• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4  * All Rights Reserved.
5  * Copyright 2009-2010 VMware, Inc.  All rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 
29 /**
30  * TGSI interpreter/executor.
31  *
32  * Flow control information:
33  *
34  * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35  * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36  * care since a condition may be true for some quad components but false
37  * for other components.
38  *
39  * We basically execute all statements (even if they're in the part of
40  * an IF/ELSE clause that's "not taken") and use a special mask to
41  * control writing to destination registers.  This is the ExecMask.
42  * See store_dest().
43  *
44  * The ExecMask is computed from three other masks (CondMask, LoopMask and
45  * ContMask) which are controlled by the flow control instructions (namely:
46  * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47  *
48  *
49  * Authors:
50  *   Michal Krol
51  *   Brian Paul
52  */
53 
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_memory.h"
62 #include "util/u_math.h"
63 
64 
65 #define FAST_MATH 0
66 
67 #define TILE_TOP_LEFT     0
68 #define TILE_TOP_RIGHT    1
69 #define TILE_BOTTOM_LEFT  2
70 #define TILE_BOTTOM_RIGHT 3
71 
72 static void
micro_abs(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)73 micro_abs(union tgsi_exec_channel *dst,
74           const union tgsi_exec_channel *src)
75 {
76    dst->f[0] = fabsf(src->f[0]);
77    dst->f[1] = fabsf(src->f[1]);
78    dst->f[2] = fabsf(src->f[2]);
79    dst->f[3] = fabsf(src->f[3]);
80 }
81 
82 static void
micro_arl(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)83 micro_arl(union tgsi_exec_channel *dst,
84           const union tgsi_exec_channel *src)
85 {
86    dst->i[0] = (int)floorf(src->f[0]);
87    dst->i[1] = (int)floorf(src->f[1]);
88    dst->i[2] = (int)floorf(src->f[2]);
89    dst->i[3] = (int)floorf(src->f[3]);
90 }
91 
92 static void
micro_arr(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)93 micro_arr(union tgsi_exec_channel *dst,
94           const union tgsi_exec_channel *src)
95 {
96    dst->i[0] = (int)floorf(src->f[0] + 0.5f);
97    dst->i[1] = (int)floorf(src->f[1] + 0.5f);
98    dst->i[2] = (int)floorf(src->f[2] + 0.5f);
99    dst->i[3] = (int)floorf(src->f[3] + 0.5f);
100 }
101 
102 static void
micro_ceil(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)103 micro_ceil(union tgsi_exec_channel *dst,
104            const union tgsi_exec_channel *src)
105 {
106    dst->f[0] = ceilf(src->f[0]);
107    dst->f[1] = ceilf(src->f[1]);
108    dst->f[2] = ceilf(src->f[2]);
109    dst->f[3] = ceilf(src->f[3]);
110 }
111 
112 static void
micro_clamp(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)113 micro_clamp(union tgsi_exec_channel *dst,
114             const union tgsi_exec_channel *src0,
115             const union tgsi_exec_channel *src1,
116             const union tgsi_exec_channel *src2)
117 {
118    dst->f[0] = src0->f[0] < src1->f[0] ? src1->f[0] : src0->f[0] > src2->f[0] ? src2->f[0] : src0->f[0];
119    dst->f[1] = src0->f[1] < src1->f[1] ? src1->f[1] : src0->f[1] > src2->f[1] ? src2->f[1] : src0->f[1];
120    dst->f[2] = src0->f[2] < src1->f[2] ? src1->f[2] : src0->f[2] > src2->f[2] ? src2->f[2] : src0->f[2];
121    dst->f[3] = src0->f[3] < src1->f[3] ? src1->f[3] : src0->f[3] > src2->f[3] ? src2->f[3] : src0->f[3];
122 }
123 
124 static void
micro_cmp(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)125 micro_cmp(union tgsi_exec_channel *dst,
126           const union tgsi_exec_channel *src0,
127           const union tgsi_exec_channel *src1,
128           const union tgsi_exec_channel *src2)
129 {
130    dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
131    dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
132    dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
133    dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
134 }
135 
136 static void
micro_cnd(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)137 micro_cnd(union tgsi_exec_channel *dst,
138           const union tgsi_exec_channel *src0,
139           const union tgsi_exec_channel *src1,
140           const union tgsi_exec_channel *src2)
141 {
142    dst->f[0] = src2->f[0] > 0.5f ? src0->f[0] : src1->f[0];
143    dst->f[1] = src2->f[1] > 0.5f ? src0->f[1] : src1->f[1];
144    dst->f[2] = src2->f[2] > 0.5f ? src0->f[2] : src1->f[2];
145    dst->f[3] = src2->f[3] > 0.5f ? src0->f[3] : src1->f[3];
146 }
147 
148 static void
micro_cos(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)149 micro_cos(union tgsi_exec_channel *dst,
150           const union tgsi_exec_channel *src)
151 {
152    dst->f[0] = cosf(src->f[0]);
153    dst->f[1] = cosf(src->f[1]);
154    dst->f[2] = cosf(src->f[2]);
155    dst->f[3] = cosf(src->f[3]);
156 }
157 
158 static void
micro_ddx(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)159 micro_ddx(union tgsi_exec_channel *dst,
160           const union tgsi_exec_channel *src)
161 {
162    dst->f[0] =
163    dst->f[1] =
164    dst->f[2] =
165    dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
166 }
167 
168 static void
micro_ddy(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)169 micro_ddy(union tgsi_exec_channel *dst,
170           const union tgsi_exec_channel *src)
171 {
172    dst->f[0] =
173    dst->f[1] =
174    dst->f[2] =
175    dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
176 }
177 
178 static void
micro_exp2(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)179 micro_exp2(union tgsi_exec_channel *dst,
180            const union tgsi_exec_channel *src)
181 {
182 #if FAST_MATH
183    dst->f[0] = util_fast_exp2(src->f[0]);
184    dst->f[1] = util_fast_exp2(src->f[1]);
185    dst->f[2] = util_fast_exp2(src->f[2]);
186    dst->f[3] = util_fast_exp2(src->f[3]);
187 #else
188 #if DEBUG
189    /* Inf is okay for this instruction, so clamp it to silence assertions. */
190    uint i;
191    union tgsi_exec_channel clamped;
192 
193    for (i = 0; i < 4; i++) {
194       if (src->f[i] > 127.99999f) {
195          clamped.f[i] = 127.99999f;
196       } else if (src->f[i] < -126.99999f) {
197          clamped.f[i] = -126.99999f;
198       } else {
199          clamped.f[i] = src->f[i];
200       }
201    }
202    src = &clamped;
203 #endif /* DEBUG */
204 
205    dst->f[0] = powf(2.0f, src->f[0]);
206    dst->f[1] = powf(2.0f, src->f[1]);
207    dst->f[2] = powf(2.0f, src->f[2]);
208    dst->f[3] = powf(2.0f, src->f[3]);
209 #endif /* FAST_MATH */
210 }
211 
212 static void
micro_flr(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)213 micro_flr(union tgsi_exec_channel *dst,
214           const union tgsi_exec_channel *src)
215 {
216    dst->f[0] = floorf(src->f[0]);
217    dst->f[1] = floorf(src->f[1]);
218    dst->f[2] = floorf(src->f[2]);
219    dst->f[3] = floorf(src->f[3]);
220 }
221 
222 static void
micro_frc(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)223 micro_frc(union tgsi_exec_channel *dst,
224           const union tgsi_exec_channel *src)
225 {
226    dst->f[0] = src->f[0] - floorf(src->f[0]);
227    dst->f[1] = src->f[1] - floorf(src->f[1]);
228    dst->f[2] = src->f[2] - floorf(src->f[2]);
229    dst->f[3] = src->f[3] - floorf(src->f[3]);
230 }
231 
232 static void
micro_iabs(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)233 micro_iabs(union tgsi_exec_channel *dst,
234            const union tgsi_exec_channel *src)
235 {
236    dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
237    dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
238    dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
239    dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
240 }
241 
242 static void
micro_ineg(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)243 micro_ineg(union tgsi_exec_channel *dst,
244            const union tgsi_exec_channel *src)
245 {
246    dst->i[0] = -src->i[0];
247    dst->i[1] = -src->i[1];
248    dst->i[2] = -src->i[2];
249    dst->i[3] = -src->i[3];
250 }
251 
252 static void
micro_lg2(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)253 micro_lg2(union tgsi_exec_channel *dst,
254           const union tgsi_exec_channel *src)
255 {
256 #if FAST_MATH
257    dst->f[0] = util_fast_log2(src->f[0]);
258    dst->f[1] = util_fast_log2(src->f[1]);
259    dst->f[2] = util_fast_log2(src->f[2]);
260    dst->f[3] = util_fast_log2(src->f[3]);
261 #else
262    dst->f[0] = logf(src->f[0]) * 1.442695f;
263    dst->f[1] = logf(src->f[1]) * 1.442695f;
264    dst->f[2] = logf(src->f[2]) * 1.442695f;
265    dst->f[3] = logf(src->f[3]) * 1.442695f;
266 #endif
267 }
268 
269 static void
micro_lrp(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)270 micro_lrp(union tgsi_exec_channel *dst,
271           const union tgsi_exec_channel *src0,
272           const union tgsi_exec_channel *src1,
273           const union tgsi_exec_channel *src2)
274 {
275    dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
276    dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
277    dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
278    dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
279 }
280 
281 static void
micro_mad(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)282 micro_mad(union tgsi_exec_channel *dst,
283           const union tgsi_exec_channel *src0,
284           const union tgsi_exec_channel *src1,
285           const union tgsi_exec_channel *src2)
286 {
287    dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
288    dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
289    dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
290    dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
291 }
292 
293 static void
micro_mov(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)294 micro_mov(union tgsi_exec_channel *dst,
295           const union tgsi_exec_channel *src)
296 {
297    dst->u[0] = src->u[0];
298    dst->u[1] = src->u[1];
299    dst->u[2] = src->u[2];
300    dst->u[3] = src->u[3];
301 }
302 
303 static void
micro_rcp(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)304 micro_rcp(union tgsi_exec_channel *dst,
305           const union tgsi_exec_channel *src)
306 {
307 #if 0 /* for debugging */
308    assert(src->f[0] != 0.0f);
309    assert(src->f[1] != 0.0f);
310    assert(src->f[2] != 0.0f);
311    assert(src->f[3] != 0.0f);
312 #endif
313    dst->f[0] = 1.0f / src->f[0];
314    dst->f[1] = 1.0f / src->f[1];
315    dst->f[2] = 1.0f / src->f[2];
316    dst->f[3] = 1.0f / src->f[3];
317 }
318 
319 static void
micro_rnd(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)320 micro_rnd(union tgsi_exec_channel *dst,
321           const union tgsi_exec_channel *src)
322 {
323    dst->f[0] = floorf(src->f[0] + 0.5f);
324    dst->f[1] = floorf(src->f[1] + 0.5f);
325    dst->f[2] = floorf(src->f[2] + 0.5f);
326    dst->f[3] = floorf(src->f[3] + 0.5f);
327 }
328 
329 static void
micro_rsq(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)330 micro_rsq(union tgsi_exec_channel *dst,
331           const union tgsi_exec_channel *src)
332 {
333 #if 0 /* for debugging */
334    assert(src->f[0] != 0.0f);
335    assert(src->f[1] != 0.0f);
336    assert(src->f[2] != 0.0f);
337    assert(src->f[3] != 0.0f);
338 #endif
339    dst->f[0] = 1.0f / sqrtf(fabsf(src->f[0]));
340    dst->f[1] = 1.0f / sqrtf(fabsf(src->f[1]));
341    dst->f[2] = 1.0f / sqrtf(fabsf(src->f[2]));
342    dst->f[3] = 1.0f / sqrtf(fabsf(src->f[3]));
343 }
344 
345 static void
micro_seq(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)346 micro_seq(union tgsi_exec_channel *dst,
347           const union tgsi_exec_channel *src0,
348           const union tgsi_exec_channel *src1)
349 {
350    dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
351    dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
352    dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
353    dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
354 }
355 
356 static void
micro_sge(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)357 micro_sge(union tgsi_exec_channel *dst,
358           const union tgsi_exec_channel *src0,
359           const union tgsi_exec_channel *src1)
360 {
361    dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
362    dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
363    dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
364    dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
365 }
366 
367 static void
micro_sgn(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)368 micro_sgn(union tgsi_exec_channel *dst,
369           const union tgsi_exec_channel *src)
370 {
371    dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
372    dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
373    dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
374    dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
375 }
376 
377 static void
micro_isgn(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)378 micro_isgn(union tgsi_exec_channel *dst,
379           const union tgsi_exec_channel *src)
380 {
381    dst->i[0] = src->i[0] < 0 ? -1 : src->i[0] > 0 ? 1 : 0;
382    dst->i[1] = src->i[1] < 0 ? -1 : src->i[1] > 0 ? 1 : 0;
383    dst->i[2] = src->i[2] < 0 ? -1 : src->i[2] > 0 ? 1 : 0;
384    dst->i[3] = src->i[3] < 0 ? -1 : src->i[3] > 0 ? 1 : 0;
385 }
386 
387 static void
micro_sgt(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)388 micro_sgt(union tgsi_exec_channel *dst,
389           const union tgsi_exec_channel *src0,
390           const union tgsi_exec_channel *src1)
391 {
392    dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
393    dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
394    dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
395    dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
396 }
397 
398 static void
micro_sin(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)399 micro_sin(union tgsi_exec_channel *dst,
400           const union tgsi_exec_channel *src)
401 {
402    dst->f[0] = sinf(src->f[0]);
403    dst->f[1] = sinf(src->f[1]);
404    dst->f[2] = sinf(src->f[2]);
405    dst->f[3] = sinf(src->f[3]);
406 }
407 
408 static void
micro_sle(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)409 micro_sle(union tgsi_exec_channel *dst,
410           const union tgsi_exec_channel *src0,
411           const union tgsi_exec_channel *src1)
412 {
413    dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
414    dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
415    dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
416    dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
417 }
418 
419 static void
micro_slt(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)420 micro_slt(union tgsi_exec_channel *dst,
421           const union tgsi_exec_channel *src0,
422           const union tgsi_exec_channel *src1)
423 {
424    dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
425    dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
426    dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
427    dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
428 }
429 
430 static void
micro_sne(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)431 micro_sne(union tgsi_exec_channel *dst,
432           const union tgsi_exec_channel *src0,
433           const union tgsi_exec_channel *src1)
434 {
435    dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
436    dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
437    dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
438    dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
439 }
440 
441 static void
micro_sfl(union tgsi_exec_channel * dst)442 micro_sfl(union tgsi_exec_channel *dst)
443 {
444    dst->f[0] = 0.0f;
445    dst->f[1] = 0.0f;
446    dst->f[2] = 0.0f;
447    dst->f[3] = 0.0f;
448 }
449 
450 static void
micro_str(union tgsi_exec_channel * dst)451 micro_str(union tgsi_exec_channel *dst)
452 {
453    dst->f[0] = 1.0f;
454    dst->f[1] = 1.0f;
455    dst->f[2] = 1.0f;
456    dst->f[3] = 1.0f;
457 }
458 
459 static void
micro_trunc(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)460 micro_trunc(union tgsi_exec_channel *dst,
461             const union tgsi_exec_channel *src)
462 {
463    dst->f[0] = (float)(int)src->f[0];
464    dst->f[1] = (float)(int)src->f[1];
465    dst->f[2] = (float)(int)src->f[2];
466    dst->f[3] = (float)(int)src->f[3];
467 }
468 
469 
470 enum tgsi_exec_datatype {
471    TGSI_EXEC_DATA_FLOAT,
472    TGSI_EXEC_DATA_INT,
473    TGSI_EXEC_DATA_UINT
474 };
475 
476 /*
477  * Shorthand locations of various utility registers (_I = Index, _C = Channel)
478  */
479 #define TEMP_KILMASK_I     TGSI_EXEC_TEMP_KILMASK_I
480 #define TEMP_KILMASK_C     TGSI_EXEC_TEMP_KILMASK_C
481 #define TEMP_OUTPUT_I      TGSI_EXEC_TEMP_OUTPUT_I
482 #define TEMP_OUTPUT_C      TGSI_EXEC_TEMP_OUTPUT_C
483 #define TEMP_PRIMITIVE_I   TGSI_EXEC_TEMP_PRIMITIVE_I
484 #define TEMP_PRIMITIVE_C   TGSI_EXEC_TEMP_PRIMITIVE_C
485 
486 
487 /** The execution mask depends on the conditional mask and the loop mask */
488 #define UPDATE_EXEC_MASK(MACH) \
489       MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
490 
491 
492 static const union tgsi_exec_channel ZeroVec =
493    { { 0.0, 0.0, 0.0, 0.0 } };
494 
495 static const union tgsi_exec_channel OneVec = {
496    {1.0f, 1.0f, 1.0f, 1.0f}
497 };
498 
499 static const union tgsi_exec_channel P128Vec = {
500    {128.0f, 128.0f, 128.0f, 128.0f}
501 };
502 
503 static const union tgsi_exec_channel M128Vec = {
504    {-128.0f, -128.0f, -128.0f, -128.0f}
505 };
506 
507 
508 /**
509  * Assert that none of the float values in 'chan' are infinite or NaN.
510  * NaN and Inf may occur normally during program execution and should
511  * not lead to crashes, etc.  But when debugging, it's helpful to catch
512  * them.
