k++) {
747                     z = z + V[i][k] * H[k][j];
748                 }
749                 V[i][j] = z;
750             }
751         }
752     }
753 
754     // Nonsymmetric reduction to Hessenberg form.
orthes()755     void orthes() {
756         //  This is derived from the Algol procedures orthes and ortran,
757         //  by Martin and Wilkinson, Handbook for Auto. Comp.,
758         //  Vol.ii-Linear Algebra, and the corresponding
759         //  Fortran subroutines in EISPACK.
760         int low = 0;
761         int high = n - 1;
762 
763         for (int m = low + 1; m <= high - 1; m++) {
764 
765             // Scale column.
766 
767             double scale = 0.0;
768             for (int i = m; i <= high; i++) {
769                 scale = scale + std::abs(H[i][m - 1]);
770             }
771             if (scale != 0.0) {
772 
773                 // Compute Householder transformation.
774 
775                 double h = 0.0;
776                 for (int i = high; i >= m; i--) {
777                     ort[i] = H[i][m - 1] / scale;
778                     h += ort[i] * ort[i];
779                 }
780                 double g = std::sqrt(h);
781                 if (ort[m] > 0) {
782                     g = -g;
783                 }
784                 h = h - ort[m] * g;
785                 ort[m] = ort[m] - g;
786 
787                 // Apply Householder similarity transformation
788                 // H = (I-u*u'/h)*H*(I-u*u')/h)
789 
790                 for (int j = m; j < n; j++) {
791                     double f = 0.0;
792                     for (int i = high; i >= m; i--) {
793                         f += ort[i] * H[i][j];
794                     }
795                     f = f / h;
796                     for (int i = m; i <= high; i++) {
797                         H[i][j] -= f * ort[i];
798                     }
799                 }
800 
801                 for (int i = 0; i <= high; i++) {
802                     double f = 0.0;
803                     for (int j = high; j >= m; j--) {
804                         f += ort[j] * H[i][j];
805                     }
806                     f = f / h;
807                     for (int j = m; j <= high; j++) {
808                         H[i][j] -= f * ort[j];
809                     }
810                 }
811                 ort[m] = scale * ort[m];
812                 H[m][m - 1] = scale * g;
813             }
814         }
815 
816         // Accumulate transformations (Algol's ortran).
817 
818         for (int i = 0; i < n; i++) {
819             for (int j = 0; j < n; j++) {
820                 V[i][j] = (i == j ? 1.0 : 0.0);
821             }
822         }
823 
824         for (int m = high - 1; m >= low + 1; m--) {
825             if (H[m][m - 1] != 0.0) {
826                 for (int i = m + 1; i <= high; i++) {
827                     ort[i] = H[i][m - 1];
828                 }
829                 for (int j = m; j <= high; j++) {
830                     double g = 0.0;
831                     for (int i = m; i <= high; i++) {
832                         g += ort[i] * V[i][j];
833                     }
834                     // Double division avoids possible underflow
835                     g = (g / ort[m]) / H[m][m - 1];
836                     for (int i = m; i <= high; i++) {
837                         V[i][j] += g * ort[i];
838                     }
839                 }
840             }
841         }
842     }
843 
844     // Releases all internal working memory.
release()845     void release() {
846         // releases the working data
847         delete[] d;
848         delete[] e;
849         delete[] ort;
850         for (int i = 0; i < n; i++) {
851             delete[] H[i];
852             delete[] V[i];
853         }
854         delete[] H;
855         delete[] V;
856     }
857 
858     // Computes the Eigenvalue Decomposition for a matrix given in H.
compute()859     void compute() {
860         // Allocate memory for the working data.
861         V = alloc_2d<double> (n, n, 0.0);
862         d = alloc_1d<double> (n);
863         e = alloc_1d<double> (n);
864         ort = alloc_1d<double> (n);
865         // Reduce to Hessenberg form.
866         orthes();
867         // Reduce Hessenberg to real Schur form.
868         hqr2();
869         // Copy eigenvalues to OpenCV Matrix.
870         _eigenvalues.create(1, n, CV_64FC1);
871         for (int i = 0; i < n; i++) {
872             _eigenvalues.at<double> (0, i) = d[i];
873         }
874         // Copy eigenvectors to OpenCV Matrix.
875         _eigenvectors.create(n, n, CV_64FC1);
876         for (int i = 0; i < n; i++)
877             for (int j = 0; j < n; j++)
878                 _eigenvectors.at<double> (i, j) = V[i][j];
879         // Deallocate the memory by releasing all internal working data.
880         release();
881     }
882 
883 public:
EigenvalueDecomposition()884     EigenvalueDecomposition()
885     : n(0) { }
886 
887     // Initializes & computes the Eigenvalue Decomposition for a general matrix
888     // given in src. This function is a port of the EigenvalueSolver in JAMA,
889     // which has been released to public domain by The MathWorks and the
890     // National Institute of Standards and Technology (NIST).
