• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "./vpx_config.h"
12 #include "./vpx_dsp_rtcd.h"
13 #include "vp9/common/vp9_loopfilter.h"
14 #include "vp9/common/vp9_onyxc_int.h"
15 #include "vp9/common/vp9_reconinter.h"
16 #include "vpx_dsp/vpx_dsp_common.h"
17 #include "vpx_mem/vpx_mem.h"
18 #include "vpx_ports/mem.h"
19 
20 #include "vp9/common/vp9_seg_common.h"
21 
22 // 64 bit masks for left transform size. Each 1 represents a position where
23 // we should apply a loop filter across the left border of an 8x8 block
24 // boundary.
25 //
26 // In the case of TX_16X16->  ( in low order byte first we end up with
27 // a mask that looks like this
28 //
29 //    10101010
30 //    10101010
31 //    10101010
32 //    10101010
33 //    10101010
34 //    10101010
35 //    10101010
36 //    10101010
37 //
38 // A loopfilter should be applied to every other 8x8 horizontally.
39 static const uint64_t left_64x64_txform_mask[TX_SIZES]= {
40   0xffffffffffffffffULL,  // TX_4X4
41   0xffffffffffffffffULL,  // TX_8x8
42   0x5555555555555555ULL,  // TX_16x16
43   0x1111111111111111ULL,  // TX_32x32
44 };
45 
46 // 64 bit masks for above transform size. Each 1 represents a position where
47 // we should apply a loop filter across the top border of an 8x8 block
48 // boundary.
49 //
50 // In the case of TX_32x32 ->  ( in low order byte first we end up with
51 // a mask that looks like this
52 //
53 //    11111111
54 //    00000000
55 //    00000000
56 //    00000000
57 //    11111111
58 //    00000000
59 //    00000000
60 //    00000000
61 //
62 // A loopfilter should be applied to every other 4 the row vertically.
63 static const uint64_t above_64x64_txform_mask[TX_SIZES]= {
64   0xffffffffffffffffULL,  // TX_4X4
65   0xffffffffffffffffULL,  // TX_8x8
66   0x00ff00ff00ff00ffULL,  // TX_16x16
67   0x000000ff000000ffULL,  // TX_32x32
68 };
69 
70 // 64 bit masks for prediction sizes (left). Each 1 represents a position
71 // where left border of an 8x8 block. These are aligned to the right most
72 // appropriate bit, and then shifted into place.
73 //
74 // In the case of TX_16x32 ->  ( low order byte first ) we end up with
75 // a mask that looks like this :
76 //
77 //  10000000
78 //  10000000
79 //  10000000
80 //  10000000
81 //  00000000
82 //  00000000
83 //  00000000
84 //  00000000
85 static const uint64_t left_prediction_mask[BLOCK_SIZES] = {
86   0x0000000000000001ULL,  // BLOCK_4X4,
87   0x0000000000000001ULL,  // BLOCK_4X8,
88   0x0000000000000001ULL,  // BLOCK_8X4,
89   0x0000000000000001ULL,  // BLOCK_8X8,
90   0x0000000000000101ULL,  // BLOCK_8X16,
91   0x0000000000000001ULL,  // BLOCK_16X8,
92   0x0000000000000101ULL,  // BLOCK_16X16,
93   0x0000000001010101ULL,  // BLOCK_16X32,
94   0x0000000000000101ULL,  // BLOCK_32X16,
95   0x0000000001010101ULL,  // BLOCK_32X32,
96   0x0101010101010101ULL,  // BLOCK_32X64,
97   0x0000000001010101ULL,  // BLOCK_64X32,
98   0x0101010101010101ULL,  // BLOCK_64X64
99 };
100 
101 // 64 bit mask to shift and set for each prediction size.
102 static const uint64_t above_prediction_mask[BLOCK_SIZES] = {
103   0x0000000000000001ULL,  // BLOCK_4X4
104   0x0000000000000001ULL,  // BLOCK_4X8
105   0x0000000000000001ULL,  // BLOCK_8X4
106   0x0000000000000001ULL,  // BLOCK_8X8
107   0x0000000000000001ULL,  // BLOCK_8X16,
108   0x0000000000000003ULL,  // BLOCK_16X8
109   0x0000000000000003ULL,  // BLOCK_16X16
110   0x0000000000000003ULL,  // BLOCK_16X32,
111   0x000000000000000fULL,  // BLOCK_32X16,
112   0x000000000000000fULL,  // BLOCK_32X32,
113   0x000000000000000fULL,  // BLOCK_32X64,
114   0x00000000000000ffULL,  // BLOCK_64X32,
115   0x00000000000000ffULL,  // BLOCK_64X64
116 };
117 // 64 bit mask to shift and set for each prediction size. A bit is set for
118 // each 8x8 block that would be in the left most block of the given block
119 // size in the 64x64 block.
120 static const uint64_t size_mask[BLOCK_SIZES] = {
121   0x0000000000000001ULL,  // BLOCK_4X4
122   0x0000000000000001ULL,  // BLOCK_4X8
123   0x0000000000000001ULL,  // BLOCK_8X4
124   0x0000000000000001ULL,  // BLOCK_8X8
125   0x0000000000000101ULL,  // BLOCK_8X16,
126   0x0000000000000003ULL,  // BLOCK_16X8
127   0x0000000000000303ULL,  // BLOCK_16X16
128   0x0000000003030303ULL,  // BLOCK_16X32,
129   0x0000000000000f0fULL,  // BLOCK_32X16,
130   0x000000000f0f0f0fULL,  // BLOCK_32X32,
131   0x0f0f0f0f0f0f0f0fULL,  // BLOCK_32X64,
132   0x00000000ffffffffULL,  // BLOCK_64X32,
133   0xffffffffffffffffULL,  // BLOCK_64X64
134 };
135 
136 // These are used for masking the left and above borders.
137 static const uint64_t left_border =  0x1111111111111111ULL;
138 static const uint64_t above_border = 0x000000ff000000ffULL;
139 
140 // 16 bit masks for uv transform sizes.
141 static const uint16_t left_64x64_txform_mask_uv[TX_SIZES]= {
142   0xffff,  // TX_4X4
143   0xffff,  // TX_8x8
144   0x5555,  // TX_16x16
145   0x1111,  // TX_32x32
146 };
147 
148 static const uint16_t above_64x64_txform_mask_uv[TX_SIZES]= {
149   0xffff,  // TX_4X4
150   0xffff,  // TX_8x8
151   0x0f0f,  // TX_16x16
152   0x000f,  // TX_32x32
153 };
154 
155 // 16 bit left mask to shift and set for each uv prediction size.
156 static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = {
157   0x0001,  // BLOCK_4X4,
158   0x0001,  // BLOCK_4X8,
159   0x0001,  // BLOCK_8X4,
160   0x0001,  // BLOCK_8X8,
161   0x0001,  // BLOCK_8X16,
162   0x0001,  // BLOCK_16X8,
163   0x0001,  // BLOCK_16X16,
164   0x0011,  // BLOCK_16X32,
165   0x0001,  // BLOCK_32X16,
166   0x0011,  // BLOCK_32X32,
167   0x1111,  // BLOCK_32X64
168   0x0011,  // BLOCK_64X32,
169   0x1111,  // BLOCK_64X64
170 };
171 // 16 bit above mask to shift and set for uv each prediction size.
172 static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = {
173   0x0001,  // BLOCK_4X4
174   0x0001,  // BLOCK_4X8
175   0x0001,  // BLOCK_8X4
176   0x0001,  // BLOCK_8X8
177   0x0001,  // BLOCK_8X16,
178   0x0001,  // BLOCK_16X8
179   0x0001,  // BLOCK_16X16
180   0x0001,  // BLOCK_16X32,
181   0x0003,  // BLOCK_32X16,
182   0x0003,  // BLOCK_32X32,
183   0x0003,  // BLOCK_32X64,
184   0x000f,  // BLOCK_64X32,
185   0x000f,  // BLOCK_64X64
186 };
187 
188 // 64 bit mask to shift and set for each uv prediction size
189 static const uint16_t size_mask_uv[BLOCK_SIZES] = {
190   0x0001,  // BLOCK_4X4
191   0x0001,  // BLOCK_4X8
192   0x0001,  // BLOCK_8X4
193   0x0001,  // BLOCK_8X8
194   0x0001,  // BLOCK_8X16,
195   0x0001,  // BLOCK_16X8
196   0x0001,  // BLOCK_16X16
197   0x0011,  // BLOCK_16X32,
198   0x0003,  // BLOCK_32X16,
199   0x0033,  // BLOCK_32X32,
200   0x3333,  // BLOCK_32X64,
201   0x00ff,  // BLOCK_64X32,
202   0xffff,  // BLOCK_64X64
203 };
204 static const uint16_t left_border_uv =  0x1111;
205 static const uint16_t above_border_uv = 0x000f;
206 
207 static const int mode_lf_lut[MB_MODE_COUNT] = {
208   0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // INTRA_MODES
209   1, 1, 0, 1                     // INTER_MODES (ZEROMV == 0)
210 };
211 
update_sharpness(loop_filter_info_n * lfi,int sharpness_lvl)212 static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
213   int lvl;
214 
215   // For each possible value for the loop filter fill out limits
216   for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
217     // Set loop filter parameters that control sharpness.