513  */
514 static INLINE void
check_inf_or_nan(const union tgsi_exec_channel * chan)515 check_inf_or_nan(const union tgsi_exec_channel *chan)
516 {
517    assert(!util_is_inf_or_nan((chan)->f[0]));
518    assert(!util_is_inf_or_nan((chan)->f[1]));
519    assert(!util_is_inf_or_nan((chan)->f[2]));
520    assert(!util_is_inf_or_nan((chan)->f[3]));
521 }
522 
523 
524 #ifdef DEBUG
525 static void
print_chan(const char * msg,const union tgsi_exec_channel * chan)526 print_chan(const char *msg, const union tgsi_exec_channel *chan)
527 {
528    debug_printf("%s = {%f, %f, %f, %f}\n",
529                 msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
530 }
531 #endif
532 
533 
534 #ifdef DEBUG
535 static void
print_temp(const struct tgsi_exec_machine * mach,uint index)536 print_temp(const struct tgsi_exec_machine *mach, uint index)
537 {
538    const struct tgsi_exec_vector *tmp = &mach->Temps[index];
539    int i;
540    debug_printf("Temp[%u] =\n", index);
541    for (i = 0; i < 4; i++) {
542       debug_printf("  %c: { %f, %f, %f, %f }\n",
543                    "XYZW"[i],
544                    tmp->xyzw[i].f[0],
545                    tmp->xyzw[i].f[1],
546                    tmp->xyzw[i].f[2],
547                    tmp->xyzw[i].f[3]);
548    }
549 }
550 #endif
551 
552 
553 void
tgsi_exec_set_constant_buffers(struct tgsi_exec_machine * mach,unsigned num_bufs,const void ** bufs,const unsigned * buf_sizes)554 tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
555                                unsigned num_bufs,
556                                const void **bufs,
557                                const unsigned *buf_sizes)
558 {
559    unsigned i;
560 
561    for (i = 0; i < num_bufs; i++) {
562       mach->Consts[i] = bufs[i];
563       mach->ConstsSize[i] = buf_sizes[i];
564    }
565 }
566 
567 
568 /**
569  * Check if there's a potential src/dst register data dependency when
570  * using SOA execution.
571  * Example:
572  *   MOV T, T.yxwz;
573  * This would expand into:
574  *   MOV t0, t1;
575  *   MOV t1, t0;
576  *   MOV t2, t3;
577  *   MOV t3, t2;
578  * The second instruction will have the wrong value for t0 if executed as-is.
579  */
580 boolean
tgsi_check_soa_dependencies(const struct tgsi_full_instruction * inst)581 tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
582 {
583    uint i, chan;
584 
585    uint writemask = inst->Dst[0].Register.WriteMask;
586    if (writemask == TGSI_WRITEMASK_X ||
587        writemask == TGSI_WRITEMASK_Y ||
588        writemask == TGSI_WRITEMASK_Z ||
589        writemask == TGSI_WRITEMASK_W ||
590        writemask == TGSI_WRITEMASK_NONE) {
591       /* no chance of data dependency */
592       return FALSE;
593    }
594 
595    /* loop over src regs */
596    for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
597       if ((inst->Src[i].Register.File ==
598            inst->Dst[0].Register.File) &&
599           ((inst->Src[i].Register.Index ==
600             inst->Dst[0].Register.Index) ||
601            inst->Src[i].Register.Indirect ||
602            inst->Dst[0].Register.Indirect)) {
603          /* loop over dest channels */
604          uint channelsWritten = 0x0;
605          for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
606             if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
607                /* check if we're reading a channel that's been written */
608                uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
609                if (channelsWritten & (1 << swizzle)) {
610                   return TRUE;
611                }
612 
613                channelsWritten |= (1 << chan);
614             }
615          }
616       }
617    }
618    return FALSE;
619 }
620 
621 
622 /**
623  * Initialize machine state by expanding tokens to full instructions,
624  * allocating temporary storage, setting up constants, etc.
625  * After this, we can call tgsi_exec_machine_run() many times.
626  */
627 void
tgsi_exec_machine_bind_shader(struct tgsi_exec_machine * mach,const struct tgsi_token * tokens,uint numSamplers,struct tgsi_sampler ** samplers)628 tgsi_exec_machine_bind_shader(
629    struct tgsi_exec_machine *mach,
630    const struct tgsi_token *tokens,
631    uint numSamplers,
632    struct tgsi_sampler **samplers)
633 {
634    uint k;
635    struct tgsi_parse_context parse;
636    struct tgsi_full_instruction *instructions;
637    struct tgsi_full_declaration *declarations;
638    uint maxInstructions = 10, numInstructions = 0;
639    uint maxDeclarations = 10, numDeclarations = 0;
640 
641 #if 0
642    tgsi_dump(tokens, 0);
643 #endif
644 
645    util_init_math();
646 
647    if (numSamplers) {
648       assert(samplers);
649    }
650 
651    mach->Tokens = tokens;
652    mach->Samplers = samplers;
653 
654    if (!tokens) {
655       /* unbind and free all */
656       if (mach->Declarations) {
657          FREE( mach->Declarations );
658       }
659       mach->Declarations = NULL;
660       mach->NumDeclarations = 0;
661 
662       if (mach->Instructions) {
663          FREE( mach->Instructions );
664       }
665       mach->Instructions = NULL;
666       mach->NumInstructions = 0;
667 
668       return;
669    }
670 
671    k = tgsi_parse_init (&parse, mach->Tokens);
672    if (k != TGSI_PARSE_OK) {
673       debug_printf( "Problem parsing!\n" );
674       return;
675    }
676 
677    mach->Processor = parse.FullHeader.Processor.Processor;
678    mach->ImmLimit = 0;
679 
680    if (mach->Processor == TGSI_PROCESSOR_GEOMETRY &&
681        !mach->UsedGeometryShader) {
682       struct tgsi_exec_vector *inputs;
683       struct tgsi_exec_vector *outputs;
684 
685       inputs = align_malloc(sizeof(struct tgsi_exec_vector) *
686                             TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS,
687                             16);
688 
689       if (!inputs)
690          return;
691 
692       outputs = align_malloc(sizeof(struct tgsi_exec_vector) *
693                              TGSI_MAX_TOTAL_VERTICES, 16);
694 
695       if (!outputs) {
696          align_free(inputs);
697          return;
698       }
699 
700       align_free(mach->Inputs);
701       align_free(mach->Outputs);
702 
703       mach->Inputs = inputs;
704       mach->Outputs = outputs;
705       mach->UsedGeometryShader = TRUE;
706    }
707 
708    declarations = (struct tgsi_full_declaration *)
709       MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
710 
711    if (!declarations) {
712       return;
713    }
714 
715    instructions = (struct tgsi_full_instruction *)
716       MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
717 
718    if (!instructions) {
719       FREE( declarations );
720       return;
721    }
722 
723    while( !tgsi_parse_end_of_tokens( &parse ) ) {
724       uint i;
725 
726       tgsi_parse_token( &parse );
727       switch( parse.FullToken.Token.Type ) {
728       case TGSI_TOKEN_TYPE_DECLARATION:
729          /* save expanded declaration */
730          if (numDeclarations == maxDeclarations) {
731             declarations = REALLOC(declarations,
732                                    maxDeclarations
733                                    * sizeof(struct tgsi_full_declaration),
734                                    (maxDeclarations + 10)
735                                    * sizeof(struct tgsi_full_declaration));
736             maxDeclarations += 10;
737          }
738          if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) {
739             unsigned reg;
740             for (reg = parse.FullToken.FullDeclaration.Range.First;
741                  reg <= parse.FullToken.FullDeclaration.Range.Last;
742                  ++reg) {
743                ++mach->NumOutputs;
744             }
745          }
746          if (parse.FullToken.FullDeclaration.Declaration.File ==
747              TGSI_FILE_IMMEDIATE_ARRAY) {
748             unsigned reg;
749             struct tgsi_full_declaration *decl =
750                &parse.FullToken.FullDeclaration;
751             debug_assert(decl->Range.Last < TGSI_EXEC_NUM_IMMEDIATES);
752             for (reg = decl->Range.First; reg <= decl->Range.Last; ++reg) {
753                for( i = 0; i < 4; i++ ) {
754                   int idx = reg * 4 + i;
755                   mach->ImmArray[reg][i] = decl->ImmediateData.u[idx].Float;
756                }
757             }
758          }
759          memcpy(declarations + numDeclarations,
760                 &parse.FullToken.FullDeclaration,
761                 sizeof(declarations[0]));
762          numDeclarations++;
763          break;
764 
765       case TGSI_TOKEN_TYPE_IMMEDIATE:
766          {
767             uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
768             assert( size <= 4 );
769             assert( mach->ImmLimit + 1 <= TGSI_EXEC_NUM_IMMEDIATES );
770 
771             for( i = 0; i < size; i++ ) {
772                mach->Imms[mach->ImmLimit][i] =
773 		  parse.FullToken.FullImmediate.u[i].Float;
774             }
775             mach->ImmLimit += 1;
776          }
777          break;
778 
779       case TGSI_TOKEN_TYPE_INSTRUCTION:
780 
781          /* save expanded instruction */
782          if (numInstructions == maxInstructions) {
783             instructions = REALLOC(instructions,
784                                    maxInstructions
785                                    * sizeof(struct tgsi_full_instruction),
786                                    (maxInstructions + 10)
787                                    * sizeof(struct tgsi_full_instruction));
788             maxInstructions += 10;
789          }
790 
791          memcpy(instructions + numInstructions,
792                 &parse.FullToken.FullInstruction,
793                 sizeof(instructions[0]));
794 
795          numInstructions++;
796          break;
797 
798       case TGSI_TOKEN_TYPE_PROPERTY:
799          break;
800 
801       default:
802          assert( 0 );
803       }
804    }
805    tgsi_parse_free (&parse);
806 
807    if (mach->Declarations) {
808       FREE( mach->Declarations );
809    }
810    mach->Declarations = declarations;
811    mach->NumDeclarations = numDeclarations;
812 
813    if (mach->Instructions) {
814       FREE( mach->Instructions );
815    }
816    mach->Instructions = instructions;
817    mach->NumInstructions = numInstructions;
818 }
819 
820 
821 struct tgsi_exec_machine *
tgsi_exec_machine_create(void)822 tgsi_exec_machine_create( void )
823 {
824    struct tgsi_exec_machine *mach;
825    uint i;
826 
827    mach = align_malloc( sizeof *mach, 16 );
828    if (!mach)
829       goto fail;
830 
831    memset(mach, 0, sizeof(*mach));
832 
833    mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
834    mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
835    mach->Predicates = &mach->Temps[TGSI_EXEC_TEMP_P0];
836 
837    mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_ATTRIBS, 16);
838    mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_ATTRIBS, 16);
839    if (!mach->Inputs || !mach->Outputs)
840       goto fail;
841 
842    /* Setup constants needed by the SSE2 executor. */
843    for( i = 0; i < 4; i++ ) {
844       mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000;
845       mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF;
846       mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000;
847       mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF;    /* not used */
848       mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f;
849       mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f;    /* not used */
850       mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f;
851       mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f;
852       mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f;
853       mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f;
854    }
855 
856 #ifdef DEBUG
857    /* silence warnings */
858    (void) print_chan;
859    (void) print_temp;
860 #endif
861 
862    return mach;
863 
864 fail:
865    if (mach) {
866       align_free(mach->Inputs);
867       align_free(mach->Outputs);
868       align_free(mach);
869    }
870    return NULL;
871 }
872 
873 
874 void
tgsi_exec_machine_destroy(struct tgsi_exec_machine * mach)875 tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
876 {
877    if (mach) {
878       if (mach->Instructions)
879          FREE(mach->Instructions);
880       if (mach->Declarations)
881          FREE(mach->Declarations);
882 
883       align_free(mach->Inputs);
884       align_free(mach->Outputs);
885 
886       align_free(mach);
887    }
888 }
889 
890 static void
micro_add(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)891 micro_add(union tgsi_exec_channel *dst,
892           const union tgsi_exec_channel *src0,
893           const union tgsi_exec_channel *src1)
894 {
895    dst->f[0] = src0->f[0] + src1->f[0];
896    dst->f[1] = src0->f[1] + src1->f[1];
897    dst->f[2] = src0->f[2] + src1->f[2];
898    dst->f[3] = src0->f[3] + src1->f[3];
899 }
900 
901 static void
micro_div(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)902 micro_div(
903    union tgsi_exec_channel *dst,
904    const union tgsi_exec_channel *src0,
905    const union tgsi_exec_channel *src1 )
906 {
907    if (src1->f[0] != 0) {
908       dst->f[0] = src0->f[0] / src1->f[0];
909    }
910    if (src1->f[1] != 0) {
911       dst->f[1] = src0->f[1] / src1->f[1];
912    }
913    if (src1->f[2] != 0) {
914       dst->f[2] = src0->f[2] / src1->f[2];
915    }
916    if (src1->f[3] != 0) {
917       dst->f[3] = src0->f[3] / src1->f[3];
918    }
919 }
920 
921 static void
micro_rcc(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)922 micro_rcc(union tgsi_exec_channel *dst,
923           const union tgsi_exec_channel *src)
924 {
925    uint i;
926 
927    for (i = 0; i < 4; i++) {
928       float recip = 1.0f / src->f[i];
929 
930       if (recip > 0.0f) {
931          if (recip > 1.884467e+019f) {
932             dst->f[i] = 1.884467e+019f;
933          }
934          else if (recip < 5.42101e-020f) {
935             dst->f[i] = 5.42101e-020f;
936          }
937          else {
938             dst->f[i] = recip;
939          }
940       }
941       else {
942          if (recip < -1.884467e+019f) {
943             dst->f[i] = -1.884467e+019f;
944          }
945          else if (recip > -5.42101e-020f) {
946             dst->f[i] = -5.42101e-020f;
947          }
948          else {
949             dst->f[i] = recip;
950          }
951       }
952    }
953 }
954 
955 static void
micro_lt(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2,const union tgsi_exec_channel * src3)956 micro_lt(
957    union tgsi_exec_channel *dst,
958    const union tgsi_exec_channel *src0,
959    const union tgsi_exec_channel *src1,
960    const union tgsi_exec_channel *src2,
961    const union tgsi_exec_channel *src3 )
962 {
963    dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
964    dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
965    dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
966    dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
967 }
968 
969 static void
micro_max(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)970 micro_max(union tgsi_exec_channel *dst,
971           const union tgsi_exec_channel *src0,
972           const union tgsi_exec_channel *src1)
973 {
974    dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
975    dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
976    dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
977    dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
978 }
979 
980 static void
micro_min(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)981 micro_min(union tgsi_exec_channel *dst,
982           const union tgsi_exec_channel *src0,
983           const union tgsi_exec_channel *src1)
984 {
985    dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
986    dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
987    dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
988    dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
989 }
990 
991 static void
micro_mul(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)992 micro_mul(union tgsi_exec_channel *dst,
993           const union tgsi_exec_channel *src0,
994           const union tgsi_exec_channel *src1)
995 {
996    dst->f[0] = src0->f[0] * src1->f[0];
997    dst->f[1] = src0->f[1] * src1->f[1];
998    dst->f[2] = src0->f[2] * src1->f[2];
999    dst->f[3] = src0->f[3] * src1->f[3];
1000 }
1001 
1002 static void
micro_neg(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)1003 micro_neg(
1004    union tgsi_exec_channel *dst,
1005    const union tgsi_exec_channel *src )
1006 {
1007    dst->f[0] = -src->f[0];
1008    dst->f[1] = -src->f[1];
1009    dst->f[2] = -src->f[2];
1010    dst->f[3] = -src->f[3];
1011 }
1012 
1013 static void
micro_pow(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)1014 micro_pow(
1015    union tgsi_exec_channel *dst,
1016    const union tgsi_exec_channel *src0,
1017    const union tgsi_exec_channel *src1 )
1018 {
1019 #if FAST_MATH
1020    dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
1021    dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
1022    dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
1023    dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
1024 #else
1025    dst->f[0] = powf( src0->f[0], src1->f[0] );
1026    dst->f[1] = powf( src0->f[1], src1->f[1] );
1027    dst->f[2] = powf( src0->f[2], src1->f[2] );
1028    dst->f[3] = powf( src0->f[3], src1->f[3] );
1029 #endif
1030 }
1031 
1032 static void
micro_sub(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)1033 micro_sub(union tgsi_exec_channel *dst,
1034           const union tgsi_exec_channel *src0,
1035           const union tgsi_exec_channel *src1)
1036 {
1037    dst->f[0] = src0->f[0] - src1->f[0];
1038    dst->f[1] = src0->f[1] - src1->f[1];
1039    dst->f[2] = src0->f[2] - src1->f[2];
1040    dst->f[3] = src0->f[3] - src1->f[3];
1041 }
1042 
1043 static void
fetch_src_file_channel(const struct tgsi_exec_machine * mach,const uint chan_index,const uint file,const uint swizzle,const union tgsi_exec_channel * index,const union tgsi_exec_channel * index2D,union tgsi_exec_channel * chan)1044 fetch_src_file_channel(const struct tgsi_exec_machine *mach,
1045                        const uint chan_index,
1046                        const uint file,
1047                        const uint swizzle,
1048                        const union tgsi_exec_channel *index,
1049                        const union tgsi_exec_channel *index2D,
1050                        union tgsi_exec_channel *chan)
1051 {
1052    uint i;
1053 
1054    assert(swizzle < 4);
1055 
1056    switch (file) {
1057    case TGSI_FILE_CONSTANT:
1058       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1059          assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS);
1060          assert(mach->Consts[index2D->i[i]]);
1061 
1062          if (index->i[i] < 0) {
1063             chan->u[i] = 0;
1064          } else {
1065             /* NOTE: copying the const value as a uint instead of float */
1066             const uint constbuf = index2D->i[i];
1067             const uint *buf = (const uint *)mach->Consts[constbuf];
1068             const int pos = index->i[i] * 4 + swizzle;
1069             /* const buffer bounds check */
1070             if (pos < 0 || pos >= mach->ConstsSize[constbuf]) {
1071                if (0) {
1072                   /* Debug: print warning */
1073                   static int count = 0;
1074                   if (count++ < 100)
1075                      debug_printf("TGSI Exec: const buffer index %d"
1076                                   " out of bounds\n", pos);
1077                }
1078                chan->u[i] = 0;
1079             }
1080             else
1081                chan->u[i] = buf[pos];
1082          }
1083       }
1084       break;
1085 
1086    case TGSI_FILE_INPUT:
1087       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1088          /*
1089          if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1090             debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1091                          index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1092                          index2D->i[i], index->i[i]);
1093                          }*/
1094          int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
1095          assert(pos >= 0);
1096          assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
1097          chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
1098       }
1099       break;
1100 
1101    case TGSI_FILE_SYSTEM_VALUE:
1102       /* XXX no swizzling at this point.  Will be needed if we put
1103        * gl_FragCoord, for example, in a sys value register.