EigenvalueDecomposition(InputArray src)891     EigenvalueDecomposition(InputArray src) {
892         compute(src);
893     }
894 
895     // This function computes the Eigenvalue Decomposition for a general matrix
896     // given in src. This function is a port of the EigenvalueSolver in JAMA,
897     // which has been released to public domain by The MathWorks and the
898     // National Institute of Standards and Technology (NIST).
compute(InputArray src)899     void compute(InputArray src)
900     {
901         if(isSymmetric(src)) {
902             // Fall back to OpenCV for a symmetric matrix!
903             cv::eigen(src, _eigenvalues, _eigenvectors);
904         } else {
905             Mat tmp;
906             // Convert the given input matrix to double. Is there any way to
907             // prevent allocating the temporary memory? Only used for copying
908             // into working memory and deallocated after.
909             src.getMat().convertTo(tmp, CV_64FC1);
910             // Get dimension of the matrix.
911             this->n = tmp.cols;
912             // Allocate the matrix data to work on.
913             this->H = alloc_2d<double> (n, n);
914             // Now safely copy the data.
915             for (int i = 0; i < tmp.rows; i++) {
916                 for (int j = 0; j < tmp.cols; j++) {
917                     this->H[i][j] = tmp.at<double>(i, j);
918                 }
919             }
920             // Deallocates the temporary matrix before computing.
921             tmp.release();
922             // Performs the eigenvalue decomposition of H.
923             compute();
924         }
925     }
926 
~EigenvalueDecomposition()927     ~EigenvalueDecomposition() {}
928 
929     // Returns the eigenvalues of the Eigenvalue Decomposition.
eigenvalues()930     Mat eigenvalues() {    return _eigenvalues; }
931     // Returns the eigenvectors of the Eigenvalue Decomposition.
eigenvectors()932     Mat eigenvectors() { return _eigenvectors; }
933 };
934 
935 
936 //------------------------------------------------------------------------------
937 // Linear Discriminant Analysis implementation
938 //------------------------------------------------------------------------------
939 
LDA(int num_components)940 LDA::LDA(int num_components) : _num_components(num_components) { }
941 
LDA(InputArrayOfArrays src,InputArray labels,int num_components)942 LDA::LDA(InputArrayOfArrays src, InputArray labels, int num_components) : _num_components(num_components)
943 {
944     this->compute(src, labels); //! compute eigenvectors and eigenvalues
945 }
946 
~LDA()947 LDA::~LDA() {}
948 
save(const String & filename) const949 void LDA::save(const String& filename) const
950 {
951     FileStorage fs(filename, FileStorage::WRITE);
952     if (!fs.isOpened()) {
953         CV_Error(Error::StsError, "File can't be opened for writing!");
954     }
955     this->save(fs);
956     fs.release();
957 }
958 
959 // Deserializes this object from a given filename.
load(const String & filename)960 void LDA::load(const String& filename) {
961     FileStorage fs(filename, FileStorage::READ);
962     if (!fs.isOpened())
963        CV_Error(Error::StsError, "File can't be opened for writing!");
964     this->load(fs);
965     fs.release();
966 }
967 
968 // Serializes this object to a given FileStorage.
save(FileStorage & fs) const969 void LDA::save(FileStorage& fs) const {
970     // write matrices
971     fs << "num_components" << _num_components;
972     fs << "eigenvalues" << _eigenvalues;
973     fs << "eigenvectors" << _eigenvectors;
974 }
975 
976 // Deserializes this object from a given FileStorage.
load(const FileStorage & fs)977 void LDA::load(const FileStorage& fs) {
978     //read matrices
979     fs["num_components"] >> _num_components;
980     fs["eigenvalues"] >> _eigenvalues;
981     fs["eigenvectors"] >> _eigenvectors;
982 }
983 
lda(InputArrayOfArrays _src,InputArray _lbls)984 void LDA::lda(InputArrayOfArrays _src, InputArray _lbls) {
985     // get data
986     Mat src = _src.getMat();
987     std::vector<int> labels;
988     // safely copy the labels
989     {
990         Mat tmp = _lbls.getMat();
991         for(unsigned int i = 0; i < tmp.total(); i++) {
992             labels.push_back(tmp.at<int>(i));
993         }
994     }
995     // turn into row sampled matrix
996     Mat data;
997     // ensure working matrix is double precision
998     src.convertTo(data, CV_64FC1);
999     // maps the labels, so they're ascending: [0,1,...,C]
1000     std::vector<int> mapped_labels(labels.size());
1001     std::vector<int> num2label = remove_dups(labels);
1002     std::map<int, int> label2num;
1003     for (int i = 0; i < (int)num2label.size(); i++)
1004         label2num[num2label[i]] = i;
1005     for (size_t i = 0; i < labels.size(); i++)
1006         mapped_labels[i] = label2num[labels[i]];
1007     // get sample size, dimension
1008     int N = data.rows;
1009     int D = data.cols;
1010     // number of unique labels
1011     int C = (int)num2label.size();
1012     // we can't do a LDA on one class, what do you
1013     // want to separate from each other then?