218     int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
219 
220     if (sharpness_lvl > 0) {
221       if (block_inside_limit > (9 - sharpness_lvl))
222         block_inside_limit = (9 - sharpness_lvl);
223     }
224 
225     if (block_inside_limit < 1)
226       block_inside_limit = 1;
227 
228     memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
229     memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
230            SIMD_WIDTH);
231   }
232 }
233 
get_filter_level(const loop_filter_info_n * lfi_n,const MB_MODE_INFO * mbmi)234 static uint8_t get_filter_level(const loop_filter_info_n *lfi_n,
235                                 const MB_MODE_INFO *mbmi) {
236   return lfi_n->lvl[mbmi->segment_id][mbmi->ref_frame[0]]
237                    [mode_lf_lut[mbmi->mode]];
238 }
239 
vp9_loop_filter_init(VP9_COMMON * cm)240 void vp9_loop_filter_init(VP9_COMMON *cm) {
241   loop_filter_info_n *lfi = &cm->lf_info;
242   struct loopfilter *lf = &cm->lf;
243   int lvl;
244 
245   // init limits for given sharpness
246   update_sharpness(lfi, lf->sharpness_level);
247   lf->last_sharpness_level = lf->sharpness_level;
248 
249   // init hev threshold const vectors
250   for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
251     memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
252 }
253 
vp9_loop_filter_frame_init(VP9_COMMON * cm,int default_filt_lvl)254 void vp9_loop_filter_frame_init(VP9_COMMON *cm, int default_filt_lvl) {
255   int seg_id;
256   // n_shift is the multiplier for lf_deltas
257   // the multiplier is 1 for when filter_lvl is between 0 and 31;
258   // 2 when filter_lvl is between 32 and 63
259   const int scale = 1 << (default_filt_lvl >> 5);
260   loop_filter_info_n *const lfi = &cm->lf_info;
261   struct loopfilter *const lf = &cm->lf;
262   const struct segmentation *const seg = &cm->seg;
263 
264   // update limits if sharpness has changed
265   if (lf->last_sharpness_level != lf->sharpness_level) {
266     update_sharpness(lfi, lf->sharpness_level);
267     lf->last_sharpness_level = lf->sharpness_level;
268   }
269 
270   for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
271     int lvl_seg = default_filt_lvl;
272     if (segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) {
273       const int data = get_segdata(seg, seg_id, SEG_LVL_ALT_LF);
274       lvl_seg = clamp(seg->abs_delta == SEGMENT_ABSDATA ?
275                       data : default_filt_lvl + data,
276                       0, MAX_LOOP_FILTER);
277     }
278 
279     if (!lf->mode_ref_delta_enabled) {
280       // we could get rid of this if we assume that deltas are set to
281       // zero when not in use; encoder always uses deltas
282       memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id]));
283     } else {
284       int ref, mode;
285       const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
286       lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER);
287 
288       for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref) {
289         for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
290           const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale
291                                         + lf->mode_deltas[mode] * scale;
292           lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER);
293         }
294       }
295     }
296   }
297 }
298 
filter_selectively_vert_row2(int subsampling_factor,uint8_t * s,int pitch,unsigned int mask_16x16_l,unsigned int mask_8x8_l,unsigned int mask_4x4_l,unsigned int mask_4x4_int_l,const loop_filter_info_n * lfi_n,const uint8_t * lfl)299 static void filter_selectively_vert_row2(int subsampling_factor,
300                                          uint8_t *s, int pitch,
301                                          unsigned int mask_16x16_l,
302                                          unsigned int mask_8x8_l,
303                                          unsigned int mask_4x4_l,
304                                          unsigned int mask_4x4_int_l,
305                                          const loop_filter_info_n *lfi_n,
306                                          const uint8_t *lfl) {
307   const int mask_shift = subsampling_factor ? 4 : 8;
308   const int mask_cutoff = subsampling_factor ? 0xf : 0xff;
309   const int lfl_forward = subsampling_factor ? 4 : 8;
310 
311   unsigned int mask_16x16_0 = mask_16x16_l & mask_cutoff;
312   unsigned int mask_8x8_0 = mask_8x8_l & mask_cutoff;
313   unsigned int mask_4x4_0 = mask_4x4_l & mask_cutoff;
314   unsigned int mask_4x4_int_0 = mask_4x4_int_l & mask_cutoff;
315   unsigned int mask_16x16_1 = (mask_16x16_l >> mask_shift) & mask_cutoff;
316   unsigned int mask_8x8_1 = (mask_8x8_l >> mask_shift) & mask_cutoff;
317   unsigned int mask_4x4_1 = (mask_4x4_l >> mask_shift) & mask_cutoff;
318   unsigned int mask_4x4_int_1 = (mask_4x4_int_l >> mask_shift) & mask_cutoff;
319   unsigned int mask;
320 
321   for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_4x4_int_0 |
322               mask_16x16_1 | mask_8x8_1 | mask_4x4_1 | mask_4x4_int_1;
323        mask; mask >>= 1) {
324     const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl;
325     const loop_filter_thresh *lfi1 = lfi_n->lfthr + *(lfl + lfl_forward);
326 
327     // TODO(yunqingwang): count in loopfilter functions should be removed.
328     if (mask & 1) {
329       if ((mask_16x16_0 | mask_16x16_1) & 1) {
330         if ((mask_16x16_0 & mask_16x16_1) & 1) {
331           vpx_lpf_vertical_16_dual(s, pitch, lfi0->mblim, lfi0->lim,
332                                    lfi0->hev_thr);
333         } else if (mask_16x16_0 & 1) {
334           vpx_lpf_vertical_16(s, pitch, lfi0->mblim, lfi0->lim,
335                               lfi0->hev_thr);
336         } else {
337           vpx_lpf_vertical_16(s + 8 *pitch, pitch, lfi1->mblim,
338                               lfi1->lim, lfi1->hev_thr);
339         }
340       }
341 
342       if ((mask_8x8_0 | mask_8x8_1) & 1) {
343         if ((mask_8x8_0 & mask_8x8_1) & 1) {
344           vpx_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim,
345                                   lfi0->hev_thr, lfi1->mblim, lfi1->lim,
346                                   lfi1->hev_thr);
347         } else if (mask_8x8_0 & 1) {
348           vpx_lpf_vertical_8(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr,
349                              1);
350         } else {
351           vpx_lpf_vertical_8(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim,
352                              lfi1->hev_thr, 1);
353         }
354       }
355 
356       if ((mask_4x4_0 | mask_4x4_1) & 1) {
357         if ((mask_4x4_0 & mask_4x4_1) & 1) {
358           vpx_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim,
359                                   lfi0->hev_thr, lfi1->mblim, lfi1->lim,
360                                   lfi1->hev_thr);
361         } else if (mask_4x4_0 & 1) {
362           vpx_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr,
363                              1);
364         } else {
365           vpx_lpf_vertical_4(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim,
366                              lfi1->hev_thr, 1);
367         }
368       }
369 
370       if ((mask_4x4_int_0 | mask_4x4_int_1) & 1) {
371         if ((mask_4x4_int_0 & mask_4x4_int_1) & 1) {
372           vpx_lpf_vertical_4_dual(s + 4, pitch, lfi0->mblim, lfi0->lim,
373                                   lfi0->hev_thr, lfi1->mblim, lfi1->lim,
374                                   lfi1->hev_thr);
375         } else if (mask_4x4_int_0 & 1) {
376           vpx_lpf_vertical_4(s + 4, pitch, lfi0->mblim, lfi0->lim,
377                              lfi0->hev_thr, 1);
378         } else {
379           vpx_lpf_vertical_4(s + 8 * pitch + 4, pitch, lfi1->mblim, lfi1->lim,
380                              lfi1->hev_thr, 1);
381         }
382       }
383     }
384 
385     s += 8;
386     lfl += 1;
387     mask_16x16_0 >>= 1;
388     mask_8x8_0 >>= 1;
389     mask_4x4_0 >>= 1;
390     mask_4x4_int_0 >>= 1;
391     mask_16x16_1 >>= 1;
392     mask_8x8_1 >>= 1;
393     mask_4x4_1 >>= 1;
394     mask_4x4_int_1 >>= 1;
395   }
396 }
397 
398 #if CONFIG_VP9_HIGHBITDEPTH
highbd_filter_selectively_vert_row2(int subsampling_factor,uint16_t * s,int pitch,unsigned int mask_16x16_l,unsigned int mask_8x8_l,unsigned int mask_4x4_l,unsigned int mask_4x4_int_l,const loop_filter_info_n * lfi_n,const uint8_t * lfl,int bd)399 static void highbd_filter_selectively_vert_row2(int subsampling_factor,
400                                                 uint16_t *s, int pitch,
401                                                 unsigned int mask_16x16_l,
402                                                 unsigned int mask_8x8_l,
403                                                 unsigned int mask_4x4_l,
404                                                 unsigned int mask_4x4_int_l,
405                                                 const loop_filter_info_n *lfi_n,
406                                                 const uint8_t *lfl, int bd) {
407   const int mask_shift = subsampling_factor ? 4 : 8;
408   const int mask_cutoff = subsampling_factor ? 0xf : 0xff;
409   const int lfl_forward = subsampling_factor ? 4 : 8;
410 
411   unsigned int mask_16x16_0 = mask_16x16_l & mask_cutoff;
412   unsigned int mask_8x8_0 = mask_8x8_l & mask_cutoff;
413   unsigned int mask_4x4_0 = mask_4x4_l & mask_cutoff;
414   unsigned int mask_4x4_int_0 = mask_4x4_int_l & mask_cutoff;
415   unsigned int mask_16x16_1 = (mask_16x16_l >> mask_shift) & mask_cutoff;
416   unsigned int mask_8x8_1 = (mask_8x8_l >> mask_shift) & mask_cutoff;
417   unsigned int mask_4x4_1 = (mask_4x4_l >> mask_shift) & mask_cutoff;
418   unsigned int mask_4x4_int_1 = (mask_4x4_int_l >> mask_shift) & mask_cutoff;
419   unsigned int mask;
420 
421   for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_4x4_int_0 |
422        mask_16x16_1 | mask_8x8_1 | mask_4x4_1 | mask_4x4_int_1;
423        mask; mask >>= 1) {
424     const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl;
425     const loop_filter_thresh *lfi1 = lfi_n->lfthr + *(lfl + lfl_forward);
426 
427     // TODO(yunqingwang): count in loopfilter functions should be removed.