1104        */
1105       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1106          chan->u[i] = mach->SystemValue[index->i[i]].u[i];
1107       }
1108       break;
1109 
1110    case TGSI_FILE_TEMPORARY:
1111       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1112          assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1113          assert(index2D->i[i] == 0);
1114 
1115          chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
1116       }
1117       break;
1118 
1119    case TGSI_FILE_TEMPORARY_ARRAY:
1120       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1121          assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1122          assert(index2D->i[i] < TGSI_EXEC_NUM_TEMP_ARRAYS);
1123 
1124          chan->u[i] =
1125             mach->TempArray[index2D->i[i]][index->i[i]].xyzw[swizzle].u[i];
1126       }
1127       break;
1128 
1129    case TGSI_FILE_IMMEDIATE:
1130       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1131          assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
1132          assert(index2D->i[i] == 0);
1133 
1134          chan->f[i] = mach->Imms[index->i[i]][swizzle];
1135       }
1136       break;
1137 
1138    case TGSI_FILE_IMMEDIATE_ARRAY:
1139       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1140          assert(index2D->i[i] == 0);
1141 
1142          chan->f[i] = mach->ImmArray[index->i[i]][swizzle];
1143       }
1144       break;
1145 
1146    case TGSI_FILE_ADDRESS:
1147       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1148          assert(index->i[i] >= 0);
1149          assert(index2D->i[i] == 0);
1150 
1151          chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
1152       }
1153       break;
1154 
1155    case TGSI_FILE_PREDICATE:
1156       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1157          assert(index->i[i] >= 0 && index->i[i] < TGSI_EXEC_NUM_PREDS);
1158          assert(index2D->i[i] == 0);
1159 
1160          chan->u[i] = mach->Predicates[0].xyzw[swizzle].u[i];
1161       }
1162       break;
1163 
1164    case TGSI_FILE_OUTPUT:
1165       /* vertex/fragment output vars can be read too */
1166       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1167          assert(index->i[i] >= 0);
1168          assert(index2D->i[i] == 0);
1169 
1170          chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
1171       }
1172       break;
1173 
1174    default:
1175       assert(0);
1176       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1177          chan->u[i] = 0;
1178       }
1179    }
1180 }
1181 
1182 static void
fetch_source(const struct tgsi_exec_machine * mach,union tgsi_exec_channel * chan,const struct tgsi_full_src_register * reg,const uint chan_index,enum tgsi_exec_datatype src_datatype)1183 fetch_source(const struct tgsi_exec_machine *mach,
1184              union tgsi_exec_channel *chan,
1185              const struct tgsi_full_src_register *reg,
1186              const uint chan_index,
1187              enum tgsi_exec_datatype src_datatype)
1188 {
1189    union tgsi_exec_channel index;
1190    union tgsi_exec_channel index2D;
1191    uint swizzle;
1192 
1193    /* We start with a direct index into a register file.
1194     *
1195     *    file[1],
1196     *    where:
1197     *       file = Register.File
1198     *       [1] = Register.Index
1199     */
1200    index.i[0] =
1201    index.i[1] =
1202    index.i[2] =
1203    index.i[3] = reg->Register.Index;
1204 
1205    /* There is an extra source register that indirectly subscripts
1206     * a register file. The direct index now becomes an offset
1207     * that is being added to the indirect register.
1208     *
1209     *    file[ind[2].x+1],
1210     *    where:
1211     *       ind = Indirect.File
1212     *       [2] = Indirect.Index
1213     *       .x = Indirect.SwizzleX
1214     */
1215    if (reg->Register.Indirect) {
1216       union tgsi_exec_channel index2;
1217       union tgsi_exec_channel indir_index;
1218       const uint execmask = mach->ExecMask;
1219       uint i;
1220 
1221       /* which address register (always zero now) */
1222       index2.i[0] =
1223       index2.i[1] =
1224       index2.i[2] =
1225       index2.i[3] = reg->Indirect.Index;
1226       assert(reg->Indirect.File == TGSI_FILE_ADDRESS);
1227       /* get current value of address register[swizzle] */
1228       swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, TGSI_CHAN_X );
1229       fetch_src_file_channel(mach,
1230                              chan_index,
1231                              reg->Indirect.File,
1232                              swizzle,
1233                              &index2,
1234                              &ZeroVec,
1235                              &indir_index);
1236 
1237       /* add value of address register to the offset */
1238       index.i[0] += indir_index.i[0];
1239       index.i[1] += indir_index.i[1];
1240       index.i[2] += indir_index.i[2];
1241       index.i[3] += indir_index.i[3];
1242 
1243       /* for disabled execution channels, zero-out the index to
1244        * avoid using a potential garbage value.
1245        */
1246       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1247          if ((execmask & (1 << i)) == 0)
1248             index.i[i] = 0;
1249       }
1250    }
1251 
1252    /* There is an extra source register that is a second
1253     * subscript to a register file. Effectively it means that
1254     * the register file is actually a 2D array of registers.
1255     *
1256     *    file[3][1],
1257     *    where:
1258     *       [3] = Dimension.Index
1259     */
1260    if (reg->Register.Dimension) {
1261       index2D.i[0] =
1262       index2D.i[1] =
1263       index2D.i[2] =
1264       index2D.i[3] = reg->Dimension.Index;
1265 
1266       /* Again, the second subscript index can be addressed indirectly
1267        * identically to the first one.
1268        * Nothing stops us from indirectly addressing the indirect register,
1269        * but there is no need for that, so we won't exercise it.
1270        *
1271        *    file[ind[4].y+3][1],
1272        *    where:
1273        *       ind = DimIndirect.File
1274        *       [4] = DimIndirect.Index
1275        *       .y = DimIndirect.SwizzleX
1276        */
1277       if (reg->Dimension.Indirect) {
1278          union tgsi_exec_channel index2;
1279          union tgsi_exec_channel indir_index;
1280          const uint execmask = mach->ExecMask;
1281          uint i;
1282 
1283          index2.i[0] =
1284          index2.i[1] =
1285          index2.i[2] =
1286          index2.i[3] = reg->DimIndirect.Index;
1287 
1288          swizzle = tgsi_util_get_src_register_swizzle( &reg->DimIndirect, TGSI_CHAN_X );
1289          fetch_src_file_channel(mach,
1290                                 chan_index,
1291                                 reg->DimIndirect.File,
1292                                 swizzle,
1293                                 &index2,
1294                                 &ZeroVec,
1295                                 &indir_index);
1296 
1297          index2D.i[0] += indir_index.i[0];
1298          index2D.i[1] += indir_index.i[1];
1299          index2D.i[2] += indir_index.i[2];
1300          index2D.i[3] += indir_index.i[3];
1301 
1302          /* for disabled execution channels, zero-out the index to
1303           * avoid using a potential garbage value.
1304           */
1305          for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1306             if ((execmask & (1 << i)) == 0) {
1307                index2D.i[i] = 0;
1308             }
1309          }
1310       }
1311 
1312       /* If by any chance there was a need for a 3D array of register
1313        * files, we would have to check whether Dimension is followed
1314        * by a dimension register and continue the saga.
1315        */
1316    } else {
1317       index2D.i[0] =
1318       index2D.i[1] =
1319       index2D.i[2] =
1320       index2D.i[3] = 0;
1321    }
1322 
1323    swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1324    fetch_src_file_channel(mach,
1325                           chan_index,
1326                           reg->Register.File,
1327                           swizzle,
1328                           &index,
1329                           &index2D,
1330                           chan);
1331 
1332    if (reg->Register.Absolute) {
1333       if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1334          micro_abs(chan, chan);
1335       } else {
1336          micro_iabs(chan, chan);
1337       }
1338    }
1339 
1340    if (reg->Register.Negate) {
1341       if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1342          micro_neg(chan, chan);
1343       } else {
1344          micro_ineg(chan, chan);
1345       }
1346    }
1347 }
1348 
1349 static void
store_dest(struct tgsi_exec_machine * mach,const union tgsi_exec_channel * chan,const struct tgsi_full_dst_register * reg,const struct tgsi_full_instruction * inst,uint chan_index,enum tgsi_exec_datatype dst_datatype)1350 store_dest(struct tgsi_exec_machine *mach,
1351            const union tgsi_exec_channel *chan,
1352            const struct tgsi_full_dst_register *reg,
1353            const struct tgsi_full_instruction *inst,
1354            uint chan_index,
1355            enum tgsi_exec_datatype dst_datatype)
1356 {
1357    uint i;
1358    union tgsi_exec_channel null;
1359    union tgsi_exec_channel *dst;
1360    union tgsi_exec_channel index2D;
1361    uint execmask = mach->ExecMask;
1362    int offset = 0;  /* indirection offset */
1363    int index;
1364 
1365    /* for debugging */
1366    if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) {
1367       check_inf_or_nan(chan);
1368    }
1369 
1370    /* There is an extra source register that indirectly subscripts
1371     * a register file. The direct index now becomes an offset
1372     * that is being added to the indirect register.
1373     *
1374     *    file[ind[2].x+1],
1375     *    where:
1376     *       ind = Indirect.File
1377     *       [2] = Indirect.Index
1378     *       .x = Indirect.SwizzleX
1379     */
1380    if (reg->Register.Indirect) {
1381       union tgsi_exec_channel index;
1382       union tgsi_exec_channel indir_index;
1383       uint swizzle;
1384 
1385       /* which address register (always zero for now) */
1386       index.i[0] =
1387       index.i[1] =
1388       index.i[2] =
1389       index.i[3] = reg->Indirect.Index;
1390 
1391       /* get current value of address register[swizzle] */
1392       swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, TGSI_CHAN_X );
1393 
1394       /* fetch values from the address/indirection register */
1395       fetch_src_file_channel(mach,
1396                              chan_index,
1397                              reg->Indirect.File,
1398                              swizzle,
1399                              &index,
1400                              &ZeroVec,
1401                              &indir_index);
1402 
1403       /* save indirection offset */
1404       offset = indir_index.i[0];
1405    }
1406 
1407    /* There is an extra source register that is a second
1408     * subscript to a register file. Effectively it means that
1409     * the register file is actually a 2D array of registers.
1410     *
1411     *    file[3][1],
1412     *    where:
1413     *       [3] = Dimension.Index
1414     */
1415    if (reg->Register.Dimension) {
1416       index2D.i[0] =
1417       index2D.i[1] =
1418       index2D.i[2] =
1419       index2D.i[3] = reg->Dimension.Index;
1420 
1421       /* Again, the second subscript index can be addressed indirectly
1422        * identically to the first one.
1423        * Nothing stops us from indirectly addressing the indirect register,
1424        * but there is no need for that, so we won't exercise it.
1425        *
1426        *    file[ind[4].y+3][1],
1427        *    where:
1428        *       ind = DimIndirect.File
1429        *       [4] = DimIndirect.Index
1430        *       .y = DimIndirect.SwizzleX
1431        */
1432       if (reg->Dimension.Indirect) {
1433          union tgsi_exec_channel index2;
1434          union tgsi_exec_channel indir_index;
1435          const uint execmask = mach->ExecMask;
1436          unsigned swizzle;
1437          uint i;
1438 
1439          index2.i[0] =
1440          index2.i[1] =
1441          index2.i[2] =
1442          index2.i[3] = reg->DimIndirect.Index;
1443 
1444          swizzle = tgsi_util_get_src_register_swizzle( &reg->DimIndirect, TGSI_CHAN_X );
1445          fetch_src_file_channel(mach,
1446                                 chan_index,
1447                                 reg->DimIndirect.File,
1448                                 swizzle,
1449                                 &index2,
1450                                 &ZeroVec,
1451                                 &indir_index);
1452 
1453          index2D.i[0] += indir_index.i[0];
1454          index2D.i[1] += indir_index.i[1];
1455          index2D.i[2] += indir_index.i[2];
1456          index2D.i[3] += indir_index.i[3];
1457 
1458          /* for disabled execution channels, zero-out the index to
1459           * avoid using a potential garbage value.
1460           */
1461          for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1462             if ((execmask & (1 << i)) == 0) {
1463                index2D.i[i] = 0;
1464             }
1465          }
1466       }
1467 
1468       /* If by any chance there was a need for a 3D array of register
1469        * files, we would have to check whether Dimension is followed
1470        * by a dimension register and continue the saga.
1471        */
1472    } else {
1473       index2D.i[0] =
1474       index2D.i[1] =
1475       index2D.i[2] =
1476       index2D.i[3] = 0;
1477    }
1478 
1479    switch (reg->Register.File) {
1480    case TGSI_FILE_NULL:
1481       dst = &null;
1482       break;
1483 
1484    case TGSI_FILE_OUTPUT:
1485       index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
1486          + reg->Register.Index;
1487       dst = &mach->Outputs[offset + index].xyzw[chan_index];
1488 #if 0
1489       if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1490          fprintf(stderr, "STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1491          for (i = 0; i < TGSI_QUAD_SIZE; i++)
1492             if (execmask & (1 << i))
1493                fprintf(stderr, "%f, ", chan->f[i]);
1494          fprintf(stderr, ")\n");
1495       }
1496 #endif
1497       break;
1498 
1499    case TGSI_FILE_TEMPORARY:
1500       index = reg->Register.Index;
1501       assert( index < TGSI_EXEC_NUM_TEMPS );
1502       dst = &mach->Temps[offset + index].xyzw[chan_index];
1503       break;
1504 
1505    case TGSI_FILE_TEMPORARY_ARRAY:
1506       index = reg->Register.Index;
1507       assert( index < TGSI_EXEC_NUM_TEMPS );
1508       assert( index2D.i[0] < TGSI_EXEC_NUM_TEMP_ARRAYS );
1509       /* XXX we use index2D.i[0] here but somehow we might
1510        * end up with someone trying to store indirectly in
1511        * different buffers */
1512       dst = &mach->TempArray[index2D.i[0]][offset + index].xyzw[chan_index];
1513       break;
1514 
1515    case TGSI_FILE_ADDRESS:
1516       index = reg->Register.Index;
1517       dst = &mach->Addrs[index].xyzw[chan_index];
1518       break;
1519 
1520    case TGSI_FILE_PREDICATE:
1521       index = reg->Register.Index;
1522       assert(index < TGSI_EXEC_NUM_PREDS);
1523       dst = &mach->Predicates[index].xyzw[chan_index];
1524       break;
1525 
1526    default:
1527       assert( 0 );
1528       return;
1529    }
1530 
1531    if (inst->Instruction.Predicate) {
1532       uint swizzle;
1533       union tgsi_exec_channel *pred;
1534 
1535       switch (chan_index) {
1536       case TGSI_CHAN_X:
1537          swizzle = inst->Predicate.SwizzleX;
1538          break;
1539       case TGSI_CHAN_Y:
1540          swizzle = inst->Predicate.SwizzleY;
1541          break;
1542       case TGSI_CHAN_Z:
1543          swizzle = inst->Predicate.SwizzleZ;
1544          break;
1545       case TGSI_CHAN_W:
1546          swizzle = inst->Predicate.SwizzleW;
1547          break;
1548       default:
1549          assert(0);
1550          return;
1551       }
1552 
1553       assert(inst->Predicate.Index == 0);
1554 
1555       pred = &mach->Predicates[inst->Predicate.Index].xyzw[swizzle];
1556 
1557       if (inst->Predicate.Negate) {
1558          for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1559             if (pred->u[i]) {
1560                execmask &= ~(1 << i);
1561             }
1562          }
1563       } else {
1564          for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1565             if (!pred->u[i]) {
1566                execmask &= ~(1 << i);
1567             }
1568          }
1569       }
1570    }
1571 
1572    switch (inst->Instruction.Saturate) {
1573    case TGSI_SAT_NONE:
1574       for (i = 0; i < TGSI_QUAD_SIZE; i++)
1575          if (execmask & (1 << i))
1576             dst->i[i] = chan->i[i];
1577       break;
1578 
1579    case TGSI_SAT_ZERO_ONE:
1580       for (i = 0; i < TGSI_QUAD_SIZE; i++)
1581          if (execmask & (1 << i)) {
1582             if (chan->f[i] < 0.0f)
1583                dst->f[i] = 0.0f;
1584             else if (chan->f[i] > 1.0f)
1585                dst->f[i] = 1.0f;
1586             else
1587                dst->i[i] = chan->i[i];
1588          }
1589       break;
1590 
1591    case TGSI_SAT_MINUS_PLUS_ONE:
1592       for (i = 0; i < TGSI_QUAD_SIZE; i++)
1593          if (execmask & (1 << i)) {
1594             if (chan->f[i] < -1.0f)
1595                dst->f[i] = -1.0f;
1596             else if (chan->f[i] > 1.0f)
1597                dst->f[i] = 1.0f;
1598             else
1599                dst->i[i] = chan->i[i];
1600          }
1601       break;
1602 
1603    default:
1604       assert( 0 );
1605    }
1606 }
1607 
1608 #define FETCH(VAL,INDEX,CHAN)\
1609     fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1610 
1611 #define IFETCH(VAL,INDEX,CHAN)\
1612     fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_INT)
1613 
1614 
1615 /**
1616  * Execute ARB-style KIL which is predicated by a src register.
1617  * Kill fragment if any of the four values is less than zero.