1014     if(C == 1) {
1015         String error_message = "At least two classes are needed to perform a LDA. Reason: Only one class was given!";
1016         CV_Error(Error::StsBadArg, error_message);
1017     }
1018     // throw error if less labels, than samples
1019     if (labels.size() != static_cast<size_t>(N)) {
1020         String error_message = format("The number of samples must equal the number of labels. Given %d labels, %d samples. ", labels.size(), N);
1021         CV_Error(Error::StsBadArg, error_message);
1022     }
1023     // warn if within-classes scatter matrix becomes singular
1024     if (N < D) {
1025         std::cout << "Warning: Less observations than feature dimension given!"
1026                   << "Computation will probably fail."
1027                   << std::endl;
1028     }
1029     // clip number of components to be a valid number
1030     if ((_num_components <= 0) || (_num_components > (C - 1))) {
1031         _num_components = (C - 1);
1032     }
1033     // holds the mean over all classes
1034     Mat meanTotal = Mat::zeros(1, D, data.type());
1035     // holds the mean for each class
1036     std::vector<Mat> meanClass(C);
1037     std::vector<int> numClass(C);
1038     // initialize
1039     for (int i = 0; i < C; i++) {
1040         numClass[i] = 0;
1041         meanClass[i] = Mat::zeros(1, D, data.type()); //! Dx1 image vector
1042     }
1043     // calculate sums
1044     for (int i = 0; i < N; i++) {
1045         Mat instance = data.row(i);
1046         int classIdx = mapped_labels[i];
1047         add(meanTotal, instance, meanTotal);
1048         add(meanClass[classIdx], instance, meanClass[classIdx]);
1049         numClass[classIdx]++;
1050     }
1051     // calculate total mean
1052     meanTotal.convertTo(meanTotal, meanTotal.type(), 1.0 / static_cast<double> (N));
1053     // calculate class means
1054     for (int i = 0; i < C; i++) {
1055         meanClass[i].convertTo(meanClass[i], meanClass[i].type(), 1.0 / static_cast<double> (numClass[i]));
1056     }
1057     // subtract class means
1058     for (int i = 0; i < N; i++) {
1059         int classIdx = mapped_labels[i];
1060         Mat instance = data.row(i);
1061         subtract(instance, meanClass[classIdx], instance);
1062     }
1063     // calculate within-classes scatter
1064     Mat Sw = Mat::zeros(D, D, data.type());
1065     mulTransposed(data, Sw, true);
1066     // calculate between-classes scatter
1067     Mat Sb = Mat::zeros(D, D, data.type());
1068     for (int i = 0; i < C; i++) {
1069         Mat tmp;
1070         subtract(meanClass[i], meanTotal, tmp);
1071         mulTransposed(tmp, tmp, true);
1072         add(Sb, tmp, Sb);
1073     }
1074     // invert Sw
1075     Mat Swi = Sw.inv();
1076     // M = inv(Sw)*Sb
1077     Mat M;
1078     gemm(Swi, Sb, 1.0, Mat(), 0.0, M);
1079     EigenvalueDecomposition es(M);
1080     _eigenvalues = es.eigenvalues();
1081     _eigenvectors = es.eigenvectors();
1082     // reshape eigenvalues, so they are stored by column
1083     _eigenvalues = _eigenvalues.reshape(1, 1);
1084     // get sorted indices descending by their eigenvalue
1085     std::vector<int> sorted_indices = argsort(_eigenvalues, false);
1086     // now sort eigenvalues and eigenvectors accordingly
1087     _eigenvalues = sortMatrixColumnsByIndices(_eigenvalues, sorted_indices);
1088     _eigenvectors = sortMatrixColumnsByIndices(_eigenvectors, sorted_indices);
1089     // and now take only the num_components and we're out!
1090     _eigenvalues = Mat(_eigenvalues, Range::all(), Range(0, _num_components));
1091     _eigenvectors = Mat(_eigenvectors, Range::all(), Range(0, _num_components));
1092 }
1093 
compute(InputArrayOfArrays _src,InputArray _lbls)1094 void LDA::compute(InputArrayOfArrays _src, InputArray _lbls) {
1095     switch(_src.kind()) {
1096     case _InputArray::STD_VECTOR_MAT:
1097         lda(asRowMatrix(_src, CV_64FC1), _lbls);
1098         break;
1099     case _InputArray::MAT:
1100         lda(_src.getMat(), _lbls);
1101         break;
1102     default:
1103         String error_message= format("InputArray Datatype %d is not supported.", _src.kind());
1104         CV_Error(Error::StsBadArg, error_message);
1105         break;
1106     }
1107 }
1108 
1109 // Projects samples into the LDA subspace.
project(InputArray src)1110 Mat LDA::project(InputArray src) {
1111    return subspaceProject(_eigenvectors, Mat(), _dataAsRow ? src : src.getMat().t());
1112 }
1113 
1114 // Reconstructs projections from the LDA subspace.
reconstruct(InputArray src)1115 Mat LDA::reconstruct(InputArray src) {
1116    return subspaceReconstruct(_eigenvectors, Mat(), _dataAsRow ? src : src.getMat().t());
1117 }
1118 
1119 }
1120