428     if (mask & 1) {
429       if ((mask_16x16_0 | mask_16x16_1) & 1) {
430         if ((mask_16x16_0 & mask_16x16_1) & 1) {
431           vpx_highbd_lpf_vertical_16_dual(s, pitch, lfi0->mblim, lfi0->lim,
432                                           lfi0->hev_thr, bd);
433         } else if (mask_16x16_0 & 1) {
434           vpx_highbd_lpf_vertical_16(s, pitch, lfi0->mblim, lfi0->lim,
435                                      lfi0->hev_thr, bd);
436         } else {
437           vpx_highbd_lpf_vertical_16(s + 8 *pitch, pitch, lfi1->mblim,
438                                      lfi1->lim, lfi1->hev_thr, bd);
439         }
440       }
441 
442       if ((mask_8x8_0 | mask_8x8_1) & 1) {
443         if ((mask_8x8_0 & mask_8x8_1) & 1) {
444           vpx_highbd_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim,
445                                          lfi0->hev_thr, lfi1->mblim, lfi1->lim,
446                                          lfi1->hev_thr, bd);
447         } else if (mask_8x8_0 & 1) {
448           vpx_highbd_lpf_vertical_8(s, pitch, lfi0->mblim, lfi0->lim,
449                                     lfi0->hev_thr, 1, bd);
450         } else {
451           vpx_highbd_lpf_vertical_8(s + 8 * pitch, pitch, lfi1->mblim,
452                                     lfi1->lim, lfi1->hev_thr, 1, bd);
453         }
454       }
455 
456       if ((mask_4x4_0 | mask_4x4_1) & 1) {
457         if ((mask_4x4_0 & mask_4x4_1) & 1) {
458           vpx_highbd_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim,
459                                          lfi0->hev_thr, lfi1->mblim, lfi1->lim,
460                                          lfi1->hev_thr, bd);
461         } else if (mask_4x4_0 & 1) {
462           vpx_highbd_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim,
463                                     lfi0->hev_thr, 1, bd);
464         } else {
465           vpx_highbd_lpf_vertical_4(s + 8 * pitch, pitch, lfi1->mblim,
466                                     lfi1->lim, lfi1->hev_thr, 1, bd);
467         }
468       }
469 
470       if ((mask_4x4_int_0 | mask_4x4_int_1) & 1) {
471         if ((mask_4x4_int_0 & mask_4x4_int_1) & 1) {
472           vpx_highbd_lpf_vertical_4_dual(s + 4, pitch, lfi0->mblim, lfi0->lim,
473                                          lfi0->hev_thr, lfi1->mblim, lfi1->lim,
474                                          lfi1->hev_thr, bd);
475         } else if (mask_4x4_int_0 & 1) {
476           vpx_highbd_lpf_vertical_4(s + 4, pitch, lfi0->mblim, lfi0->lim,
477                                     lfi0->hev_thr, 1, bd);
478         } else {
479           vpx_highbd_lpf_vertical_4(s + 8 * pitch + 4, pitch, lfi1->mblim,
480                                     lfi1->lim, lfi1->hev_thr, 1, bd);
481         }
482       }
483     }
484 
485     s += 8;
486     lfl += 1;
487     mask_16x16_0 >>= 1;
488     mask_8x8_0 >>= 1;
489     mask_4x4_0 >>= 1;
490     mask_4x4_int_0 >>= 1;
491     mask_16x16_1 >>= 1;
492     mask_8x8_1 >>= 1;
493     mask_4x4_1 >>= 1;
494     mask_4x4_int_1 >>= 1;
495   }
496 }
497 #endif  // CONFIG_VP9_HIGHBITDEPTH
498 
filter_selectively_horiz(uint8_t * s,int pitch,unsigned int mask_16x16,unsigned int mask_8x8,unsigned int mask_4x4,unsigned int mask_4x4_int,const loop_filter_info_n * lfi_n,const uint8_t * lfl)499 static void filter_selectively_horiz(uint8_t *s, int pitch,
500                                      unsigned int mask_16x16,
501                                      unsigned int mask_8x8,
502                                      unsigned int mask_4x4,
503                                      unsigned int mask_4x4_int,
504                                      const loop_filter_info_n *lfi_n,
505                                      const uint8_t *lfl) {
506   unsigned int mask;
507   int count;
508 
509   for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
510        mask; mask >>= count) {
511     const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
512 
513     count = 1;
514     if (mask & 1) {
515       if (mask_16x16 & 1) {
516         if ((mask_16x16 & 3) == 3) {
517           vpx_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim,
518                                 lfi->hev_thr, 2);
519           count = 2;
520         } else {
521           vpx_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim,
522                                 lfi->hev_thr, 1);
523         }
524       } else if (mask_8x8 & 1) {
525         if ((mask_8x8 & 3) == 3) {
526           // Next block's thresholds.
527           const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
528 
529           vpx_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
530                                     lfi->hev_thr, lfin->mblim, lfin->lim,
531                                     lfin->hev_thr);
532 
533           if ((mask_4x4_int & 3) == 3) {
534             vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
535                                       lfi->lim, lfi->hev_thr, lfin->mblim,
536                                       lfin->lim, lfin->hev_thr);
537           } else {
538             if (mask_4x4_int & 1)
539               vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
540                                    lfi->hev_thr, 1);
541             else if (mask_4x4_int & 2)
542               vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
543                                    lfin->lim, lfin->hev_thr, 1);
544           }
545           count = 2;
546         } else {
547           vpx_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
548 
549           if (mask_4x4_int & 1)
550             vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
551                                  lfi->hev_thr, 1);
552         }
553       } else if (mask_4x4 & 1) {
554         if ((mask_4x4 & 3) == 3) {
555           // Next block's thresholds.
556           const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
557 
558           vpx_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
559                                     lfi->hev_thr, lfin->mblim, lfin->lim,
560                                     lfin->hev_thr);
561           if ((mask_4x4_int & 3) == 3) {
562             vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
563                                       lfi->lim, lfi->hev_thr, lfin->mblim,
564                                       lfin->lim, lfin->hev_thr);
565           } else {
566             if (mask_4x4_int & 1)
567               vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
568                                    lfi->hev_thr, 1);
569             else if (mask_4x4_int & 2)
570               vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
571                                    lfin->lim, lfin->hev_thr, 1);
572           }
573           count = 2;
574         } else {
575           vpx_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
576 
577           if (mask_4x4_int & 1)
578             vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
579                                  lfi->hev_thr, 1);
580         }
581       } else if (mask_4x4_int & 1) {
582         vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
583                              lfi->hev_thr, 1);
584       }
585     }
586     s += 8 * count;
587     lfl += count;
588     mask_16x16 >>= count;
589     mask_8x8 >>= count;
590     mask_4x4 >>= count;
591     mask_4x4_int >>= count;
592   }
593 }
594 
595 #if CONFIG_VP9_HIGHBITDEPTH
highbd_filter_selectively_horiz(uint16_t * s,int pitch,unsigned int mask_16x16,unsigned int mask_8x8,unsigned int mask_4x4,unsigned int mask_4x4_int,const loop_filter_info_n * lfi_n,const uint8_t * lfl,int bd)596 static void highbd_filter_selectively_horiz(uint16_t *s, int pitch,
597                                             unsigned int mask_16x16,
598                                             unsigned int mask_8x8,
599                                             unsigned int mask_4x4,
600                                             unsigned int mask_4x4_int,
601                                             const loop_filter_info_n *lfi_n,
602                                             const uint8_t *lfl, int bd) {
603   unsigned int mask;
604   int count;
605 
606   for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
607        mask; mask >>= count) {
608     const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
609 
610     count = 1;
611     if (mask & 1) {
612       if (mask_16x16 & 1) {
613         if ((mask_16x16 & 3) == 3) {
614           vpx_highbd_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim,
615                                        lfi->hev_thr, 2, bd);
616           count = 2;
617         } else {
618           vpx_highbd_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim,
619                                        lfi->hev_thr, 1, bd);
620         }
621       } else if (mask_8x8 & 1) {
622         if ((mask_8x8 & 3) == 3) {
623           // Next block's thresholds.