1618  */
1619 static void
exec_kil(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)1620 exec_kil(struct tgsi_exec_machine *mach,
1621          const struct tgsi_full_instruction *inst)
1622 {
1623    uint uniquemask;
1624    uint chan_index;
1625    uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1626    union tgsi_exec_channel r[1];
1627 
1628    /* This mask stores component bits that were already tested. */
1629    uniquemask = 0;
1630 
1631    for (chan_index = 0; chan_index < 4; chan_index++)
1632    {
1633       uint swizzle;
1634       uint i;
1635 
1636       /* unswizzle channel */
1637       swizzle = tgsi_util_get_full_src_register_swizzle (
1638                         &inst->Src[0],
1639                         chan_index);
1640 
1641       /* check if the component has not been already tested */
1642       if (uniquemask & (1 << swizzle))
1643          continue;
1644       uniquemask |= 1 << swizzle;
1645 
1646       FETCH(&r[0], 0, chan_index);
1647       for (i = 0; i < 4; i++)
1648          if (r[0].f[i] < 0.0f)
1649             kilmask |= 1 << i;
1650    }
1651 
1652    mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1653 }
1654 
1655 /**
1656  * Execute NVIDIA-style KIL which is predicated by a condition code.
1657  * Kill fragment if the condition code is TRUE.
1658  */
1659 static void
exec_kilp(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)1660 exec_kilp(struct tgsi_exec_machine *mach,
1661           const struct tgsi_full_instruction *inst)
1662 {
1663    uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1664 
1665    /* "unconditional" kil */
1666    kilmask = mach->ExecMask;
1667    mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1668 }
1669 
1670 static void
emit_vertex(struct tgsi_exec_machine * mach)1671 emit_vertex(struct tgsi_exec_machine *mach)
1672 {
1673    /* FIXME: check for exec mask correctly
1674    unsigned i;
1675    for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
1676          if ((mach->ExecMask & (1 << i)))
1677    */
1678    if (mach->ExecMask) {
1679       mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
1680       mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
1681    }
1682 }
1683 
1684 static void
emit_primitive(struct tgsi_exec_machine * mach)1685 emit_primitive(struct tgsi_exec_machine *mach)
1686 {
1687    unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0];
1688    /* FIXME: check for exec mask correctly
1689    unsigned i;
1690    for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
1691          if ((mach->ExecMask & (1 << i)))
1692    */
1693    if (mach->ExecMask) {
1694       ++(*prim_count);
1695       debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
1696       mach->Primitives[*prim_count] = 0;
1697    }
1698 }
1699 
1700 static void
conditional_emit_primitive(struct tgsi_exec_machine * mach)1701 conditional_emit_primitive(struct tgsi_exec_machine *mach)
1702 {
1703    if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1704       int emitted_verts =
1705          mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]];
1706       if (emitted_verts) {
1707          emit_primitive(mach);
1708       }
1709    }
1710 }
1711 
1712 
1713 /*
1714  * Fetch four texture samples using STR texture coordinates.
1715  */
1716 static void
fetch_texel(struct tgsi_sampler * sampler,const union tgsi_exec_channel * s,const union tgsi_exec_channel * t,const union tgsi_exec_channel * p,const union tgsi_exec_channel * c0,enum tgsi_sampler_control control,union tgsi_exec_channel * r,union tgsi_exec_channel * g,union tgsi_exec_channel * b,union tgsi_exec_channel * a)1717 fetch_texel( struct tgsi_sampler *sampler,
1718              const union tgsi_exec_channel *s,
1719              const union tgsi_exec_channel *t,
1720              const union tgsi_exec_channel *p,
1721              const union tgsi_exec_channel *c0,
1722              enum tgsi_sampler_control control,
1723              union tgsi_exec_channel *r,
1724              union tgsi_exec_channel *g,
1725              union tgsi_exec_channel *b,
1726              union tgsi_exec_channel *a )
1727 {
1728    uint j;
1729    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1730 
1731    sampler->get_samples(sampler, s->f, t->f, p->f, c0->f, control, rgba);
1732 
1733    for (j = 0; j < 4; j++) {
1734       r->f[j] = rgba[0][j];
1735       g->f[j] = rgba[1][j];
1736       b->f[j] = rgba[2][j];
1737       a->f[j] = rgba[3][j];
1738    }
1739 }
1740 
1741 
1742 #define TEX_MODIFIER_NONE           0
1743 #define TEX_MODIFIER_PROJECTED      1
1744 #define TEX_MODIFIER_LOD_BIAS       2
1745 #define TEX_MODIFIER_EXPLICIT_LOD   3
1746 
1747 
1748 static void
exec_tex(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,uint modifier)1749 exec_tex(struct tgsi_exec_machine *mach,
1750          const struct tgsi_full_instruction *inst,
1751          uint modifier)
1752 {
1753    const uint unit = inst->Src[1].Register.Index;
1754    union tgsi_exec_channel r[4];
1755    const union tgsi_exec_channel *lod = &ZeroVec;
1756    enum tgsi_sampler_control control;
1757    uint chan;
1758 
1759    if (modifier != TEX_MODIFIER_NONE) {
1760       FETCH(&r[3], 0, TGSI_CHAN_W);
1761       if (modifier != TEX_MODIFIER_PROJECTED) {
1762          lod = &r[3];
1763       }
1764    }
1765 
1766    if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
1767       control = tgsi_sampler_lod_explicit;
1768    } else {
1769       control = tgsi_sampler_lod_bias;
1770    }
1771 
1772    switch (inst->Texture.Texture) {
1773    case TGSI_TEXTURE_1D:
1774       FETCH(&r[0], 0, TGSI_CHAN_X);
1775 
1776       if (modifier == TEX_MODIFIER_PROJECTED) {
1777          micro_div(&r[0], &r[0], &r[3]);
1778       }
1779 
1780       fetch_texel(mach->Samplers[unit],
1781                   &r[0], &ZeroVec, &ZeroVec, lod,  /* S, T, P, LOD */
1782                   control,
1783                   &r[0], &r[1], &r[2], &r[3]);     /* R, G, B, A */
1784       break;
1785    case TGSI_TEXTURE_SHADOW1D:
1786       FETCH(&r[0], 0, TGSI_CHAN_X);
1787       FETCH(&r[2], 0, TGSI_CHAN_Z);
1788 
1789       if (modifier == TEX_MODIFIER_PROJECTED) {
1790          micro_div(&r[0], &r[0], &r[3]);
1791       }
1792 
1793       fetch_texel(mach->Samplers[unit],
1794                   &r[0], &ZeroVec, &r[2], lod,  /* S, T, P, LOD */
1795                   control,
1796                   &r[0], &r[1], &r[2], &r[3]);     /* R, G, B, A */
1797       break;
1798 
1799    case TGSI_TEXTURE_2D:
1800    case TGSI_TEXTURE_RECT:
1801    case TGSI_TEXTURE_SHADOW2D:
1802    case TGSI_TEXTURE_SHADOWRECT:
1803       FETCH(&r[0], 0, TGSI_CHAN_X);
1804       FETCH(&r[1], 0, TGSI_CHAN_Y);
1805       FETCH(&r[2], 0, TGSI_CHAN_Z);
1806 
1807       if (modifier == TEX_MODIFIER_PROJECTED) {
1808          micro_div(&r[0], &r[0], &r[3]);
1809          micro_div(&r[1], &r[1], &r[3]);
1810          micro_div(&r[2], &r[2], &r[3]);
1811       }
1812 
1813       fetch_texel(mach->Samplers[unit],
1814                   &r[0], &r[1], &r[2], lod,     /* S, T, P, LOD */
1815                   control,
1816                   &r[0], &r[1], &r[2], &r[3]);  /* outputs */
1817       break;
1818 
1819    case TGSI_TEXTURE_1D_ARRAY:
1820       FETCH(&r[0], 0, TGSI_CHAN_X);
1821       FETCH(&r[1], 0, TGSI_CHAN_Y);
1822 
1823       if (modifier == TEX_MODIFIER_PROJECTED) {
1824          micro_div(&r[0], &r[0], &r[3]);
1825       }
1826 
1827       fetch_texel(mach->Samplers[unit],
1828                   &r[0], &r[1], &ZeroVec, lod,     /* S, T, P, LOD */
1829                   control,
1830                   &r[0], &r[1], &r[2], &r[3]);  /* outputs */
1831       break;
1832    case TGSI_TEXTURE_SHADOW1D_ARRAY:
1833       FETCH(&r[0], 0, TGSI_CHAN_X);
1834       FETCH(&r[1], 0, TGSI_CHAN_Y);
1835       FETCH(&r[2], 0, TGSI_CHAN_Z);
1836 
1837       if (modifier == TEX_MODIFIER_PROJECTED) {
1838          micro_div(&r[0], &r[0], &r[3]);
1839       }
1840 
1841       fetch_texel(mach->Samplers[unit],
1842                   &r[0], &r[1], &r[2], lod,     /* S, T, P, LOD */
1843                   control,
1844                   &r[0], &r[1], &r[2], &r[3]);  /* outputs */
1845       break;
1846 
1847    case TGSI_TEXTURE_2D_ARRAY:
1848       FETCH(&r[0], 0, TGSI_CHAN_X);
1849       FETCH(&r[1], 0, TGSI_CHAN_Y);
1850       FETCH(&r[2], 0, TGSI_CHAN_Z);
1851 
1852       if (modifier == TEX_MODIFIER_PROJECTED) {
1853          micro_div(&r[0], &r[0], &r[3]);
1854          micro_div(&r[1], &r[1], &r[3]);
1855       }
1856 
1857       fetch_texel(mach->Samplers[unit],
1858                   &r[0], &r[1], &r[2], lod,     /* S, T, P, LOD */
1859                   control,
1860                   &r[0], &r[1], &r[2], &r[3]);  /* outputs */
1861       break;
1862    case TGSI_TEXTURE_SHADOW2D_ARRAY:
1863    case TGSI_TEXTURE_SHADOWCUBE:
1864       FETCH(&r[0], 0, TGSI_CHAN_X);
1865       FETCH(&r[1], 0, TGSI_CHAN_Y);
1866       FETCH(&r[2], 0, TGSI_CHAN_Z);
1867       FETCH(&r[3], 0, TGSI_CHAN_W);
1868 
1869       fetch_texel(mach->Samplers[unit],
1870                   &r[0], &r[1], &r[2], &r[3],     /* S, T, P, LOD */
1871                   control,
1872                   &r[0], &r[1], &r[2], &r[3]);  /* outputs */
1873       break;
1874    case TGSI_TEXTURE_3D:
1875    case TGSI_TEXTURE_CUBE:
1876       FETCH(&r[0], 0, TGSI_CHAN_X);
1877       FETCH(&r[1], 0, TGSI_CHAN_Y);
1878       FETCH(&r[2], 0, TGSI_CHAN_Z);
1879 
1880       if (modifier == TEX_MODIFIER_PROJECTED) {
1881          micro_div(&r[0], &r[0], &r[3]);
1882          micro_div(&r[1], &r[1], &r[3]);
1883          micro_div(&r[2], &r[2], &r[3]);
1884       }
1885 
1886       fetch_texel(mach->Samplers[unit],
1887                   &r[0], &r[1], &r[2], lod,
1888                   control,
1889                   &r[0], &r[1], &r[2], &r[3]);
1890       break;
1891 
1892    default:
1893       assert(0);
1894    }
1895 
1896 #if 0
1897    debug_printf("fetch r: %g %g %g %g\n",
1898          r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]);
1899    debug_printf("fetch g: %g %g %g %g\n",
1900          r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]);
1901    debug_printf("fetch b: %g %g %g %g\n",
1902          r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]);
1903    debug_printf("fetch a: %g %g %g %g\n",
1904          r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]);
1905 #endif
1906 
1907    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1908       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1909          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1910       }
1911    }
1912 }
1913 
1914 static void
exec_txd(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)1915 exec_txd(struct tgsi_exec_machine *mach,
1916          const struct tgsi_full_instruction *inst)
1917 {
1918    const uint unit = inst->Src[3].Register.Index;
1919    union tgsi_exec_channel r[4];
1920    uint chan;
1921 
1922    /*
1923     * XXX: This is fake TXD -- the derivatives are not taken into account, yet.
1924     */
1925 
1926    switch (inst->Texture.Texture) {
1927    case TGSI_TEXTURE_1D:
1928    case TGSI_TEXTURE_SHADOW1D:
1929 
1930       FETCH(&r[0], 0, TGSI_CHAN_X);
1931 
1932       fetch_texel(mach->Samplers[unit],
1933                   &r[0], &ZeroVec, &ZeroVec, &ZeroVec,   /* S, T, P, BIAS */
1934                   tgsi_sampler_lod_bias,
1935                   &r[0], &r[1], &r[2], &r[3]);           /* R, G, B, A */
1936       break;
1937 
1938    case TGSI_TEXTURE_1D_ARRAY:
1939    case TGSI_TEXTURE_2D:
1940    case TGSI_TEXTURE_RECT:
1941    case TGSI_TEXTURE_SHADOW1D_ARRAY:
1942    case TGSI_TEXTURE_SHADOW2D:
1943    case TGSI_TEXTURE_SHADOWRECT:
1944 
1945       FETCH(&r[0], 0, TGSI_CHAN_X);
1946       FETCH(&r[1], 0, TGSI_CHAN_Y);
1947       FETCH(&r[2], 0, TGSI_CHAN_Z);
1948 
1949       fetch_texel(mach->Samplers[unit],
1950                   &r[0], &r[1], &r[2], &ZeroVec,   /* inputs */
1951                   tgsi_sampler_lod_bias,
1952                   &r[0], &r[1], &r[2], &r[3]);     /* outputs */
1953       break;
1954 
1955    case TGSI_TEXTURE_2D_ARRAY:
1956    case TGSI_TEXTURE_3D:
1957    case TGSI_TEXTURE_CUBE:
1958 
1959       FETCH(&r[0], 0, TGSI_CHAN_X);
1960       FETCH(&r[1], 0, TGSI_CHAN_Y);
1961       FETCH(&r[2], 0, TGSI_CHAN_Z);
1962 
1963       fetch_texel(mach->Samplers[unit],
1964                   &r[0], &r[1], &r[2], &ZeroVec,
1965                   tgsi_sampler_lod_bias,
1966                   &r[0], &r[1], &r[2], &r[3]);
1967       break;
1968 
1969    case TGSI_TEXTURE_SHADOW2D_ARRAY:
1970 
1971       FETCH(&r[0], 0, TGSI_CHAN_X);
1972       FETCH(&r[1], 0, TGSI_CHAN_Y);
1973       FETCH(&r[2], 0, TGSI_CHAN_Z);
1974       FETCH(&r[3], 0, TGSI_CHAN_W);
1975 
1976       fetch_texel(mach->Samplers[unit],
1977                   &r[0], &r[1], &r[2], &r[3],
1978                   tgsi_sampler_lod_bias,
1979                   &r[0], &r[1], &r[2], &r[3]);
1980       break;
1981 
1982    default:
1983       assert(0);
1984    }
1985 
1986    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1987       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1988          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1989       }
1990    }
1991 }
1992 
1993 
1994 static void
exec_txf(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)1995 exec_txf(struct tgsi_exec_machine *mach,
1996 	 const struct tgsi_full_instruction *inst)
1997 {
1998    struct tgsi_sampler *sampler;
1999    const uint unit = inst->Src[2].Register.Index;
2000    union tgsi_exec_channel r[4];
2001    union tgsi_exec_channel offset[3];
2002    uint chan;
2003    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2004    int j;
2005    int8_t offsets[3];
2006 
2007    if (inst->Texture.NumOffsets == 1) {
2008       union tgsi_exec_channel index;
2009       index.i[0] = index.i[1] = index.i[2] = index.i[3] = inst->TexOffsets[0].Index;
2010       fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
2011                              inst->TexOffsets[0].SwizzleX, &index, &ZeroVec, &offset[0]);
2012       fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
2013                              inst->TexOffsets[0].SwizzleY, &index, &ZeroVec, &offset[1]);
2014       fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
2015                              inst->TexOffsets[0].SwizzleZ, &index, &ZeroVec, &offset[2]);
2016      offsets[0] = offset[0].i[0];
2017      offsets[1] = offset[1].i[0];
2018      offsets[2] = offset[2].i[0];
2019    } else
2020      offsets[0] = offsets[1] = offsets[2] = 0;
2021 
2022    IFETCH(&r[3], 0, TGSI_CHAN_W);
2023 
2024    switch(inst->Texture.Texture) {
2025    case TGSI_TEXTURE_3D:
2026    case TGSI_TEXTURE_2D_ARRAY:
2027    case TGSI_TEXTURE_SHADOW2D_ARRAY:
2028       IFETCH(&r[2], 0, TGSI_CHAN_Z);
2029       /* fallthrough */
2030    case TGSI_TEXTURE_2D:
2031    case TGSI_TEXTURE_RECT:
2032    case TGSI_TEXTURE_SHADOW1D_ARRAY:
2033    case TGSI_TEXTURE_SHADOW2D:
2034    case TGSI_TEXTURE_SHADOWRECT:
2035    case TGSI_TEXTURE_1D_ARRAY:
2036       IFETCH(&r[1], 0, TGSI_CHAN_Y);
2037       /* fallthrough */
2038    case TGSI_TEXTURE_1D:
2039    case TGSI_TEXTURE_SHADOW1D:
2040       IFETCH(&r[0], 0, TGSI_CHAN_X);
2041       break;
2042    default:
2043       assert(0);
2044       break;
2045    }
2046 
2047    sampler = mach->Samplers[unit];
2048    sampler->get_texel(sampler, r[0].i, r[1].i, r[2].i, r[3].i,
2049 		      offsets, rgba);
2050 
2051    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2052       r[0].f[j] = rgba[0][j];
2053       r[1].f[j] = rgba[1][j];
2054       r[2].f[j] = rgba[2][j];
2055       r[3].f[j] = rgba[3][j];
2056    }
2057 
2058    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2059       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2060          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2061       }
2062    }
2063 }
2064 
2065 static void
exec_txq(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2066 exec_txq(struct tgsi_exec_machine *mach,
2067          const struct tgsi_full_instruction *inst)
2068 {
2069    struct tgsi_sampler *sampler;
2070    const uint unit = inst->Src[1].Register.Index;
2071    int result[4];
2072    union tgsi_exec_channel r[4], src;
2073    uint chan;
2074    int i,j;
2075 
2076    fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
2077    sampler = mach->Samplers[unit];
2078 
2079    sampler->get_dims(sampler, src.i[0], result);
2080 
2081    for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2082       for (j = 0; j < 4; j++) {
2083 	 r[j].i[i] = result[j];
2084       }
2085    }
2086 
2087    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2088       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2089 	 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
2090 		    TGSI_EXEC_DATA_INT);
2091       }
2092    }
2093 }
2094 
2095 static void
exec_sample(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,uint modifier)2096 exec_sample(struct tgsi_exec_machine *mach,
2097             const struct tgsi_full_instruction *inst,
2098             uint modifier)
2099 {
2100    const uint resource_unit = inst->Src[1].Register.Index;
2101    const uint sampler_unit = inst->Src[2].Register.Index;
2102    union tgsi_exec_channel r[4];
2103    const union tgsi_exec_channel *lod = &ZeroVec;
2104    enum tgsi_sampler_control control;
2105    uint chan;
2106 
2107    if (modifier != TEX_MODIFIER_NONE) {
2108       if (modifier == TEX_MODIFIER_LOD_BIAS)
2109          FETCH(&r[3], 3, TGSI_CHAN_X);
2110       else /*TEX_MODIFIER_LOD*/
2111          FETCH(&r[3], 0, TGSI_CHAN_W);
2112 
2113       if (modifier != TEX_MODIFIER_PROJECTED) {
2114          lod = &r[3];
2115       }
2116    }
2117 
2118    if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
2119       control = tgsi_sampler_lod_explicit;
2120    } else {
2121       control = tgsi_sampler_lod_bias;
2122    }
2123 
2124    switch (mach->SamplerViews[resource_unit].Resource) {
2125    case TGSI_TEXTURE_1D:
2126    case TGSI_TEXTURE_SHADOW1D:
2127       FETCH(&r[0], 0, TGSI_CHAN_X);
2128 
2129       if (modifier == TEX_MODIFIER_PROJECTED) {
2130          micro_div(&r[0], &r[0], &r[3]);
2131       }
2132 
2133       fetch_texel(mach->Samplers[sampler_unit],
2134                   &r[0], &ZeroVec, &ZeroVec, lod,  /* S, T, P, LOD */
2135                   control,
2136                   &r[0], &r[1], &r[2], &r[3]);     /* R, G, B, A */
2137       break;
2138 
2139    case TGSI_TEXTURE_1D_ARRAY:
2140    case TGSI_TEXTURE_2D:
2141    case TGSI_TEXTURE_RECT:
2142    case TGSI_TEXTURE_SHADOW1D_ARRAY:
2143    case TGSI_TEXTURE_SHADOW2D:
2144    case TGSI_TEXTURE_SHADOWRECT:
2145       FETCH(&r[0], 0, TGSI_CHAN_X);
2146       FETCH(&r[1], 0, TGSI_CHAN_Y);
2147       FETCH(&r[2], 0, TGSI_CHAN_Z);
2148 
2149       if (modifier == TEX_MODIFIER_PROJECTED) {
2150          micro_div(&r[0], &r[0], &r[3]);
2151          micro_div(&r[1], &r[1], &r[3]);
2152          micro_div(&r[2], &r[2], &r[3]);
2153       }
2154 
2155       fetch_texel(mach->Samplers[sampler_unit],
2156                   &r[0], &r[1], &r[2], lod,     /* S, T, P, LOD */
2157                   control,
2158                   &r[0], &r[1], &r[2], &r[3]);  /* outputs */
2159       break;
2160 
2161    case TGSI_TEXTURE_2D_ARRAY:
2162    case TGSI_TEXTURE_3D:
2163    case TGSI_TEXTURE_CUBE:
2164       FETCH(&r[0], 0, TGSI_CHAN_X);
2165       FETCH(&r[1], 0, TGSI_CHAN_Y);
2166       FETCH(&r[2], 0, TGSI_CHAN_Z);
2167 
2168       if (modifier == TEX_MODIFIER_PROJECTED) {
2169          micro_div(&r[0], &r[0], &r[3]);
2170          micro_div(&r[1], &r[1], &r[3]);
2171          micro_div(&r[2], &r[2], &r[3]);
2172       }
2173 
2174       fetch_texel(mach->Samplers[sampler_unit],