624           const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
625 
626           vpx_highbd_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
627                                            lfi->hev_thr, lfin->mblim, lfin->lim,
628                                            lfin->hev_thr, bd);
629 
630           if ((mask_4x4_int & 3) == 3) {
631             vpx_highbd_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
632                                              lfi->lim, lfi->hev_thr,
633                                              lfin->mblim, lfin->lim,
634                                              lfin->hev_thr, bd);
635           } else {
636             if (mask_4x4_int & 1) {
637               vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
638                                           lfi->lim, lfi->hev_thr, 1, bd);
639             } else if (mask_4x4_int & 2) {
640               vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
641                                           lfin->lim, lfin->hev_thr, 1, bd);
642             }
643           }
644           count = 2;
645         } else {
646           vpx_highbd_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim,
647                                       lfi->hev_thr, 1, bd);
648 
649           if (mask_4x4_int & 1) {
650             vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
651                                         lfi->lim, lfi->hev_thr, 1, bd);
652           }
653         }
654       } else if (mask_4x4 & 1) {
655         if ((mask_4x4 & 3) == 3) {
656           // Next block's thresholds.
657           const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
658 
659           vpx_highbd_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
660                                            lfi->hev_thr, lfin->mblim, lfin->lim,
661                                            lfin->hev_thr, bd);
662           if ((mask_4x4_int & 3) == 3) {
663             vpx_highbd_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
664                                              lfi->lim, lfi->hev_thr,
665                                              lfin->mblim, lfin->lim,
666                                              lfin->hev_thr, bd);
667           } else {
668             if (mask_4x4_int & 1) {
669               vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
670                                           lfi->lim, lfi->hev_thr, 1, bd);
671             } else if (mask_4x4_int & 2) {
672               vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
673                                           lfin->lim, lfin->hev_thr, 1, bd);
674             }
675           }
676           count = 2;
677         } else {
678           vpx_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim,
679                                       lfi->hev_thr, 1, bd);
680 
681           if (mask_4x4_int & 1) {
682             vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
683                                         lfi->lim, lfi->hev_thr, 1, bd);
684           }
685         }
686       } else if (mask_4x4_int & 1) {
687         vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
688                                     lfi->hev_thr, 1, bd);
689       }
690     }
691     s += 8 * count;
692     lfl += count;
693     mask_16x16 >>= count;
694     mask_8x8 >>= count;
695     mask_4x4 >>= count;
696     mask_4x4_int >>= count;
697   }
698 }
699 #endif  // CONFIG_VP9_HIGHBITDEPTH
700 
701 // This function ors into the current lfm structure, where to do loop
702 // filters for the specific mi we are looking at. It uses information
703 // including the block_size_type (32x16, 32x32, etc.), the transform size,
704 // whether there were any coefficients encoded, and the loop filter strength
705 // block we are currently looking at. Shift is used to position the
706 // 1's we produce.
707 // TODO(JBB) Need another function for different resolution color..
build_masks(const loop_filter_info_n * const lfi_n,const MODE_INFO * mi,const int shift_y,const int shift_uv,LOOP_FILTER_MASK * lfm)708 static void build_masks(const loop_filter_info_n *const lfi_n,
709                         const MODE_INFO *mi, const int shift_y,
710                         const int shift_uv,
711                         LOOP_FILTER_MASK *lfm) {
712   const MB_MODE_INFO *mbmi = &mi->mbmi;
713   const BLOCK_SIZE block_size = mbmi->sb_type;
714   const TX_SIZE tx_size_y = mbmi->tx_size;
715   const TX_SIZE tx_size_uv = get_uv_tx_size_impl(tx_size_y, block_size, 1, 1);
716   const int filter_level = get_filter_level(lfi_n, mbmi);
717   uint64_t *const left_y = &lfm->left_y[tx_size_y];
718   uint64_t *const above_y = &lfm->above_y[tx_size_y];
719   uint64_t *const int_4x4_y = &lfm->int_4x4_y;
720   uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
721   uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
722   uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
723   int i;
724 
725   // If filter level is 0 we don't loop filter.
726   if (!filter_level) {
727     return;
728   } else {
729     const int w = num_8x8_blocks_wide_lookup[block_size];
730     const int h = num_8x8_blocks_high_lookup[block_size];
731     int index = shift_y;
732     for (i = 0; i < h; i++) {
733       memset(&lfm->lfl_y[index], filter_level, w);
734       index += 8;
735     }
736   }
737 
738   // These set 1 in the current block size for the block size edges.
739   // For instance if the block size is 32x16, we'll set:
740   //    above =   1111
741   //              0000
742   //    and
743   //    left  =   1000
744   //          =   1000
745   // NOTE : In this example the low bit is left most ( 1000 ) is stored as
746   //        1,  not 8...
747   //
748   // U and V set things on a 16 bit scale.
749   //
750   *above_y |= above_prediction_mask[block_size] << shift_y;
751   *above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
752   *left_y |= left_prediction_mask[block_size] << shift_y;
753   *left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
754 
755   // If the block has no coefficients and is not intra we skip applying
756   // the loop filter on block edges.
757   if (mbmi->skip && is_inter_block(mbmi))
758     return;
759 
760   // Here we are adding a mask for the transform size. The transform
761   // size mask is set to be correct for a 64x64 prediction block size. We
762   // mask to match the size of the block we are working on and then shift it
763   // into place..
764   *above_y |= (size_mask[block_size] &
765                above_64x64_txform_mask[tx_size_y]) << shift_y;
766   *above_uv |= (size_mask_uv[block_size] &
767                 above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
768 
769   *left_y |= (size_mask[block_size] &
770               left_64x64_txform_mask[tx_size_y]) << shift_y;
771   *left_uv |= (size_mask_uv[block_size] &
772                left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
773 
774   // Here we are trying to determine what to do with the internal 4x4 block
775   // boundaries.  These differ from the 4x4 boundaries on the outside edge of
776   // an 8x8 in that the internal ones can be skipped and don't depend on
777   // the prediction block size.
778   if (tx_size_y == TX_4X4)
779     *int_4x4_y |= size_mask[block_size] << shift_y;
780 
781   if (tx_size_uv == TX_4X4)
782     *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
783 }
784 
785 // This function does the same thing as the one above with the exception that
786 // it only affects the y masks. It exists because for blocks < 16x16 in size,
787 // we only update u and v masks on the first block.
build_y_mask(const loop_filter_info_n * const lfi_n,const MODE_INFO * mi,const int shift_y,LOOP_FILTER_MASK * lfm)788 static void build_y_mask(const loop_filter_info_n *const lfi_n,
789                          const MODE_INFO *mi, const int shift_y,
790                          LOOP_FILTER_MASK *lfm) {
791   const MB_MODE_INFO *mbmi = &mi->mbmi;
792   const BLOCK_SIZE block_size = mbmi->sb_type;
793   const TX_SIZE tx_size_y = mbmi->tx_size;
794   const int filter_level = get_filter_level(lfi_n, mbmi);
795   uint64_t *const left_y = &lfm->left_y[tx_size_y];
796   uint64_t *const above_y = &lfm->above_y[tx_size_y];
797   uint64_t *const int_4x4_y = &lfm->int_4x4_y;
798   int i;
799 
800   if (!filter_level) {
801     return;
802   } else {
803     const int w = num_8x8_blocks_wide_lookup[block_size];
804     const int h = num_8x8_blocks_high_lookup[block_size];
805     int index = shift_y;
806     for (i = 0; i < h; i++) {
807       memset(&lfm->lfl_y[index], filter_level, w);
808       index += 8;
809     }
810   }
811 
812   *above_y |= above_prediction_mask[block_size] << shift_y;
813   *left_y |= left_prediction_mask[block_size] << shift_y;
814 
815   if (mbmi->skip && is_inter_block(mbmi))
816     return;
817 
818   *above_y |= (size_mask[block_size] &
819                above_64x64_txform_mask[tx_size_y]) << shift_y;
820 
821   *left_y |= (size_mask[block_size] &
822               left_64x64_txform_mask[tx_size_y]) << shift_y;
823 
824   if (tx_size_y == TX_4X4)
825     *int_4x4_y |= size_mask[block_size] << shift_y;
826 }
827 
vp9_adjust_mask(VP9_COMMON * const cm,const int mi_row,const int mi_col,LOOP_FILTER_MASK * lfm)828 void vp9_adjust_mask(VP9_COMMON *const cm, const int mi_row,
829                      const int mi_col, LOOP_FILTER_MASK *lfm) {
830   int i;
831 
832   // The largest loopfilter we have is 16x16 so we use the 16x16 mask
833   // for 32x32 transforms also.
834   lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
835   lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
836   lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
837   lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
838 
839   // We do at least 8 tap filter on every 32x32 even if the transform size
840   // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
841   // remove it from the 4x4.
842   lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
843   lfm->left_y[TX_4X4] &= ~left_border;
844   lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
845   lfm->above_y[TX_4X4] &= ~above_border;
846   lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
847   lfm->left_uv[TX_4X4] &= ~left_border_uv;
848   lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
849   lfm->above_uv[TX_4X4] &= ~above_border_uv;
850 
851   // We do some special edge handling.
852   if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
853     const uint64_t rows = cm->mi_rows - mi_row;
854 
855     // Each pixel inside the border gets a 1,
856     const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1);
857     const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1);
858 
859     // Remove values completely outside our border.
860     for (i = 0; i < TX_32X32; i++) {
861       lfm->left_y[i] &= mask_y;
862       lfm->above_y[i] &= mask_y;
863       lfm->left_uv[i] &= mask_uv;
864       lfm->above_uv[i] &= mask_uv;
865     }
866     lfm->int_4x4_y &= mask_y;
867     lfm->int_4x4_uv &= mask_uv;
868 
869     // We don't apply a wide loop filter on the last uv block row. If set
870     // apply the shorter one instead.
871     if (rows == 1) {
872       lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
873       lfm->above_uv[TX_16X16] = 0;
874     }
875     if (rows == 5) {
876       lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
877       lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
878     }
879   }
880 
881   if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
882     const uint64_t columns = cm->mi_cols - mi_col;
883 
884     // Each pixel inside the border gets a 1, the multiply copies the border
885     // to where we need it.
886     const uint64_t mask_y  = (((1 << columns) - 1)) * 0x0101010101010101ULL;
887     const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
888 
889     // Internal edges are not applied on the last column of the image so
890     // we mask 1 more for the internal edges
891     const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
892 
893     // Remove the bits outside the image edge.
894     for (i = 0; i < TX_32X32; i++) {
895       lfm->left_y[i] &= mask_y;
896       lfm->above_y[i] &= mask_y;
897       lfm->left_uv[i] &= mask_uv;
898       lfm->above_uv[i] &= mask_uv;
899     }
900     lfm->int_4x4_y &= mask_y;
901     lfm->int_4x4_uv &= mask_uv_int;
902 
903     // We don't apply a wide loop filter on the last uv column. If set
904     // apply the shorter one instead.
905     if (columns == 1) {
906       lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
907       lfm->left_uv[TX_16X16] = 0;
908     }
909     if (columns == 5) {
910       lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
911       lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
912     }
913   }
914   // We don't apply a loop filter on the first column in the image, mask that
915   // out.
916   if (mi_col == 0) {
917     for (i = 0; i < TX_32X32; i++) {
918       lfm->left_y[i] &= 0xfefefefefefefefeULL;
919       lfm->left_uv[i] &= 0xeeee;
920     }
921   }
922 
923   // Assert if we try to apply 2 different loop filters at the same position.
924   assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8]));
925   assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4]));
926   assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4]));
927   assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16]));
928   assert(!(lfm->left_uv[TX_16X16]&lfm->left_uv[TX_8X8]));
929   assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4]));
930   assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4]));
931   assert(!(lfm->int_4x4_uv & lfm->left_uv[TX_16X16]));
932   assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8]));
933   assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4]));
934   assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4]));
935   assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16]));
936   assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8]));
937   assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4]));
938   assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4]));
939   assert(!(lfm->int_4x4_uv & lfm->above_uv[TX_16X16]));
940 }
941 
942 // This function sets up the bit masks for the entire 64x64 region represented
943 // by mi_row, mi_col.
944 // TODO(JBB): This function only works for yv12.
vp9_setup_mask(VP9_COMMON * const cm,const int mi_row,const int mi_col,MODE_INFO ** mi,const int mode_info_stride,LOOP_FILTER_MASK * lfm)945 void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
946                     MODE_INFO **mi, const int mode_info_stride,
947                     LOOP_FILTER_MASK *lfm) {
948   int idx_32, idx_16, idx_8;
949   const loop_filter_info_n *const lfi_n = &cm->lf_info;
950   MODE_INFO **mip = mi;
951   MODE_INFO **mip2 = mi;
952 
953   // These are offsets to the next mi in the 64x64 block. It is what gets
954   // added to the mi ptr as we go through each loop. It helps us to avoid
955   // setting up special row and column counters for each index. The last step
956   // brings us out back to the starting position.
957   const int offset_32[] = {4, (mode_info_stride << 2) - 4, 4,
958                            -(mode_info_stride << 2) - 4};
959   const int offset_16[] = {2, (mode_info_stride << 1) - 2, 2,
960                            -(mode_info_stride << 1) - 2};
961   const int offset[] = {1, mode_info_stride - 1, 1, -mode_info_stride - 1};
962 
963   // Following variables represent shifts to position the current block
964   // mask over the appropriate block. A shift of 36 to the left will move
965   // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
966   // 4 rows to the appropriate spot.
967   const int shift_32_y[] = {0, 4, 32, 36};
968   const int shift_16_y[] = {0, 2, 16, 18};
969   const int shift_8_y[] = {0, 1, 8, 9};
970   const int shift_32_uv[] = {0, 2, 8, 10};
971   const int shift_16_uv[] = {0, 1, 4, 5};
972   const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ?
973                         cm->mi_rows - mi_row : MI_BLOCK_SIZE);
974   const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ?
975                         cm->mi_cols - mi_col : MI_BLOCK_SIZE);
976 
977   vp9_zero(*lfm);
978   assert(mip[0] != NULL);
979 
980   // TODO(jimbankoski): Try moving most of the following code into decode
981   // loop and storing lfm in the mbmi structure so that we don't have to go
982   // through the recursive loop structure multiple times.