2175                   &r[0], &r[1], &r[2], lod,
2176                   control,
2177                   &r[0], &r[1], &r[2], &r[3]);
2178       break;
2179 
2180    case TGSI_TEXTURE_SHADOW2D_ARRAY:
2181    case TGSI_TEXTURE_SHADOWCUBE:
2182       FETCH(&r[0], 0, TGSI_CHAN_X);
2183       FETCH(&r[1], 0, TGSI_CHAN_Y);
2184       FETCH(&r[2], 0, TGSI_CHAN_Z);
2185       FETCH(&r[3], 0, TGSI_CHAN_W);
2186 
2187       assert(modifier != TEX_MODIFIER_PROJECTED);
2188 
2189       fetch_texel(mach->Samplers[sampler_unit],
2190                   &r[0], &r[1], &r[2], &r[3],
2191                   control,
2192                   &r[0], &r[1], &r[2], &r[3]);
2193       break;
2194 
2195    default:
2196       assert(0);
2197    }
2198 
2199    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2200       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2201          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2202       }
2203    }
2204 }
2205 
2206 static void
exec_sample_d(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2207 exec_sample_d(struct tgsi_exec_machine *mach,
2208               const struct tgsi_full_instruction *inst)
2209 {
2210    const uint resource_unit = inst->Src[1].Register.Index;
2211    const uint sampler_unit = inst->Src[2].Register.Index;
2212    union tgsi_exec_channel r[4];
2213    uint chan;
2214    /*
2215     * XXX: This is fake SAMPLE_D -- the derivatives are not taken into account, yet.
2216     */
2217 
2218    switch (mach->SamplerViews[resource_unit].Resource) {
2219    case TGSI_TEXTURE_1D:
2220    case TGSI_TEXTURE_SHADOW1D:
2221 
2222       FETCH(&r[0], 0, TGSI_CHAN_X);
2223 
2224       fetch_texel(mach->Samplers[sampler_unit],
2225                   &r[0], &ZeroVec, &ZeroVec, &ZeroVec,   /* S, T, P, BIAS */
2226                   tgsi_sampler_lod_bias,
2227                   &r[0], &r[1], &r[2], &r[3]);           /* R, G, B, A */
2228       break;
2229 
2230    case TGSI_TEXTURE_2D:
2231    case TGSI_TEXTURE_RECT:
2232    case TGSI_TEXTURE_SHADOW2D:
2233    case TGSI_TEXTURE_SHADOWRECT:
2234 
2235       FETCH(&r[0], 0, TGSI_CHAN_X);
2236       FETCH(&r[1], 0, TGSI_CHAN_Y);
2237       FETCH(&r[2], 0, TGSI_CHAN_Z);
2238 
2239       fetch_texel(mach->Samplers[sampler_unit],
2240                   &r[0], &r[1], &r[2], &ZeroVec,   /* inputs */
2241                   tgsi_sampler_lod_bias,
2242                   &r[0], &r[1], &r[2], &r[3]);     /* outputs */
2243       break;
2244 
2245    case TGSI_TEXTURE_3D:
2246    case TGSI_TEXTURE_CUBE:
2247 
2248       FETCH(&r[0], 0, TGSI_CHAN_X);
2249       FETCH(&r[1], 0, TGSI_CHAN_Y);
2250       FETCH(&r[2], 0, TGSI_CHAN_Z);
2251 
2252       fetch_texel(mach->Samplers[sampler_unit],
2253                   &r[0], &r[1], &r[2], &ZeroVec,
2254                   tgsi_sampler_lod_bias,
2255                   &r[0], &r[1], &r[2], &r[3]);
2256       break;
2257 
2258    default:
2259       assert(0);
2260    }
2261 
2262    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2263       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2264          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2265       }
2266    }
2267 }
2268 
2269 
2270 /**
2271  * Evaluate a constant-valued coefficient at the position of the
2272  * current quad.
2273  */
2274 static void
eval_constant_coef(struct tgsi_exec_machine * mach,unsigned attrib,unsigned chan)2275 eval_constant_coef(
2276    struct tgsi_exec_machine *mach,
2277    unsigned attrib,
2278    unsigned chan )
2279 {
2280    unsigned i;
2281 
2282    for( i = 0; i < TGSI_QUAD_SIZE; i++ ) {
2283       mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
2284    }
2285 }
2286 
2287 /**
2288  * Evaluate a linear-valued coefficient at the position of the
2289  * current quad.
2290  */
2291 static void
eval_linear_coef(struct tgsi_exec_machine * mach,unsigned attrib,unsigned chan)2292 eval_linear_coef(
2293    struct tgsi_exec_machine *mach,
2294    unsigned attrib,
2295    unsigned chan )
2296 {
2297    const float x = mach->QuadPos.xyzw[0].f[0];
2298    const float y = mach->QuadPos.xyzw[1].f[0];
2299    const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2300    const float dady = mach->InterpCoefs[attrib].dady[chan];
2301    const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2302    mach->Inputs[attrib].xyzw[chan].f[0] = a0;
2303    mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
2304    mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
2305    mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
2306 }
2307 
2308 /**
2309  * Evaluate a perspective-valued coefficient at the position of the
2310  * current quad.
2311  */
2312 static void
eval_perspective_coef(struct tgsi_exec_machine * mach,unsigned attrib,unsigned chan)2313 eval_perspective_coef(
2314    struct tgsi_exec_machine *mach,
2315    unsigned attrib,
2316    unsigned chan )
2317 {
2318    const float x = mach->QuadPos.xyzw[0].f[0];
2319    const float y = mach->QuadPos.xyzw[1].f[0];
2320    const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2321    const float dady = mach->InterpCoefs[attrib].dady[chan];
2322    const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2323    const float *w = mach->QuadPos.xyzw[3].f;
2324    /* divide by W here */
2325    mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
2326    mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
2327    mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
2328    mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
2329 }
2330 
2331 
2332 typedef void (* eval_coef_func)(
2333    struct tgsi_exec_machine *mach,
2334    unsigned attrib,
2335    unsigned chan );
2336 
2337 static void
exec_declaration(struct tgsi_exec_machine * mach,const struct tgsi_full_declaration * decl)2338 exec_declaration(struct tgsi_exec_machine *mach,
2339                  const struct tgsi_full_declaration *decl)
2340 {
2341    if (decl->Declaration.File == TGSI_FILE_SAMPLER_VIEW) {
2342       mach->SamplerViews[decl->Range.First] = decl->SamplerView;
2343       return;
2344    }
2345 
2346    if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
2347       if (decl->Declaration.File == TGSI_FILE_INPUT) {
2348          uint first, last, mask;
2349 
2350          first = decl->Range.First;
2351          last = decl->Range.Last;
2352          mask = decl->Declaration.UsageMask;
2353 
2354          /* XXX we could remove this special-case code since
2355           * mach->InterpCoefs[first].a0 should already have the
2356           * front/back-face value.  But we should first update the
2357           * ureg code to emit the right UsageMask value (WRITEMASK_X).
2358           * Then, we could remove the tgsi_exec_machine::Face field.
2359           */
2360          /* XXX make FACE a system value */
2361          if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
2362             uint i;
2363 
2364             assert(decl->Semantic.Index == 0);
2365             assert(first == last);
2366 
2367             for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2368                mach->Inputs[first].xyzw[0].f[i] = mach->Face;
2369             }
2370          } else {
2371             eval_coef_func eval;
2372             uint i, j;
2373 
2374             switch (decl->Interp.Interpolate) {
2375             case TGSI_INTERPOLATE_CONSTANT:
2376                eval = eval_constant_coef;
2377                break;
2378 
2379             case TGSI_INTERPOLATE_LINEAR:
2380                eval = eval_linear_coef;
2381                break;
2382 
2383             case TGSI_INTERPOLATE_PERSPECTIVE:
2384                eval = eval_perspective_coef;
2385                break;
2386 
2387             case TGSI_INTERPOLATE_COLOR:
2388                eval = mach->flatshade_color ? eval_constant_coef : eval_perspective_coef;
2389                break;
2390 
2391             default:
2392                assert(0);
2393                return;
2394             }
2395 
2396             for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2397                if (mask & (1 << j)) {
2398                   for (i = first; i <= last; i++) {
2399                      eval(mach, i, j);
2400                   }
2401                }
2402             }
2403          }
2404       }
2405    }
2406 
2407    if (decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
2408       mach->SysSemanticToIndex[decl->Declaration.Semantic] = decl->Range.First;
2409    }
2410 }
2411 
2412 
2413 typedef void (* micro_op)(union tgsi_exec_channel *dst);
2414 
2415 static void
exec_vector(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_op op,enum tgsi_exec_datatype dst_datatype)2416 exec_vector(struct tgsi_exec_machine *mach,
2417             const struct tgsi_full_instruction *inst,
2418             micro_op op,
2419             enum tgsi_exec_datatype dst_datatype)
2420 {
2421    unsigned int chan;
2422 
2423    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2424       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2425          union tgsi_exec_channel dst;
2426 
2427          op(&dst);
2428          store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2429       }
2430    }
2431 }
2432 
2433 typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
2434                                 const union tgsi_exec_channel *src);
2435 
2436 static void
exec_scalar_unary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_unary_op op,enum tgsi_exec_datatype dst_datatype,enum tgsi_exec_datatype src_datatype)2437 exec_scalar_unary(struct tgsi_exec_machine *mach,
2438                   const struct tgsi_full_instruction *inst,
2439                   micro_unary_op op,
2440                   enum tgsi_exec_datatype dst_datatype,
2441                   enum tgsi_exec_datatype src_datatype)
2442 {
2443    unsigned int chan;
2444    union tgsi_exec_channel src;
2445    union tgsi_exec_channel dst;
2446 
2447    fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
2448    op(&dst, &src);
2449    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2450       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2451          store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2452       }
2453    }
2454 }
2455 
2456 static void
exec_vector_unary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_unary_op op,enum tgsi_exec_datatype dst_datatype,enum tgsi_exec_datatype src_datatype)2457 exec_vector_unary(struct tgsi_exec_machine *mach,
2458                   const struct tgsi_full_instruction *inst,
2459                   micro_unary_op op,
2460                   enum tgsi_exec_datatype dst_datatype,
2461                   enum tgsi_exec_datatype src_datatype)
2462 {
2463    unsigned int chan;
2464    struct tgsi_exec_vector dst;
2465 
2466    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2467       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2468          union tgsi_exec_channel src;
2469 
2470          fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
2471          op(&dst.xyzw[chan], &src);
2472       }
2473    }
2474    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2475       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2476          store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2477       }
2478    }
2479 }
2480 
2481 typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
2482                                  const union tgsi_exec_channel *src0,
2483                                  const union tgsi_exec_channel *src1);
2484 
2485 static void
exec_scalar_binary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_binary_op op,enum tgsi_exec_datatype dst_datatype,enum tgsi_exec_datatype src_datatype)2486 exec_scalar_binary(struct tgsi_exec_machine *mach,
2487                    const struct tgsi_full_instruction *inst,
2488                    micro_binary_op op,
2489                    enum tgsi_exec_datatype dst_datatype,
2490                    enum tgsi_exec_datatype src_datatype)
2491 {
2492    unsigned int chan;
2493    union tgsi_exec_channel src[2];
2494    union tgsi_exec_channel dst;
2495 
2496    fetch_source(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, src_datatype);
2497    fetch_source(mach, &src[1], &inst->Src[1], TGSI_CHAN_Y, src_datatype);
2498    op(&dst, &src[0], &src[1]);
2499    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2500       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2501          store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2502       }
2503    }
2504 }
2505 
2506 static void
exec_vector_binary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_binary_op op,enum tgsi_exec_datatype dst_datatype,enum tgsi_exec_datatype src_datatype)2507 exec_vector_binary(struct tgsi_exec_machine *mach,
2508                    const struct tgsi_full_instruction *inst,
2509                    micro_binary_op op,
2510                    enum tgsi_exec_datatype dst_datatype,
2511                    enum tgsi_exec_datatype src_datatype)
2512 {
2513    unsigned int chan;
2514    struct tgsi_exec_vector dst;
2515 
2516    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2517       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2518          union tgsi_exec_channel src[2];
2519 
2520          fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2521          fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2522          op(&dst.xyzw[chan], &src[0], &src[1]);
2523       }
2524    }
2525    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2526       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2527          store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2528       }
2529    }
2530 }
2531 
2532 typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
2533                                   const union tgsi_exec_channel *src0,
2534                                   const union tgsi_exec_channel *src1,
2535                                   const union tgsi_exec_channel *src2);
2536 
2537 static void
exec_vector_trinary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_trinary_op op,enum tgsi_exec_datatype dst_datatype,enum tgsi_exec_datatype src_datatype)2538 exec_vector_trinary(struct tgsi_exec_machine *mach,
2539                     const struct tgsi_full_instruction *inst,
2540                     micro_trinary_op op,
2541                     enum tgsi_exec_datatype dst_datatype,
2542                     enum tgsi_exec_datatype src_datatype)
2543 {
2544    unsigned int chan;
2545    struct tgsi_exec_vector dst;
2546 
2547    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2548       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2549          union tgsi_exec_channel src[3];
2550 
2551          fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2552          fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2553          fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
2554          op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
2555       }
2556    }
2557    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2558       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2559          store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2560       }
2561    }
2562 }
2563 
2564 static void
exec_dp3(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2565 exec_dp3(struct tgsi_exec_machine *mach,
2566          const struct tgsi_full_instruction *inst)
2567 {
2568    unsigned int chan;
2569    union tgsi_exec_channel arg[3];
2570 
2571    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2572    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2573    micro_mul(&arg[2], &arg[0], &arg[1]);
2574 
2575    for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
2576       fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2577       fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
2578       micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2579    }
2580 
2581    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2582       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2583          store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2584       }
2585    }
2586 }
2587 
2588 static void
exec_dp4(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2589 exec_dp4(struct tgsi_exec_machine *mach,
2590          const struct tgsi_full_instruction *inst)
2591 {
2592    unsigned int chan;
2593    union tgsi_exec_channel arg[3];
2594 
2595    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2596    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2597    micro_mul(&arg[2], &arg[0], &arg[1]);
2598 
2599    for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
2600       fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2601       fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
2602       micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2603    }
2604 
2605    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2606       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2607          store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2608       }
2609    }
2610 }
2611 
2612 static void
exec_dp2a(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2613 exec_dp2a(struct tgsi_exec_machine *mach,
2614           const struct tgsi_full_instruction *inst)
2615 {
2616    unsigned int chan;
2617    union tgsi_exec_channel arg[3];
2618 
2619    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2620    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2621    micro_mul(&arg[2], &arg[0], &arg[1]);
2622 
2623    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2624    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2625    micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]);
2626 
2627    fetch_source(mach, &arg[1], &inst->Src[2], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2628    micro_add(&arg[0], &arg[0], &arg[1]);
2629 
2630    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2631       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2632          store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2633       }
2634    }
2635 }
2636 
2637 static void
exec_dph(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2638 exec_dph(struct tgsi_exec_machine *mach,
2639          const struct tgsi_full_instruction *inst)
2640 {
2641    unsigned int chan;
2642    union tgsi_exec_channel arg[3];
2643 
2644    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2645    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2646    micro_mul(&arg[2], &arg[0], &arg[1]);
2647 
2648    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2649    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2650    micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2651 
2652    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2653    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2654    micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]);
2655 
2656    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2657    micro_add(&arg[0], &arg[0], &arg[1]);
2658 
2659    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2660       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2661          store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2662       }
2663    }
2664 }
2665 
2666 static void
exec_dp2(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2667 exec_dp2(struct tgsi_exec_machine *mach,
2668          const struct tgsi_full_instruction *inst)
2669 {
2670    unsigned int chan;
2671    union tgsi_exec_channel arg[3];
2672 
2673    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2674    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2675    micro_mul(&arg[2], &arg[0], &arg[1]);
2676 