983   switch (mip[0]->mbmi.sb_type) {
984     case BLOCK_64X64:
985       build_masks(lfi_n, mip[0] , 0, 0, lfm);
986       break;
987     case BLOCK_64X32:
988       build_masks(lfi_n, mip[0], 0, 0, lfm);
989       mip2 = mip + mode_info_stride * 4;
990       if (4 >= max_rows)
991         break;
992       build_masks(lfi_n, mip2[0], 32, 8, lfm);
993       break;
994     case BLOCK_32X64:
995       build_masks(lfi_n, mip[0], 0, 0, lfm);
996       mip2 = mip + 4;
997       if (4 >= max_cols)
998         break;
999       build_masks(lfi_n, mip2[0], 4, 2, lfm);
1000       break;
1001     default:
1002       for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
1003         const int shift_y = shift_32_y[idx_32];
1004         const int shift_uv = shift_32_uv[idx_32];
1005         const int mi_32_col_offset = ((idx_32 & 1) << 2);
1006         const int mi_32_row_offset = ((idx_32 >> 1) << 2);
1007         if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
1008           continue;
1009         switch (mip[0]->mbmi.sb_type) {
1010           case BLOCK_32X32:
1011             build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
1012             break;
1013           case BLOCK_32X16:
1014             build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
1015             if (mi_32_row_offset + 2 >= max_rows)
1016               continue;
1017             mip2 = mip + mode_info_stride * 2;
1018             build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm);
1019             break;
1020           case BLOCK_16X32:
1021             build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
1022             if (mi_32_col_offset + 2 >= max_cols)
1023               continue;
1024             mip2 = mip + 2;
1025             build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm);
1026             break;
1027           default:
1028             for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
1029               const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
1030               const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
1031               const int mi_16_col_offset = mi_32_col_offset +
1032                   ((idx_16 & 1) << 1);
1033               const int mi_16_row_offset = mi_32_row_offset +
1034                   ((idx_16 >> 1) << 1);
1035 
1036               if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
1037                 continue;
1038 
1039               switch (mip[0]->mbmi.sb_type) {
1040                 case BLOCK_16X16:
1041                   build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
1042                   break;
1043                 case BLOCK_16X8:
1044                   build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
1045                   if (mi_16_row_offset + 1 >= max_rows)
1046                     continue;
1047                   mip2 = mip + mode_info_stride;
1048                   build_y_mask(lfi_n, mip2[0], shift_y+8, lfm);
1049                   break;
1050                 case BLOCK_8X16:
1051                   build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
1052                   if (mi_16_col_offset +1 >= max_cols)
1053                     continue;
1054                   mip2 = mip + 1;
1055                   build_y_mask(lfi_n, mip2[0], shift_y+1, lfm);
1056                   break;
1057                 default: {
1058                   const int shift_y = shift_32_y[idx_32] +
1059                                       shift_16_y[idx_16] +
1060                                       shift_8_y[0];
1061                   build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
1062                   mip += offset[0];
1063                   for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
1064                     const int shift_y = shift_32_y[idx_32] +
1065                                         shift_16_y[idx_16] +
1066                                         shift_8_y[idx_8];
1067                     const int mi_8_col_offset = mi_16_col_offset +
1068                         ((idx_8 & 1));
1069                     const int mi_8_row_offset = mi_16_row_offset +
1070                         ((idx_8 >> 1));
1071 
1072                     if (mi_8_col_offset >= max_cols ||
1073                         mi_8_row_offset >= max_rows)
1074                       continue;
1075                     build_y_mask(lfi_n, mip[0], shift_y, lfm);
1076                   }
1077                   break;
1078                 }
1079               }
1080             }
1081             break;
1082         }
1083       }
1084       break;
1085   }
1086 
1087   vp9_adjust_mask(cm, mi_row, mi_col, lfm);
1088 }
1089 
filter_selectively_vert(uint8_t * s,int pitch,unsigned int mask_16x16,unsigned int mask_8x8,unsigned int mask_4x4,unsigned int mask_4x4_int,const loop_filter_info_n * lfi_n,const uint8_t * lfl)1090 static void filter_selectively_vert(uint8_t *s, int pitch,
1091                                     unsigned int mask_16x16,
1092                                     unsigned int mask_8x8,
1093                                     unsigned int mask_4x4,
1094                                     unsigned int mask_4x4_int,
1095                                     const loop_filter_info_n *lfi_n,
1096                                     const uint8_t *lfl) {
1097   unsigned int mask;
1098 
1099   for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
1100        mask; mask >>= 1) {
1101     const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
1102 
1103     if (mask & 1) {
1104       if (mask_16x16 & 1) {
1105         vpx_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
1106       } else if (mask_8x8 & 1) {
1107         vpx_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
1108       } else if (mask_4x4 & 1) {
1109         vpx_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
1110       }
1111     }
1112     if (mask_4x4_int & 1)
1113       vpx_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
1114     s += 8;
1115     lfl += 1;
1116     mask_16x16 >>= 1;
1117     mask_8x8 >>= 1;
1118     mask_4x4 >>= 1;
1119     mask_4x4_int >>= 1;
1120   }
1121 }
1122 
1123 #if CONFIG_VP9_HIGHBITDEPTH
highbd_filter_selectively_vert(uint16_t * s,int pitch,unsigned int mask_16x16,unsigned int mask_8x8,unsigned int mask_4x4,unsigned int mask_4x4_int,const loop_filter_info_n * lfi_n,const uint8_t * lfl,int bd)1124 static void highbd_filter_selectively_vert(uint16_t *s, int pitch,
1125                                            unsigned int mask_16x16,
1126                                            unsigned int mask_8x8,
1127                                            unsigned int mask_4x4,
1128                                            unsigned int mask_4x4_int,
1129                                            const loop_filter_info_n *lfi_n,
1130                                            const uint8_t *lfl, int bd) {
1131   unsigned int mask;
1132 
1133   for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
1134        mask; mask >>= 1) {
1135     const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
1136 
1137     if (mask & 1) {
1138       if (mask_16x16 & 1) {
1139         vpx_highbd_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim,
1140                                    lfi->hev_thr, bd);
1141       } else if (mask_8x8 & 1) {
1142         vpx_highbd_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim,
1143                                   lfi->hev_thr, 1, bd);
1144       } else if (mask_4x4 & 1) {
1145         vpx_highbd_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim,
1146                                 lfi->hev_thr, 1, bd);
1147       }
1148     }
1149     if (mask_4x4_int & 1)
1150       vpx_highbd_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim,
1151                                 lfi->hev_thr, 1, bd);
1152     s += 8;
1153     lfl += 1;
1154     mask_16x16 >>= 1;
1155     mask_8x8 >>= 1;
1156     mask_4x4 >>= 1;
1157     mask_4x4_int >>= 1;
1158   }
1159 }
1160 #endif  // CONFIG_VP9_HIGHBITDEPTH
1161 
vp9_filter_block_plane_non420(VP9_COMMON * cm,struct macroblockd_plane * plane,MODE_INFO ** mi_8x8,int mi_row,int mi_col)1162 void vp9_filter_block_plane_non420(VP9_COMMON *cm,
1163                                    struct macroblockd_plane *plane,
1164                                    MODE_INFO **mi_8x8,
1165                                    int mi_row, int mi_col) {
1166   const int ss_x = plane->subsampling_x;
1167   const int ss_y = plane->subsampling_y;
1168   const int row_step = 1 << ss_y;
1169   const int col_step = 1 << ss_x;
1170   const int row_step_stride = cm->mi_stride * row_step;
1171   struct buf_2d *const dst = &plane->dst;
1172   uint8_t* const dst0 = dst->buf;
1173   unsigned int mask_16x16[MI_BLOCK_SIZE] = {0};
1174   unsigned int mask_8x8[MI_BLOCK_SIZE] = {0};
1175   unsigned int mask_4x4[MI_BLOCK_SIZE] = {0};
1176   unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0};
1177   uint8_t lfl[MI_BLOCK_SIZE * MI_BLOCK_SIZE];
1178   int r, c;
1179 
1180   for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
1181     unsigned int mask_16x16_c = 0;
1182     unsigned int mask_8x8_c = 0;
1183     unsigned int mask_4x4_c = 0;
1184     unsigned int border_mask;
1185 
1186     // Determine the vertical edges that need filtering
1187     for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
1188       const MODE_INFO *mi = mi_8x8[c];
1189       const BLOCK_SIZE sb_type = mi[0].mbmi.sb_type;
1190       const int skip_this = mi[0].mbmi.skip && is_inter_block(&mi[0].mbmi);
1191       // left edge of current unit is block/partition edge -> no skip
1192       const int block_edge_left = (num_4x4_blocks_wide_lookup[sb_type] > 1) ?
1193           !(c & (num_8x8_blocks_wide_lookup[sb_type] - 1)) : 1;
1194       const int skip_this_c = skip_this && !block_edge_left;
1195       // top edge of current unit is block/partition edge -> no skip
1196       const int block_edge_above = (num_4x4_blocks_high_lookup[sb_type] > 1) ?