2677    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2678    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2679    micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2680 
2681    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2682       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2683          store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2684       }
2685    }
2686 }
2687 
2688 static void
exec_nrm4(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2689 exec_nrm4(struct tgsi_exec_machine *mach,
2690           const struct tgsi_full_instruction *inst)
2691 {
2692    unsigned int chan;
2693    union tgsi_exec_channel arg[4];
2694    union tgsi_exec_channel scale;
2695 
2696    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2697    micro_mul(&scale, &arg[0], &arg[0]);
2698 
2699    for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
2700       union tgsi_exec_channel product;
2701 
2702       fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2703       micro_mul(&product, &arg[chan], &arg[chan]);
2704       micro_add(&scale, &scale, &product);
2705    }
2706 
2707    micro_rsq(&scale, &scale);
2708 
2709    for (chan = TGSI_CHAN_X; chan <= TGSI_CHAN_W; chan++) {
2710       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2711          micro_mul(&arg[chan], &arg[chan], &scale);
2712          store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2713       }
2714    }
2715 }
2716 
2717 static void
exec_nrm3(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2718 exec_nrm3(struct tgsi_exec_machine *mach,
2719           const struct tgsi_full_instruction *inst)
2720 {
2721    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
2722       unsigned int chan;
2723       union tgsi_exec_channel arg[3];
2724       union tgsi_exec_channel scale;
2725 
2726       fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2727       micro_mul(&scale, &arg[0], &arg[0]);
2728 
2729       for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
2730          union tgsi_exec_channel product;
2731 
2732          fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2733          micro_mul(&product, &arg[chan], &arg[chan]);
2734          micro_add(&scale, &scale, &product);
2735       }
2736 
2737       micro_rsq(&scale, &scale);
2738 
2739       for (chan = TGSI_CHAN_X; chan <= TGSI_CHAN_Z; chan++) {
2740          if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2741             micro_mul(&arg[chan], &arg[chan], &scale);
2742             store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2743          }
2744       }
2745    }
2746 
2747    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2748       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2749    }
2750 }
2751 
2752 static void
exec_scs(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2753 exec_scs(struct tgsi_exec_machine *mach,
2754          const struct tgsi_full_instruction *inst)
2755 {
2756    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) {
2757       union tgsi_exec_channel arg;
2758       union tgsi_exec_channel result;
2759 
2760       fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2761 
2762       if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2763          micro_cos(&result, &arg);
2764          store_dest(mach, &result, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2765       }
2766       if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2767          micro_sin(&result, &arg);
2768          store_dest(mach, &result, &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2769       }
2770    }
2771    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2772       store_dest(mach, &ZeroVec, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2773    }
2774    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2775       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2776    }
2777 }
2778 
2779 static void
exec_x2d(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2780 exec_x2d(struct tgsi_exec_machine *mach,
2781          const struct tgsi_full_instruction *inst)
2782 {
2783    union tgsi_exec_channel r[4];
2784    union tgsi_exec_channel d[2];
2785 
2786    fetch_source(mach, &r[0], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2787    fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2788    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XZ) {
2789       fetch_source(mach, &r[2], &inst->Src[2], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2790       micro_mul(&r[2], &r[2], &r[0]);
2791       fetch_source(mach, &r[3], &inst->Src[2], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2792       micro_mul(&r[3], &r[3], &r[1]);
2793       micro_add(&r[2], &r[2], &r[3]);
2794       fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2795       micro_add(&d[0], &r[2], &r[3]);
2796    }
2797    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YW) {
2798       fetch_source(mach, &r[2], &inst->Src[2], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2799       micro_mul(&r[2], &r[2], &r[0]);
2800       fetch_source(mach, &r[3], &inst->Src[2], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2801       micro_mul(&r[3], &r[3], &r[1]);
2802       micro_add(&r[2], &r[2], &r[3]);
2803       fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2804       micro_add(&d[1], &r[2], &r[3]);
2805    }
2806    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2807       store_dest(mach, &d[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2808    }
2809    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2810       store_dest(mach, &d[1], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2811    }
2812    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2813       store_dest(mach, &d[0], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2814    }
2815    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2816       store_dest(mach, &d[1], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2817    }
2818 }
2819 
2820 static void
exec_rfl(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2821 exec_rfl(struct tgsi_exec_machine *mach,
2822          const struct tgsi_full_instruction *inst)
2823 {
2824    union tgsi_exec_channel r[9];
2825 
2826    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
2827       /* r0 = dp3(src0, src0) */
2828       fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2829       micro_mul(&r[0], &r[2], &r[2]);
2830       fetch_source(mach, &r[4], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2831       micro_mul(&r[8], &r[4], &r[4]);
2832       micro_add(&r[0], &r[0], &r[8]);
2833       fetch_source(mach, &r[6], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2834       micro_mul(&r[8], &r[6], &r[6]);
2835       micro_add(&r[0], &r[0], &r[8]);
2836 
2837       /* r1 = dp3(src0, src1) */
2838       fetch_source(mach, &r[3], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2839       micro_mul(&r[1], &r[2], &r[3]);
2840       fetch_source(mach, &r[5], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2841       micro_mul(&r[8], &r[4], &r[5]);
2842       micro_add(&r[1], &r[1], &r[8]);
2843       fetch_source(mach, &r[7], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2844       micro_mul(&r[8], &r[6], &r[7]);
2845       micro_add(&r[1], &r[1], &r[8]);
2846 
2847       /* r1 = 2 * r1 / r0 */
2848       micro_add(&r[1], &r[1], &r[1]);
2849       micro_div(&r[1], &r[1], &r[0]);
2850 
2851       if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2852          micro_mul(&r[2], &r[2], &r[1]);
2853          micro_sub(&r[2], &r[2], &r[3]);
2854          store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2855       }
2856       if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2857          micro_mul(&r[4], &r[4], &r[1]);
2858          micro_sub(&r[4], &r[4], &r[5]);
2859          store_dest(mach, &r[4], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2860       }
2861       if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2862          micro_mul(&r[6], &r[6], &r[1]);
2863          micro_sub(&r[6], &r[6], &r[7]);
2864          store_dest(mach, &r[6], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2865       }
2866    }
2867    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2868       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2869    }
2870 }
2871 
2872 static void
exec_xpd(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2873 exec_xpd(struct tgsi_exec_machine *mach,
2874          const struct tgsi_full_instruction *inst)
2875 {
2876    union tgsi_exec_channel r[6];
2877    union tgsi_exec_channel d[3];
2878 
2879    fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2880    fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2881 
2882    micro_mul(&r[2], &r[0], &r[1]);
2883 
2884    fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2885    fetch_source(mach, &r[4], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2886 
2887    micro_mul(&r[5], &r[3], &r[4] );
2888    micro_sub(&d[TGSI_CHAN_X], &r[2], &r[5]);
2889 
2890    fetch_source(mach, &r[2], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2891 
2892    micro_mul(&r[3], &r[3], &r[2]);
2893 
2894    fetch_source(mach, &r[5], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2895 
2896    micro_mul(&r[1], &r[1], &r[5]);
2897    micro_sub(&d[TGSI_CHAN_Y], &r[3], &r[1]);
2898 
2899    micro_mul(&r[5], &r[5], &r[4]);
2900    micro_mul(&r[0], &r[0], &r[2]);
2901    micro_sub(&d[TGSI_CHAN_Z], &r[5], &r[0]);
2902 
2903    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2904       store_dest(mach, &d[TGSI_CHAN_X], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2905    }
2906    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2907       store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2908    }
2909    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2910       store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2911    }
2912    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2913       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2914    }
2915 }
2916 
2917 static void
exec_dst(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2918 exec_dst(struct tgsi_exec_machine *mach,
2919          const struct tgsi_full_instruction *inst)
2920 {
2921    union tgsi_exec_channel r[2];
2922    union tgsi_exec_channel d[4];
2923 
2924    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2925       fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2926       fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2927       micro_mul(&d[TGSI_CHAN_Y], &r[0], &r[1]);
2928    }
2929    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2930       fetch_source(mach, &d[TGSI_CHAN_Z], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2931    }
2932    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2933       fetch_source(mach, &d[TGSI_CHAN_W], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2934    }
2935 
2936    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2937       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2938    }
2939    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2940       store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2941    }
2942    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2943       store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2944    }
2945    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2946       store_dest(mach, &d[TGSI_CHAN_W], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2947    }
2948 }
2949 
2950 static void
exec_log(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2951 exec_log(struct tgsi_exec_machine *mach,
2952          const struct tgsi_full_instruction *inst)
2953 {
2954    union tgsi_exec_channel r[3];
2955 
2956    fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2957    micro_abs(&r[2], &r[0]);  /* r2 = abs(r0) */
2958    micro_lg2(&r[1], &r[2]);  /* r1 = lg2(r2) */
2959    micro_flr(&r[0], &r[1]);  /* r0 = floor(r1) */
2960    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2961       store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2962    }
2963    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2964       micro_exp2(&r[0], &r[0]);       /* r0 = 2 ^ r0 */
2965       micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
2966       store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2967    }
2968    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2969       store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2970    }
2971    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2972       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2973    }
2974 }
2975 
2976 static void
exec_exp(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2977 exec_exp(struct tgsi_exec_machine *mach,
2978          const struct tgsi_full_instruction *inst)
2979 {
2980    union tgsi_exec_channel r[3];
2981 
2982    fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2983    micro_flr(&r[1], &r[0]);  /* r1 = floor(r0) */
2984    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2985       micro_exp2(&r[2], &r[1]);       /* r2 = 2 ^ r1 */
2986       store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2987    }
2988    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2989       micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
2990       store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2991    }
2992    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2993       micro_exp2(&r[2], &r[0]);       /* r2 = 2 ^ r0 */
2994       store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2995    }
2996    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2997       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2998    }
2999 }
3000 
3001 static void
exec_lit(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3002 exec_lit(struct tgsi_exec_machine *mach,
3003          const struct tgsi_full_instruction *inst)
3004 {
3005    union tgsi_exec_channel r[3];
3006    union tgsi_exec_channel d[3];
3007 
3008    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
3009       fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3010       if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3011          fetch_source(mach, &r[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3012          micro_max(&r[1], &r[1], &ZeroVec);
3013 
3014          fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3015          micro_min(&r[2], &r[2], &P128Vec);
3016          micro_max(&r[2], &r[2], &M128Vec);
3017          micro_pow(&r[1], &r[1], &r[2]);
3018          micro_lt(&d[TGSI_CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
3019          store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3020       }
3021       if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3022          micro_max(&d[TGSI_CHAN_Y], &r[0], &ZeroVec);
3023          store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3024       }
3025    }
3026    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3027       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3028    }
3029 
3030    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3031       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3032    }
3033 }
3034 
3035 static void
exec_break(struct tgsi_exec_machine * mach)3036 exec_break(struct tgsi_exec_machine *mach)
3037 {
3038    if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
3039       /* turn off loop channels for each enabled exec channel */
3040       mach->LoopMask &= ~mach->ExecMask;
3041       /* Todo: if mach->LoopMask == 0, jump to end of loop */
3042       UPDATE_EXEC_MASK(mach);
3043    } else {
3044       assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
3045 
3046       mach->Switch.mask = 0x0;
3047 
3048       UPDATE_EXEC_MASK(mach);
3049    }
3050 }
3051 
3052 static void
exec_switch(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3053 exec_switch(struct tgsi_exec_machine *mach,
3054             const struct tgsi_full_instruction *inst)
3055 {
3056    assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3057    assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3058 
3059    mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3060    fetch_source(mach, &mach->Switch.selector, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3061    mach->Switch.mask = 0x0;
3062    mach->Switch.defaultMask = 0x0;
3063 
3064    mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3065    mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
3066 
3067    UPDATE_EXEC_MASK(mach);
3068 }
3069 
3070 static void
exec_case(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3071 exec_case(struct tgsi_exec_machine *mach,
3072           const struct tgsi_full_instruction *inst)
3073 {
3074    uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3075    union tgsi_exec_channel src;
3076    uint mask = 0;
3077 
3078    fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3079 
3080    if (mach->Switch.selector.u[0] == src.u[0]) {
3081       mask |= 0x1;
3082    }
3083    if (mach->Switch.selector.u[1] == src.u[1]) {
3084       mask |= 0x2;
3085    }
3086    if (mach->Switch.selector.u[2] == src.u[2]) {
3087       mask |= 0x4;
3088    }
3089    if (mach->Switch.selector.u[3] == src.u[3]) {
3090       mask |= 0x8;
3091    }
3092 
3093    mach->Switch.defaultMask |= mask;
3094 
3095    mach->Switch.mask |= mask & prevMask;
3096 
3097    UPDATE_EXEC_MASK(mach);
3098 }
3099 
3100 static void
exec_default(struct tgsi_exec_machine * mach)3101 exec_default(struct tgsi_exec_machine *mach)
3102 {
3103    uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3104 
3105    mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
3106 
3107    UPDATE_EXEC_MASK(mach);
3108 }
3109 
3110 static void
exec_endswitch(struct tgsi_exec_machine * mach)3111 exec_endswitch(struct tgsi_exec_machine *mach)
3112 {
3113    mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
3114    mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3115 
3116    UPDATE_EXEC_MASK(mach);
3117 }
3118 
3119 static void
micro_i2f(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)3120 micro_i2f(union tgsi_exec_channel *dst,
3121           const union tgsi_exec_channel *src)
3122 {
3123    dst->f[0] = (float)src->i[0];
3124    dst->f[1] = (float)src->i[1];
3125    dst->f[2] = (float)src->i[2];
3126    dst->f[3] = (float)src->i[3];
3127 }
3128 
3129 static void
micro_not(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)3130 micro_not(union tgsi_exec_channel *dst,
3131           const union tgsi_exec_channel *src)
3132 {
3133    dst->u[0] = ~src->u[0];
3134    dst->u[1] = ~src->u[1];
3135    dst->u[2] = ~src->u[2];
3136    dst->u[3] = ~src->u[3];
3137 }
3138 
3139 static void
micro_shl(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3140 micro_shl(union tgsi_exec_channel *dst,
3141           const union tgsi_exec_channel *src0,
3142           const union tgsi_exec_channel *src1)
3143 {
3144    dst->u[0] = src0->u[0] << src1->u[0];
3145    dst->u[1] = src0->u[1] << src1->u[1];
3146    dst->u[2] = src0->u[2] << src1->u[2];
3147    dst->u[3] = src0->u[3] << src1->u[3];
3148 }
3149 
3150 static void
micro_and(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3151 micro_and(union tgsi_exec_channel *dst,
3152           const union tgsi_exec_channel *src0,
3153           const union tgsi_exec_channel *src1)
3154 {
3155    dst->u[0] = src0->u[0] & src1->u[0];
3156    dst->u[1] = src0->u[1] & src1->u[1];
3157    dst->u[2] = src0->u[2] & src1->u[2];
3158    dst->u[3] = src0->u[3] & src1->u[3];
3159 }
3160 
3161 static void
micro_or(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3162 micro_or(union tgsi_exec_channel *dst,