1197           !(r & (num_8x8_blocks_high_lookup[sb_type] - 1)) : 1;
1198       const int skip_this_r = skip_this && !block_edge_above;
1199       const TX_SIZE tx_size = get_uv_tx_size(&mi[0].mbmi, plane);
1200       const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1;
1201       const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
1202 
1203       // Filter level can vary per MI
1204       if (!(lfl[(r << 3) + (c >> ss_x)] =
1205             get_filter_level(&cm->lf_info, &mi[0].mbmi)))
1206         continue;
1207 
1208       // Build masks based on the transform size of each block
1209       if (tx_size == TX_32X32) {
1210         if (!skip_this_c && ((c >> ss_x) & 3) == 0) {
1211           if (!skip_border_4x4_c)
1212             mask_16x16_c |= 1 << (c >> ss_x);
1213           else
1214             mask_8x8_c |= 1 << (c >> ss_x);
1215         }
1216         if (!skip_this_r && ((r >> ss_y) & 3) == 0) {
1217           if (!skip_border_4x4_r)
1218             mask_16x16[r] |= 1 << (c >> ss_x);
1219           else
1220             mask_8x8[r] |= 1 << (c >> ss_x);
1221         }
1222       } else if (tx_size == TX_16X16) {
1223         if (!skip_this_c && ((c >> ss_x) & 1) == 0) {
1224           if (!skip_border_4x4_c)
1225             mask_16x16_c |= 1 << (c >> ss_x);
1226           else
1227             mask_8x8_c |= 1 << (c >> ss_x);
1228         }
1229         if (!skip_this_r && ((r >> ss_y) & 1) == 0) {
1230           if (!skip_border_4x4_r)
1231             mask_16x16[r] |= 1 << (c >> ss_x);
1232           else
1233             mask_8x8[r] |= 1 << (c >> ss_x);
1234         }
1235       } else {
1236         // force 8x8 filtering on 32x32 boundaries
1237         if (!skip_this_c) {
1238           if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0)
1239             mask_8x8_c |= 1 << (c >> ss_x);
1240           else
1241             mask_4x4_c |= 1 << (c >> ss_x);
1242         }
1243 
1244         if (!skip_this_r) {
1245           if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0)
1246             mask_8x8[r] |= 1 << (c >> ss_x);
1247           else
1248             mask_4x4[r] |= 1 << (c >> ss_x);
1249         }
1250 
1251         if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c)
1252           mask_4x4_int[r] |= 1 << (c >> ss_x);
1253       }
1254     }
1255 
1256     // Disable filtering on the leftmost column
1257     border_mask = ~(mi_col == 0);
1258 #if CONFIG_VP9_HIGHBITDEPTH
1259     if (cm->use_highbitdepth) {
1260       highbd_filter_selectively_vert(CONVERT_TO_SHORTPTR(dst->buf),
1261                                      dst->stride,
1262                                      mask_16x16_c & border_mask,
1263                                      mask_8x8_c & border_mask,
1264                                      mask_4x4_c & border_mask,
1265                                      mask_4x4_int[r],
1266                                      &cm->lf_info, &lfl[r << 3],
1267                                      (int)cm->bit_depth);
1268     } else {
1269       filter_selectively_vert(dst->buf, dst->stride,
1270                               mask_16x16_c & border_mask,
1271                               mask_8x8_c & border_mask,
1272                               mask_4x4_c & border_mask,
1273                               mask_4x4_int[r],
1274                               &cm->lf_info, &lfl[r << 3]);
1275     }
1276 #else
1277     filter_selectively_vert(dst->buf, dst->stride,
1278                             mask_16x16_c & border_mask,
1279                             mask_8x8_c & border_mask,
1280                             mask_4x4_c & border_mask,
1281                             mask_4x4_int[r],
1282                             &cm->lf_info, &lfl[r << 3]);
1283 #endif  // CONFIG_VP9_HIGHBITDEPTH
1284     dst->buf += 8 * dst->stride;
1285     mi_8x8 += row_step_stride;
1286   }
1287 
1288   // Now do horizontal pass
1289   dst->buf = dst0;
1290   for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
1291     const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
1292     const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
1293 
1294     unsigned int mask_16x16_r;
1295     unsigned int mask_8x8_r;
1296     unsigned int mask_4x4_r;
1297 
1298     if (mi_row + r == 0) {
1299       mask_16x16_r = 0;
1300       mask_8x8_r = 0;
1301       mask_4x4_r = 0;
1302     } else {
1303       mask_16x16_r = mask_16x16[r];
1304       mask_8x8_r = mask_8x8[r];
1305       mask_4x4_r = mask_4x4[r];
1306     }
1307 #if CONFIG_VP9_HIGHBITDEPTH
1308     if (cm->use_highbitdepth) {
1309       highbd_filter_selectively_horiz(CONVERT_TO_SHORTPTR(dst->buf),
1310                                       dst->stride,
1311                                       mask_16x16_r,
1312                                       mask_8x8_r,
1313                                       mask_4x4_r,
1314                                       mask_4x4_int_r,
1315                                       &cm->lf_info, &lfl[r << 3],
1316                                       (int)cm->bit_depth);
1317     } else {
1318       filter_selectively_horiz(dst->buf, dst->stride,
1319                                mask_16x16_r,
1320                                mask_8x8_r,
1321                                mask_4x4_r,
1322                                mask_4x4_int_r,
1323                                &cm->lf_info, &lfl[r << 3]);
1324     }
1325 #else
1326     filter_selectively_horiz(dst->buf, dst->stride,
1327                              mask_16x16_r,
1328                              mask_8x8_r,
1329                              mask_4x4_r,
1330                              mask_4x4_int_r,
1331                              &cm->lf_info, &lfl[r << 3]);
1332 #endif  // CONFIG_VP9_HIGHBITDEPTH
1333     dst->buf += 8 * dst->stride;
1334   }
1335 }
1336 
vp9_filter_block_plane_ss00(VP9_COMMON * const cm,struct macroblockd_plane * const plane,int mi_row,LOOP_FILTER_MASK * lfm)1337 void vp9_filter_block_plane_ss00(VP9_COMMON *const cm,
1338                                  struct macroblockd_plane *const plane,
1339                                  int mi_row,
1340                                  LOOP_FILTER_MASK *lfm) {
1341   struct buf_2d *const dst = &plane->dst;
1342   uint8_t *const dst0 = dst->buf;
1343   int r;
1344   uint64_t mask_16x16 = lfm->left_y[TX_16X16];
1345   uint64_t mask_8x8 = lfm->left_y[TX_8X8];
1346   uint64_t mask_4x4 = lfm->left_y[TX_4X4];
1347   uint64_t mask_4x4_int = lfm->int_4x4_y;
1348 
1349   assert(plane->subsampling_x == 0 && plane->subsampling_y == 0);
1350 
1351   // Vertical pass: do 2 rows at one time
1352   for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
1353     unsigned int mask_16x16_l = mask_16x16 & 0xffff;
1354     unsigned int mask_8x8_l = mask_8x8 & 0xffff;
1355     unsigned int mask_4x4_l = mask_4x4 & 0xffff;
1356     unsigned int mask_4x4_int_l = mask_4x4_int & 0xffff;
1357 
1358 // Disable filtering on the leftmost column.
1359 #if CONFIG_VP9_HIGHBITDEPTH
1360     if (cm->use_highbitdepth) {
1361       highbd_filter_selectively_vert_row2(
1362           plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
1363           mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
1364           &lfm->lfl_y[r << 3], (int)cm->bit_depth);
1365     } else {
1366       filter_selectively_vert_row2(
1367           plane->subsampling_x, dst->buf, dst->stride, mask_16x16_l, mask_8x8_l,
1368           mask_4x4_l, mask_4x4_int_l, &cm->lf_info, &lfm->lfl_y[r << 3]);
1369     }
1370 #else
1371     filter_selectively_vert_row2(
1372         plane->subsampling_x, dst->buf, dst->stride, mask_16x16_l, mask_8x8_l,
1373         mask_4x4_l, mask_4x4_int_l, &cm->lf_info, &lfm->lfl_y[r << 3]);
1374 #endif  // CONFIG_VP9_HIGHBITDEPTH
1375     dst->buf += 16 * dst->stride;
1376     mask_16x16 >>= 16;
1377     mask_8x8 >>= 16;
1378     mask_4x4 >>= 16;
1379     mask_4x4_int >>= 16;
1380   }
1381 
1382   // Horizontal pass
1383   dst->buf = dst0;
1384   mask_16x16 = lfm->above_y[TX_16X16];
1385   mask_8x8 = lfm->above_y[TX_8X8];
1386   mask_4x4 = lfm->above_y[TX_4X4];
1387   mask_4x4_int = lfm->int_4x4_y;
1388 
1389   for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r++) {
1390     unsigned int mask_16x16_r;
1391     unsigned int mask_8x8_r;
1392     unsigned int mask_4x4_r;
1393 
1394     if (mi_row + r == 0) {
1395       mask_16x16_r = 0;
1396       mask_8x8_r = 0;
1397       mask_4x4_r = 0;
1398     } else {
1399       mask_16x16_r = mask_16x16 & 0xff;
1400       mask_8x8_r = mask_8x8 & 0xff;
1401       mask_4x4_r = mask_4x4 & 0xff;
1402     }
1403 
1404 #if CONFIG_VP9_HIGHBITDEPTH
1405     if (cm->use_highbitdepth) {
1406       highbd_filter_selectively_horiz(
1407           CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
1408           mask_4x4_r, mask_4x4_int & 0xff, &cm->lf_info, &lfm->lfl_y[r << 3],
1409           (int)cm->bit_depth);
1410     } else {
1411       filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
1412                                mask_4x4_r, mask_4x4_int & 0xff, &cm->lf_info,
1413                                &lfm->lfl_y[r << 3]);
1414     }
1415 #else
1416     filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
1417                              mask_4x4_r, mask_4x4_int & 0xff, &cm->lf_info,
1418                              &lfm->lfl_y[r << 3]);
1419 #endif  // CONFIG_VP9_HIGHBITDEPTH
1420 
1421     dst->buf += 8 * dst->stride;
1422     mask_16x16 >>= 8;
1423     mask_8x8 >>= 8;
1424     mask_4x4 >>= 8;
1425     mask_4x4_int >>= 8;
1426   }
1427 }
1428 
vp9_filter_block_plane_ss11(VP9_COMMON * const cm,struct macroblockd_plane * const plane,int mi_row,LOOP_FILTER_MASK * lfm)1429 void vp9_filter_block_plane_ss11(VP9_COMMON *const cm,
1430                                  struct macroblockd_plane *const plane,
1431                                  int mi_row,
1432                                  LOOP_FILTER_MASK *lfm) {
1433   struct buf_2d *const dst = &plane->dst;
1434   uint8_t *const dst0 = dst->buf;
1435   int r, c;
1436   uint8_t lfl_uv[16];
1437 
1438   uint16_t mask_16x16 = lfm->left_uv[TX_16X16];
1439   uint16_t mask_8x8 = lfm->left_uv[TX_8X8];
1440   uint16_t mask_4x4 = lfm->left_uv[TX_4X4];
1441   uint16_t mask_4x4_int = lfm->int_4x4_uv;
1442 
1443   assert(plane->subsampling_x == 1 && plane->subsampling_y == 1);
1444 
1445   // Vertical pass: do 2 rows at one time
1446   for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 4) {
1447     for (c = 0; c < (MI_BLOCK_SIZE >> 1); c++) {
1448       lfl_uv[(r << 1) + c] = lfm->lfl_y[(r << 3) + (c << 1)];
1449       lfl_uv[((r + 2) << 1) + c] = lfm->lfl_y[((r + 2) << 3) + (c << 1)];
1450     }
1451 
1452     {
1453       unsigned int mask_16x16_l = mask_16x16 & 0xff;
1454       unsigned int mask_8x8_l = mask_8x8 & 0xff;
1455       unsigned int mask_4x4_l = mask_4x4 & 0xff;
1456       unsigned int mask_4x4_int_l = mask_4x4_int & 0xff;
1457 
1458 // Disable filtering on the leftmost column.