3163          const union tgsi_exec_channel *src0,
3164          const union tgsi_exec_channel *src1)
3165 {
3166    dst->u[0] = src0->u[0] | src1->u[0];
3167    dst->u[1] = src0->u[1] | src1->u[1];
3168    dst->u[2] = src0->u[2] | src1->u[2];
3169    dst->u[3] = src0->u[3] | src1->u[3];
3170 }
3171 
3172 static void
micro_xor(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3173 micro_xor(union tgsi_exec_channel *dst,
3174           const union tgsi_exec_channel *src0,
3175           const union tgsi_exec_channel *src1)
3176 {
3177    dst->u[0] = src0->u[0] ^ src1->u[0];
3178    dst->u[1] = src0->u[1] ^ src1->u[1];
3179    dst->u[2] = src0->u[2] ^ src1->u[2];
3180    dst->u[3] = src0->u[3] ^ src1->u[3];
3181 }
3182 
3183 static void
micro_mod(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3184 micro_mod(union tgsi_exec_channel *dst,
3185           const union tgsi_exec_channel *src0,
3186           const union tgsi_exec_channel *src1)
3187 {
3188    dst->i[0] = src0->i[0] % src1->i[0];
3189    dst->i[1] = src0->i[1] % src1->i[1];
3190    dst->i[2] = src0->i[2] % src1->i[2];
3191    dst->i[3] = src0->i[3] % src1->i[3];
3192 }
3193 
3194 static void
micro_f2i(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)3195 micro_f2i(union tgsi_exec_channel *dst,
3196           const union tgsi_exec_channel *src)
3197 {
3198    dst->i[0] = (int)src->f[0];
3199    dst->i[1] = (int)src->f[1];
3200    dst->i[2] = (int)src->f[2];
3201    dst->i[3] = (int)src->f[3];
3202 }
3203 
3204 static void
micro_idiv(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3205 micro_idiv(union tgsi_exec_channel *dst,
3206            const union tgsi_exec_channel *src0,
3207            const union tgsi_exec_channel *src1)
3208 {
3209    dst->i[0] = src0->i[0] / src1->i[0];
3210    dst->i[1] = src0->i[1] / src1->i[1];
3211    dst->i[2] = src0->i[2] / src1->i[2];
3212    dst->i[3] = src0->i[3] / src1->i[3];
3213 }
3214 
3215 static void
micro_imax(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3216 micro_imax(union tgsi_exec_channel *dst,
3217            const union tgsi_exec_channel *src0,
3218            const union tgsi_exec_channel *src1)
3219 {
3220    dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
3221    dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
3222    dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
3223    dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
3224 }
3225 
3226 static void
micro_imin(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3227 micro_imin(union tgsi_exec_channel *dst,
3228            const union tgsi_exec_channel *src0,
3229            const union tgsi_exec_channel *src1)
3230 {
3231    dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
3232    dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
3233    dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
3234    dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
3235 }
3236 
3237 static void
micro_isge(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3238 micro_isge(union tgsi_exec_channel *dst,
3239            const union tgsi_exec_channel *src0,
3240            const union tgsi_exec_channel *src1)
3241 {
3242    dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
3243    dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
3244    dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
3245    dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
3246 }
3247 
3248 static void
micro_ishr(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3249 micro_ishr(union tgsi_exec_channel *dst,
3250            const union tgsi_exec_channel *src0,
3251            const union tgsi_exec_channel *src1)
3252 {
3253    dst->i[0] = src0->i[0] >> src1->i[0];
3254    dst->i[1] = src0->i[1] >> src1->i[1];
3255    dst->i[2] = src0->i[2] >> src1->i[2];
3256    dst->i[3] = src0->i[3] >> src1->i[3];
3257 }
3258 
3259 static void
micro_islt(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3260 micro_islt(union tgsi_exec_channel *dst,
3261            const union tgsi_exec_channel *src0,
3262            const union tgsi_exec_channel *src1)
3263 {
3264    dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
3265    dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
3266    dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
3267    dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
3268 }
3269 
3270 static void
micro_f2u(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)3271 micro_f2u(union tgsi_exec_channel *dst,
3272           const union tgsi_exec_channel *src)
3273 {
3274    dst->u[0] = (uint)src->f[0];
3275    dst->u[1] = (uint)src->f[1];
3276    dst->u[2] = (uint)src->f[2];
3277    dst->u[3] = (uint)src->f[3];
3278 }
3279 
3280 static void
micro_u2f(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)3281 micro_u2f(union tgsi_exec_channel *dst,
3282           const union tgsi_exec_channel *src)
3283 {
3284    dst->f[0] = (float)src->u[0];
3285    dst->f[1] = (float)src->u[1];
3286    dst->f[2] = (float)src->u[2];
3287    dst->f[3] = (float)src->u[3];
3288 }
3289 
3290 static void
micro_uadd(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3291 micro_uadd(union tgsi_exec_channel *dst,
3292            const union tgsi_exec_channel *src0,
3293            const union tgsi_exec_channel *src1)
3294 {
3295    dst->u[0] = src0->u[0] + src1->u[0];
3296    dst->u[1] = src0->u[1] + src1->u[1];
3297    dst->u[2] = src0->u[2] + src1->u[2];
3298    dst->u[3] = src0->u[3] + src1->u[3];
3299 }
3300 
3301 static void
micro_udiv(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3302 micro_udiv(union tgsi_exec_channel *dst,
3303            const union tgsi_exec_channel *src0,
3304            const union tgsi_exec_channel *src1)
3305 {
3306    dst->u[0] = src0->u[0] / src1->u[0];
3307    dst->u[1] = src0->u[1] / src1->u[1];
3308    dst->u[2] = src0->u[2] / src1->u[2];
3309    dst->u[3] = src0->u[3] / src1->u[3];
3310 }
3311 
3312 static void
micro_umad(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)3313 micro_umad(union tgsi_exec_channel *dst,
3314            const union tgsi_exec_channel *src0,
3315            const union tgsi_exec_channel *src1,
3316            const union tgsi_exec_channel *src2)
3317 {
3318    dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
3319    dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
3320    dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
3321    dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
3322 }
3323 
3324 static void
micro_umax(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3325 micro_umax(union tgsi_exec_channel *dst,
3326            const union tgsi_exec_channel *src0,
3327            const union tgsi_exec_channel *src1)
3328 {
3329    dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
3330    dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
3331    dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
3332    dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
3333 }
3334 
3335 static void
micro_umin(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3336 micro_umin(union tgsi_exec_channel *dst,
3337            const union tgsi_exec_channel *src0,
3338            const union tgsi_exec_channel *src1)
3339 {
3340    dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
3341    dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
3342    dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
3343    dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
3344 }
3345 
3346 static void
micro_umod(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3347 micro_umod(union tgsi_exec_channel *dst,
3348            const union tgsi_exec_channel *src0,
3349            const union tgsi_exec_channel *src1)
3350 {
3351    dst->u[0] = src0->u[0] % src1->u[0];
3352    dst->u[1] = src0->u[1] % src1->u[1];
3353    dst->u[2] = src0->u[2] % src1->u[2];
3354    dst->u[3] = src0->u[3] % src1->u[3];
3355 }
3356 
3357 static void
micro_umul(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3358 micro_umul(union tgsi_exec_channel *dst,
3359            const union tgsi_exec_channel *src0,
3360            const union tgsi_exec_channel *src1)
3361 {
3362    dst->u[0] = src0->u[0] * src1->u[0];
3363    dst->u[1] = src0->u[1] * src1->u[1];
3364    dst->u[2] = src0->u[2] * src1->u[2];
3365    dst->u[3] = src0->u[3] * src1->u[3];
3366 }
3367 
3368 static void
micro_useq(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3369 micro_useq(union tgsi_exec_channel *dst,
3370            const union tgsi_exec_channel *src0,
3371            const union tgsi_exec_channel *src1)
3372 {
3373    dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
3374    dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
3375    dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
3376    dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
3377 }
3378 
3379 static void
micro_usge(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3380 micro_usge(union tgsi_exec_channel *dst,
3381            const union tgsi_exec_channel *src0,
3382            const union tgsi_exec_channel *src1)
3383 {
3384    dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
3385    dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
3386    dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
3387    dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
3388 }
3389 
3390 static void
micro_ushr(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3391 micro_ushr(union tgsi_exec_channel *dst,
3392            const union tgsi_exec_channel *src0,
3393            const union tgsi_exec_channel *src1)
3394 {
3395    dst->u[0] = src0->u[0] >> src1->u[0];
3396    dst->u[1] = src0->u[1] >> src1->u[1];
3397    dst->u[2] = src0->u[2] >> src1->u[2];
3398    dst->u[3] = src0->u[3] >> src1->u[3];
3399 }
3400 
3401 static void
micro_uslt(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3402 micro_uslt(union tgsi_exec_channel *dst,
3403            const union tgsi_exec_channel *src0,
3404            const union tgsi_exec_channel *src1)
3405 {
3406    dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
3407    dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
3408    dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
3409    dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
3410 }
3411 
3412 static void
micro_usne(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)3413 micro_usne(union tgsi_exec_channel *dst,
3414            const union tgsi_exec_channel *src0,
3415            const union tgsi_exec_channel *src1)
3416 {
3417    dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
3418    dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
3419    dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
3420    dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
3421 }
3422 
3423 static void
micro_uarl(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)3424 micro_uarl(union tgsi_exec_channel *dst,
3425            const union tgsi_exec_channel *src)
3426 {
3427    dst->i[0] = src->u[0];
3428    dst->i[1] = src->u[1];
3429    dst->i[2] = src->u[2];
3430    dst->i[3] = src->u[3];
3431 }
3432 
3433 static void
micro_ucmp(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)3434 micro_ucmp(union tgsi_exec_channel *dst,
3435            const union tgsi_exec_channel *src0,
3436            const union tgsi_exec_channel *src1,
3437            const union tgsi_exec_channel *src2)
3438 {
3439    dst->u[0] = src0->u[0] ? src1->u[0] : src2->u[0];
3440    dst->u[1] = src0->u[1] ? src1->u[1] : src2->u[1];
3441    dst->u[2] = src0->u[2] ? src1->u[2] : src2->u[2];
3442    dst->u[3] = src0->u[3] ? src1->u[3] : src2->u[3];
3443 }
3444 
3445 static void
exec_instruction(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,int * pc)3446 exec_instruction(
3447    struct tgsi_exec_machine *mach,
3448    const struct tgsi_full_instruction *inst,
3449    int *pc )
3450 {
3451    union tgsi_exec_channel r[10];
3452 
3453    (*pc)++;
3454 
3455    switch (inst->Instruction.Opcode) {
3456    case TGSI_OPCODE_ARL:
3457       exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3458       break;
3459 
3460    case TGSI_OPCODE_MOV:
3461       exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
3462       break;
3463 
3464    case TGSI_OPCODE_LIT:
3465       exec_lit(mach, inst);
3466       break;
3467 
3468    case TGSI_OPCODE_RCP:
3469       exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3470       break;
3471 
3472    case TGSI_OPCODE_RSQ:
3473       exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3474       break;
3475 
3476    case TGSI_OPCODE_EXP:
3477       exec_exp(mach, inst);
3478       break;
3479 
3480    case TGSI_OPCODE_LOG:
3481       exec_log(mach, inst);
3482       break;
3483 
3484    case TGSI_OPCODE_MUL:
3485       exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3486       break;
3487 
3488    case TGSI_OPCODE_ADD:
3489       exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3490       break;
3491 
3492    case TGSI_OPCODE_DP3:
3493       exec_dp3(mach, inst);
3494       break;
3495 
3496    case TGSI_OPCODE_DP4:
3497       exec_dp4(mach, inst);
3498       break;
3499 
3500    case TGSI_OPCODE_DST:
3501       exec_dst(mach, inst);
3502       break;
3503 
3504    case TGSI_OPCODE_MIN:
3505       exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3506       break;
3507 
3508    case TGSI_OPCODE_MAX:
3509       exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3510       break;
3511 
3512    case TGSI_OPCODE_SLT:
3513       exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3514       break;
3515 
3516    case TGSI_OPCODE_SGE:
3517       exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3518       break;
3519 
3520    case TGSI_OPCODE_MAD:
3521       exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3522       break;
3523 
3524    case TGSI_OPCODE_SUB:
3525       exec_vector_binary(mach, inst, micro_sub, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3526       break;
3527 
3528    case TGSI_OPCODE_LRP:
3529       exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3530       break;
3531 
3532    case TGSI_OPCODE_CND:
3533       exec_vector_trinary(mach, inst, micro_cnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3534       break;
3535 
3536    case TGSI_OPCODE_DP2A:
3537       exec_dp2a(mach, inst);
3538       break;
3539 
3540    case TGSI_OPCODE_FRC:
3541       exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3542       break;
3543 
3544    case TGSI_OPCODE_CLAMP:
3545       exec_vector_trinary(mach, inst, micro_clamp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3546       break;
3547 
3548    case TGSI_OPCODE_FLR:
3549       exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3550       break;
3551 
3552    case TGSI_OPCODE_ROUND:
3553       exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3554       break;
3555 
3556    case TGSI_OPCODE_EX2:
3557       exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3558       break;
3559 
3560    case TGSI_OPCODE_LG2:
3561       exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3562       break;
3563 
3564    case TGSI_OPCODE_POW:
3565       exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3566       break;
3567 
3568    case TGSI_OPCODE_XPD:
3569       exec_xpd(mach, inst);
3570       break;
3571 
3572    case TGSI_OPCODE_ABS:
3573       exec_vector_unary(mach, inst, micro_abs, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3574       break;
3575 
3576    case TGSI_OPCODE_RCC:
3577       exec_scalar_unary(mach, inst, micro_rcc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3578       break;
3579 
3580    case TGSI_OPCODE_DPH:
3581       exec_dph(mach, inst);
3582       break;
3583 
3584    case TGSI_OPCODE_COS:
3585       exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3586       break;
3587 
3588    case TGSI_OPCODE_DDX:
3589       exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3590       break;
3591 
3592    case TGSI_OPCODE_DDY:
3593       exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3594       break;
3595 
3596    case TGSI_OPCODE_KILP:
3597       exec_kilp (mach, inst);
3598       break;
3599 
3600    case TGSI_OPCODE_KIL:
3601       exec_kil (mach, inst);
3602       break;
3603 
3604    case TGSI_OPCODE_PK2H:
3605       assert (0);
3606       break;
3607 
3608    case TGSI_OPCODE_PK2US:
3609       assert (0);
3610       break;
3611 
3612    case TGSI_OPCODE_PK4B:
3613       assert (0);
3614       break;
3615 
3616    case TGSI_OPCODE_PK4UB:
3617       assert (0);
3618       break;
3619 
3620    case TGSI_OPCODE_RFL:
3621       exec_rfl(mach, inst);
3622       break;
3623 
3624    case TGSI_OPCODE_SEQ:
3625       exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3626       break;
3627 
3628    case TGSI_OPCODE_SFL:
3629       exec_vector(mach, inst, micro_sfl, TGSI_EXEC_DATA_FLOAT);
3630       break;
3631 
3632    case TGSI_OPCODE_SGT:
3633       exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3634       break;
3635 
3636    case TGSI_OPCODE_SIN:
3637       exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3638       break;
3639 
3640    case TGSI_OPCODE_SLE:
3641       exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3642       break;
3643 
3644    case TGSI_OPCODE_SNE:
3645       exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3646       break;
3647 
3648    case TGSI_OPCODE_STR:
3649       exec_vector(mach, inst, micro_str, TGSI_EXEC_DATA_FLOAT);
3650       break;
3651 
3652    case TGSI_OPCODE_TEX:
3653       /* simple texture lookup */
3654       /* src[0] = texcoord */
3655       /* src[1] = sampler unit */
3656       exec_tex(mach, inst, TEX_MODIFIER_NONE);
3657       break;
3658 
3659    case TGSI_OPCODE_TXB:
3660       /* Texture lookup with lod bias */
3661       /* src[0] = texcoord (src[0].w = LOD bias) */
3662       /* src[1] = sampler unit */
3663       exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS);
3664       break;
3665 
3666    case TGSI_OPCODE_TXD:
3667       /* Texture lookup with explict partial derivatives */
3668       /* src[0] = texcoord */
3669       /* src[1] = d[strq]/dx */
3670       /* src[2] = d[strq]/dy */
3671       /* src[3] = sampler unit */
3672       exec_txd(mach, inst);
3673       break;
3674 
3675    case TGSI_OPCODE_TXL:
3676       /* Texture lookup with explit LOD */
3677       /* src[0] = texcoord (src[0].w = LOD) */
3678       /* src[1] = sampler unit */
3679       exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD);
3680       break;
3681 
3682    case TGSI_OPCODE_TXP:
3683       /* Texture lookup with projection */
3684       /* src[0] = texcoord (src[0].w = projection) */
3685       /* src[1] = sampler unit */
3686       exec_tex(mach, inst, TEX_MODIFIER_PROJECTED);
3687       break;
3688 
3689    case TGSI_OPCODE_UP2H:
3690       assert (0);
3691       break;
3692 
3693    case TGSI_OPCODE_UP2US:
3694       assert (0);
3695       break;
3696 
3697    case TGSI_OPCODE_UP4B:
3698       assert (0);
3699       break;
3700 
3701    case TGSI_OPCODE_UP4UB:
3702       assert (0);
3703       break;
3704 
3705    case TGSI_OPCODE_X2D:
3706       exec_x2d(mach, inst);
3707       break;
3708 
3709    case TGSI_OPCODE_ARA:
3710       assert (0);
3711       break;
3712 
3713    case TGSI_OPCODE_ARR:
3714       exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3715       break;
3716 
3717    case TGSI_OPCODE_BRA:
3718       assert (0);
3719       break;
3720 
3721    case TGSI_OPCODE_CAL:
3722       /* skip the call if no execution channels are enabled */
3723       if (mach->ExecMask) {
3724          /* do the call */
3725 
3726          /* First, record the depths of the execution stacks.
3727           * This is important for deeply nested/looped return statements.
3728           * We have to unwind the stacks by the correct amount.  For a
3729           * real code generator, we could determine the number of entries
3730           * to pop off each stack with simple static analysis and avoid
3731           * implementing this data structure at run time.
3732           */
3733          mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
3734          mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
3735          mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
3736          mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
3737          mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
3738          /* note that PC was already incremented above */
3739          mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
3740 
3741          mach->CallStackTop++;
3742 
3743          /* Second, push the Cond, Loop, Cont, Func stacks */
3744          assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3745          assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3746          assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3747          assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3748          assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3749          assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
3750 
3751          mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3752          mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
3753          mach->ContStack[mach->ContStackTop++] = mach->ContMask;
3754          mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3755          mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3756          mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
3757 
3758          /* Finally, jump to the subroutine */
3759          *pc = inst->Label.Label;
3760       }
3761       break;
3762 
3763    case TGSI_OPCODE_RET:
3764       mach->FuncMask &= ~mach->ExecMask;
3765       UPDATE_EXEC_MASK(mach);
3766 
3767       if (mach->FuncMask == 0x0) {
3768          /* really return now (otherwise, keep executing */
3769 
3770          if (mach->CallStackTop == 0) {
3771             /* returning from main() */
3772             mach->CondStackTop = 0;
3773             mach->LoopStackTop = 0;
3774             *pc = -1;
3775             return;
3776          }
3777 
3778          assert(mach->CallStackTop > 0);
3779          mach->CallStackTop--;
3780 
3781          mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
3782          mach->CondMask = mach->CondStack[mach->CondStackTop];
3783 
3784          mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
3785          mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
3786 
3787          mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
3788          mach->ContMask = mach->ContStack[mach->ContStackTop];
3789 
3790          mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
3791          mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
3792 
3793          mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
3794          mach->BreakType = mach->BreakStack[mach->BreakStackTop];
3795 
3796          assert(mach->FuncStackTop > 0);
3797          mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
3798 
3799          *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
3800 
3801          UPDATE_EXEC_MASK(mach);
3802       }
3803       break;
3804 
3805    case TGSI_OPCODE_SSG:
3806       exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3807       break;
3808 
3809    case TGSI_OPCODE_CMP:
3810       exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3811       break;
3812 
3813    case TGSI_OPCODE_SCS:
3814       exec_scs(mach, inst);
3815       break;
3816 
3817    case TGSI_OPCODE_NRM:
3818       exec_nrm3(mach, inst);
3819       break;
3820 
3821    case TGSI_OPCODE_NRM4:
3822       exec_nrm4(mach, inst);
3823       break;
3824 
3825    case TGSI_OPCODE_DIV:
3826       exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3827       break;
3828 
3829    case TGSI_OPCODE_DP2:
3830       exec_dp2(mach, inst);
3831       break;
3832 
3833    case TGSI_OPCODE_IF:
3834       /* push CondMask */
3835       assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3836       mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3837       FETCH( &r[0], 0, TGSI_CHAN_X );
3838       /* update CondMask */
3839       if( ! r[0].u[0] ) {
3840          mach->CondMask &= ~0x1;
3841       }
3842       if( ! r[0].u[1] ) {
3843          mach->CondMask &= ~0x2;
3844       }
3845       if( ! r[0].u[2] ) {
3846          mach->CondMask &= ~0x4;
3847       }
3848       if( ! r[0].u[3] ) {
3849          mach->CondMask &= ~0x8;
3850       }
3851       UPDATE_EXEC_MASK(mach);
3852       /* Todo: If CondMask==0, jump to ELSE */
3853       break;
3854 
3855    case TGSI_OPCODE_ELSE:
3856       /* invert CondMask wrt previous mask */
3857       {
3858          uint prevMask;
3859          assert(mach->CondStackTop > 0);
3860          prevMask = mach->CondStack[mach->CondStackTop - 1];
3861          mach->CondMask = ~mach->CondMask & prevMask;
3862          UPDATE_EXEC_MASK(mach);
3863          /* Todo: If CondMask==0, jump to ENDIF */
3864       }
3865       break;
3866 
3867    case TGSI_OPCODE_ENDIF:
3868       /* pop CondMask */
3869       assert(mach->CondStackTop > 0);
3870       mach->CondMask = mach->CondStack[--mach->CondStackTop];
3871       UPDATE_EXEC_MASK(mach);
3872       break;
3873 
3874    case TGSI_OPCODE_END:
3875       /* make sure we end primitives which haven't
3876        * been explicitly emitted */
3877       conditional_emit_primitive(mach);
3878       /* halt execution */
3879       *pc = -1;
3880       break;
3881 
3882    case TGSI_OPCODE_PUSHA:
3883       assert (0);
3884       break;
3885 
3886    case TGSI_OPCODE_POPA:
3887       assert (0);
3888       break;
3889 
3890    case TGSI_OPCODE_CEIL:
3891       exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3892       break;
3893 
3894    case TGSI_OPCODE_I2F:
3895       exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
3896       break;
3897 
3898    case TGSI_OPCODE_NOT:
3899       exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3900       break;
3901 
3902    case TGSI_OPCODE_TRUNC:
3903       exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3904       break;
3905 
3906    case TGSI_OPCODE_SHL:
3907       exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3908       break;
3909 
3910    case TGSI_OPCODE_AND:
3911       exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3912       break;
3913 
3914    case TGSI_OPCODE_OR:
3915       exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3916       break;
3917 
3918    case TGSI_OPCODE_MOD:
3919       exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3920       break;
3921 
3922    case TGSI_OPCODE_XOR:
3923       exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3924       break;
3925 
3926    case TGSI_OPCODE_SAD:
3927       assert (0);
3928       break;
3929 
3930    case TGSI_OPCODE_TXF:
3931       exec_txf(mach, inst);
3932       break;
3933 
3934    case TGSI_OPCODE_TXQ:
3935       exec_txq(mach, inst);
3936       break;
3937 
3938    case TGSI_OPCODE_EMIT:
3939       emit_vertex(mach);
3940       break;
3941 
3942    case TGSI_OPCODE_ENDPRIM:
3943       emit_primitive(mach);
3944       break;
3945 
3946    case TGSI_OPCODE_BGNLOOP:
3947       /* push LoopMask and ContMasks */
3948       assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3949       assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3950       assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3951       assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3952 
3953       mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
3954       mach->ContStack[mach->ContStackTop++] = mach->ContMask;
3955       mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
3956       mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3957       mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
3958       break;
3959 
3960    case TGSI_OPCODE_ENDLOOP:
3961       /* Restore ContMask, but don't pop */
3962       assert(mach->ContStackTop > 0);
3963       mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
3964       UPDATE_EXEC_MASK(mach);
3965       if (mach->ExecMask) {
3966          /* repeat loop: jump to instruction just past BGNLOOP */
3967          assert(mach->LoopLabelStackTop > 0);
3968          *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
3969       }
3970       else {
3971          /* exit loop: pop LoopMask */
3972          assert(mach->LoopStackTop > 0);
3973          mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
3974          /* pop ContMask */
3975          assert(mach->ContStackTop > 0);
3976          mach->ContMask = mach->ContStack[--mach->ContStackTop];
3977          assert(mach->LoopLabelStackTop > 0);
3978          --mach->LoopLabelStackTop;
3979 
3980          mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3981       }
3982       UPDATE_EXEC_MASK(mach);
3983       break;
3984 
3985    case TGSI_OPCODE_BRK:
3986       exec_break(mach);
3987       break;
3988 
3989    case TGSI_OPCODE_CONT:
3990       /* turn off cont channels for each enabled exec channel */
3991       mach->ContMask &= ~mach->ExecMask;
3992       /* Todo: if mach->LoopMask == 0, jump to end of loop */
3993       UPDATE_EXEC_MASK(mach);
3994       break;
3995 
3996    case TGSI_OPCODE_BGNSUB:
3997       /* no-op */
3998       break;
3999 
4000    case TGSI_OPCODE_ENDSUB:
4001       /*
4002        * XXX: This really should be a no-op. We should never reach this opcode.
4003        */
4004 
4005       assert(mach->CallStackTop > 0);
4006       mach->CallStackTop--;
4007 
4008       mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
4009       mach->CondMask = mach->CondStack[mach->CondStackTop];
4010 
4011       mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
4012       mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
4013 
4014       mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
4015       mach->ContMask = mach->ContStack[mach->ContStackTop];
4016 
4017       mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
4018       mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
4019 
4020       mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
4021       mach->BreakType = mach->BreakStack[mach->BreakStackTop];
4022 
4023       assert(mach->FuncStackTop > 0);
4024       mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
4025 
4026       *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
4027 
4028       UPDATE_EXEC_MASK(mach);
4029       break;
4030 
4031    case TGSI_OPCODE_NOP:
4032       break;
4033 
4034    case TGSI_OPCODE_BREAKC:
4035       FETCH(&r[0], 0, TGSI_CHAN_X);
4036       /* update CondMask */
4037       if (r[0].u[0] && (mach->ExecMask & 0x1)) {
4038          mach->LoopMask &= ~0x1;
4039       }
4040       if (r[0].u[1] && (mach->ExecMask & 0x2)) {
4041          mach->LoopMask &= ~0x2;
4042       }
4043       if (r[0].u[2] && (mach->ExecMask & 0x4)) {
4044          mach->LoopMask &= ~0x4;
4045       }
4046       if (r[0].u[3] && (mach->ExecMask & 0x8)) {
4047          mach->LoopMask &= ~0x8;
4048       }
4049       /* Todo: if mach->LoopMask == 0, jump to end of loop */
4050       UPDATE_EXEC_MASK(mach);
4051       break;
4052 
4053    case TGSI_OPCODE_F2I:
4054       exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
4055       break;
4056 
4057    case TGSI_OPCODE_IDIV:
4058       exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4059       break;
4060 
4061    case TGSI_OPCODE_IMAX:
4062       exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4063       break;
4064 
4065    case TGSI_OPCODE_IMIN:
4066       exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4067       break;
4068 
4069    case TGSI_OPCODE_INEG:
4070       exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4071       break;
4072 
4073    case TGSI_OPCODE_ISGE:
4074       exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4075       break;
4076 
4077    case TGSI_OPCODE_ISHR:
4078       exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4079       break;
4080 
4081    case TGSI_OPCODE_ISLT:
4082       exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4083       break;
4084 
4085    case TGSI_OPCODE_F2U:
4086       exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
4087       break;
4088 
4089    case TGSI_OPCODE_U2F:
4090       exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
4091       break;
4092 
4093    case TGSI_OPCODE_UADD:
4094       exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4095       break;
4096 
4097    case TGSI_OPCODE_UDIV:
4098       exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4099       break;
4100 
4101    case TGSI_OPCODE_UMAD:
4102       exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4103       break;
4104 
4105    case TGSI_OPCODE_UMAX:
4106       exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4107       break;
4108 
4109    case TGSI_OPCODE_UMIN:
4110       exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4111       break;
4112 
4113    case TGSI_OPCODE_UMOD:
4114       exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4115       break;
4116 
4117    case TGSI_OPCODE_UMUL:
4118       exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4119       break;
4120 
4121    case TGSI_OPCODE_USEQ:
4122       exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4123       break;
4124 
4125    case TGSI_OPCODE_USGE:
4126       exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4127       break;
4128 
4129    case TGSI_OPCODE_USHR:
4130       exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4131       break;
4132 
4133    case TGSI_OPCODE_USLT:
4134       exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4135       break;
4136 
4137    case TGSI_OPCODE_USNE:
4138       exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4139       break;
4140 
4141    case TGSI_OPCODE_SWITCH:
4142       exec_switch(mach, inst);
4143       break;
4144 
4145    case TGSI_OPCODE_CASE:
4146       exec_case(mach, inst);
4147       break;
4148 
4149    case TGSI_OPCODE_DEFAULT:
4150       exec_default(mach);
4151       break;
4152 
4153    case TGSI_OPCODE_ENDSWITCH:
4154       exec_endswitch(mach);
4155       break;
4156 
4157    case TGSI_OPCODE_SAMPLE_I:
4158       assert(0);
4159       break;
4160 
4161    case TGSI_OPCODE_SAMPLE_I_MS:
4162       assert(0);
4163       break;
4164 
4165    case TGSI_OPCODE_SAMPLE:
4166       exec_sample(mach, inst, TEX_MODIFIER_NONE);
4167       break;
4168 
4169    case TGSI_OPCODE_SAMPLE_B:
4170       exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS);
4171       break;
4172 
4173    case TGSI_OPCODE_SAMPLE_C:
4174       exec_sample(mach, inst, TEX_MODIFIER_NONE);
4175       break;
4176 
4177    case TGSI_OPCODE_SAMPLE_C_LZ:
4178       exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS);
4179       break;
4180 
4181    case TGSI_OPCODE_SAMPLE_D:
4182       exec_sample_d(mach, inst);
4183       break;
4184 
4185    case TGSI_OPCODE_SAMPLE_L:
4186       exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD);
4187       break;
4188 
4189    case TGSI_OPCODE_GATHER4:
4190       assert(0);
4191       break;
4192 
4193    case TGSI_OPCODE_SVIEWINFO:
4194       assert(0);
4195       break;
4196 
4197    case TGSI_OPCODE_SAMPLE_POS:
4198       assert(0);
4199       break;
4200 
4201    case TGSI_OPCODE_SAMPLE_INFO:
4202       assert(0);
4203       break;
4204 
4205    case TGSI_OPCODE_UARL:
4206       exec_vector_unary(mach, inst, micro_uarl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
4207       break;
4208 
4209    case TGSI_OPCODE_UCMP:
4210       exec_vector_trinary(mach, inst, micro_ucmp, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4211       break;
4212 
4213    case TGSI_OPCODE_IABS:
4214       exec_vector_unary(mach, inst, micro_iabs, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4215       break;
4216 
4217    case TGSI_OPCODE_ISSG:
4218       exec_vector_unary(mach, inst, micro_isgn, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4219       break;
4220 
4221    default:
4222       assert( 0 );
4223    }
4224 }
4225 
4226 
4227 #define DEBUG_EXECUTION 0
4228 
4229 
4230 /**
4231  * Run TGSI interpreter.
4232  * \return bitmask of "alive" quad components
4233  */
4234 uint
tgsi_exec_machine_run(struct tgsi_exec_machine * mach)4235 tgsi_exec_machine_run( struct tgsi_exec_machine *mach )
4236 {
4237    uint i;
4238    int pc = 0;
4239 
4240    mach->CondMask = 0xf;
4241    mach->LoopMask = 0xf;
4242    mach->ContMask = 0xf;
4243    mach->FuncMask = 0xf;
4244    mach->ExecMask = 0xf;
4245 
4246    mach->Switch.mask = 0xf;
4247 
4248    assert(mach->CondStackTop == 0);
4249    assert(mach->LoopStackTop == 0);
4250    assert(mach->ContStackTop == 0);
4251    assert(mach->SwitchStackTop == 0);
4252    assert(mach->BreakStackTop == 0);
4253    assert(mach->CallStackTop == 0);
4254 
4255    mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
4256    mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
4257 
4258    if( mach->Processor == TGSI_PROCESSOR_GEOMETRY ) {
4259       mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
4260       mach->Primitives[0] = 0;
4261    }
4262 
4263    /* execute declarations (interpolants) */
4264    for (i = 0; i < mach->NumDeclarations; i++) {
4265       exec_declaration( mach, mach->Declarations+i );
4266    }
4267 
4268    {
4269 #if DEBUG_EXECUTION
4270       struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
4271       struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
4272       uint inst = 1;
4273 
4274       memcpy(temps, mach->Temps, sizeof(temps));
4275       memcpy(outputs, mach->Outputs, sizeof(outputs));
4276 #endif
4277 
4278       /* execute instructions, until pc is set to -1 */
4279       while (pc != -1) {
4280 
4281 #if DEBUG_EXECUTION
4282          uint i;
4283 
4284          tgsi_dump_instruction(&mach->Instructions[pc], inst++);
4285 #endif
4286 
4287          assert(pc < (int) mach->NumInstructions);
4288          exec_instruction(mach, mach->Instructions + pc, &pc);
4289 
4290 #if DEBUG_EXECUTION
4291          for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
4292             if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
4293                uint j;
4294 
4295                memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
4296                debug_printf("TEMP[%2u] = ", i);
4297                for (j = 0; j < 4; j++) {
4298                   if (j > 0) {
4299                      debug_printf("           ");
4300                   }
4301                   debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4302                                temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
4303                                temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
4304                                temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
4305                                temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
4306                }
4307             }
4308          }
4309          for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
4310             if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
4311                uint j;
4312 
4313                memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
4314                debug_printf("OUT[%2u] =  ", i);
4315                for (j = 0; j < 4; j++) {
4316                   if (j > 0) {
4317                      debug_printf("           ");
4318                   }
4319                   debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4320                                outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
4321                                outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
4322                                outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
4323                                outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
4324                }
4325             }
4326          }
4327 #endif
4328       }
4329    }
4330 
4331 #if 0
4332    /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
4333    if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
4334       /*
4335        * Scale back depth component.
4336        */
4337       for (i = 0; i < 4; i++)
4338          mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
4339    }
4340 #endif
4341 
4342    /* Strictly speaking, these assertions aren't really needed but they
4343     * can potentially catch some bugs in the control flow code.
4344     */
4345    assert(mach->CondStackTop == 0);
4346    assert(mach->LoopStackTop == 0);
4347    assert(mach->ContStackTop == 0);
4348    assert(mach->SwitchStackTop == 0);
4349    assert(mach->BreakStackTop == 0);
4350    assert(mach->CallStackTop == 0);
4351 
4352    return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4353 }
4354