1459 #if CONFIG_VP9_HIGHBITDEPTH
1460       if (cm->use_highbitdepth) {
1461         highbd_filter_selectively_vert_row2(
1462             plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
1463             mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
1464             &lfl_uv[r << 1], (int)cm->bit_depth);
1465       } else {
1466         filter_selectively_vert_row2(
1467             plane->subsampling_x, dst->buf, dst->stride,
1468             mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
1469             &lfl_uv[r << 1]);
1470       }
1471 #else
1472       filter_selectively_vert_row2(
1473           plane->subsampling_x, dst->buf, dst->stride,
1474           mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
1475           &lfl_uv[r << 1]);
1476 #endif  // CONFIG_VP9_HIGHBITDEPTH
1477 
1478       dst->buf += 16 * dst->stride;
1479       mask_16x16 >>= 8;
1480       mask_8x8 >>= 8;
1481       mask_4x4 >>= 8;
1482       mask_4x4_int >>= 8;
1483     }
1484   }
1485 
1486   // Horizontal pass
1487   dst->buf = dst0;
1488   mask_16x16 = lfm->above_uv[TX_16X16];
1489   mask_8x8 = lfm->above_uv[TX_8X8];
1490   mask_4x4 = lfm->above_uv[TX_4X4];
1491   mask_4x4_int = lfm->int_4x4_uv;
1492 
1493   for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
1494     const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1;
1495     const unsigned int mask_4x4_int_r =
1496         skip_border_4x4_r ? 0 : (mask_4x4_int & 0xf);
1497     unsigned int mask_16x16_r;
1498     unsigned int mask_8x8_r;
1499     unsigned int mask_4x4_r;
1500 
1501     if (mi_row + r == 0) {
1502       mask_16x16_r = 0;
1503       mask_8x8_r = 0;
1504       mask_4x4_r = 0;
1505     } else {
1506       mask_16x16_r = mask_16x16 & 0xf;
1507       mask_8x8_r = mask_8x8 & 0xf;
1508       mask_4x4_r = mask_4x4 & 0xf;
1509     }
1510 
1511 #if CONFIG_VP9_HIGHBITDEPTH
1512     if (cm->use_highbitdepth) {
1513       highbd_filter_selectively_horiz(CONVERT_TO_SHORTPTR(dst->buf),
1514                                       dst->stride, mask_16x16_r, mask_8x8_r,
1515                                       mask_4x4_r, mask_4x4_int_r, &cm->lf_info,
1516                                       &lfl_uv[r << 1], (int)cm->bit_depth);
1517     } else {
1518       filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
1519                                mask_4x4_r, mask_4x4_int_r, &cm->lf_info,
1520                                &lfl_uv[r << 1]);
1521     }
1522 #else
1523     filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
1524                              mask_4x4_r, mask_4x4_int_r, &cm->lf_info,
1525                              &lfl_uv[r << 1]);
1526 #endif  // CONFIG_VP9_HIGHBITDEPTH
1527 
1528     dst->buf += 8 * dst->stride;
1529     mask_16x16 >>= 4;
1530     mask_8x8 >>= 4;
1531     mask_4x4 >>= 4;
1532     mask_4x4_int >>= 4;
1533   }
1534 }
1535 
loop_filter_rows(YV12_BUFFER_CONFIG * frame_buffer,VP9_COMMON * cm,struct macroblockd_plane planes[MAX_MB_PLANE],int start,int stop,int y_only)1536 static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, VP9_COMMON *cm,
1537                              struct macroblockd_plane planes[MAX_MB_PLANE],
1538                              int start, int stop, int y_only) {
1539   const int num_planes = y_only ? 1 : MAX_MB_PLANE;
1540   enum lf_path path;
1541   int mi_row, mi_col;
1542 
1543   if (y_only)
1544     path = LF_PATH_444;
1545   else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1)
1546     path = LF_PATH_420;
1547   else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0)
1548     path = LF_PATH_444;
1549   else
1550     path = LF_PATH_SLOW;
1551 
1552   for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
1553     MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
1554     LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0);
1555 
1556     for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) {
1557       int plane;
1558 
1559       vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
1560 
1561       // TODO(JBB): Make setup_mask work for non 420.
1562       vp9_adjust_mask(cm, mi_row, mi_col, lfm);
1563 
1564       vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm);
1565       for (plane = 1; plane < num_planes; ++plane) {
1566         switch (path) {
1567           case LF_PATH_420:
1568             vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm);
1569             break;
1570           case LF_PATH_444:
1571             vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm);
1572             break;
1573           case LF_PATH_SLOW:
1574             vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col,
1575                                           mi_row, mi_col);
1576             break;
1577         }
1578       }
1579     }
1580   }
1581 }
1582 
vp9_loop_filter_frame(YV12_BUFFER_CONFIG * frame,VP9_COMMON * cm,MACROBLOCKD * xd,int frame_filter_level,int y_only,int partial_frame)1583 void vp9_loop_filter_frame(YV12_BUFFER_CONFIG *frame,
1584                            VP9_COMMON *cm, MACROBLOCKD *xd,
1585                            int frame_filter_level,
1586                            int y_only, int partial_frame) {
1587   int start_mi_row, end_mi_row, mi_rows_to_filter;
1588   if (!frame_filter_level) return;
1589   start_mi_row = 0;
1590   mi_rows_to_filter = cm->mi_rows;
1591   if (partial_frame && cm->mi_rows > 8) {
1592     start_mi_row = cm->mi_rows >> 1;
1593     start_mi_row &= 0xfffffff8;
1594     mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
1595   }
1596   end_mi_row = start_mi_row + mi_rows_to_filter;
1597   loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row, y_only);
1598 }
1599 
1600 // Used by the encoder to build the loopfilter masks.
vp9_build_mask_frame(VP9_COMMON * cm,int frame_filter_level,int partial_frame)1601 void vp9_build_mask_frame(VP9_COMMON *cm, int frame_filter_level,
1602                           int partial_frame) {
1603   int start_mi_row, end_mi_row, mi_rows_to_filter;
1604   int mi_col, mi_row;
1605   if (!frame_filter_level) return;
1606   start_mi_row = 0;
1607   mi_rows_to_filter = cm->mi_rows;
1608   if (partial_frame && cm->mi_rows > 8) {
1609     start_mi_row = cm->mi_rows >> 1;
1610     start_mi_row &= 0xfffffff8;
1611     mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
1612   }
1613   end_mi_row = start_mi_row + mi_rows_to_filter;
1614 
1615   vp9_loop_filter_frame_init(cm, frame_filter_level);
1616 
1617   for (mi_row = start_mi_row; mi_row < end_mi_row; mi_row += MI_BLOCK_SIZE) {
1618     MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
1619     for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
1620       // vp9_setup_mask() zeros lfm
1621       vp9_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride,
1622                      get_lfm(&cm->lf, mi_row, mi_col));
1623     }
1624   }
1625 }
1626 
1627 // 8x8 blocks in a superblock.  A "1" represents the first block in a 16x16
1628 // or greater area.
1629 static const uint8_t first_block_in_16x16[8][8] = {
1630   {1, 0, 1, 0, 1, 0, 1, 0},
1631   {0, 0, 0, 0, 0, 0, 0, 0},
1632   {1, 0, 1, 0, 1, 0, 1, 0},
1633   {0, 0, 0, 0, 0, 0, 0, 0},
1634   {1, 0, 1, 0, 1, 0, 1, 0},
1635   {0, 0, 0, 0, 0, 0, 0, 0},
1636   {1, 0, 1, 0, 1, 0, 1, 0},
1637   {0, 0, 0, 0, 0, 0, 0, 0}
1638 };
1639 
1640 // This function sets up the bit masks for a block represented
1641 // by mi_row, mi_col in a 64x64 region.
1642 // TODO(SJL): This function only works for yv12.
vp9_build_mask(VP9_COMMON * cm,const MB_MODE_INFO * mbmi,int mi_row,int mi_col,int bw,int bh)1643 void vp9_build_mask(VP9_COMMON *cm, const MB_MODE_INFO *mbmi, int mi_row,
1644                     int mi_col, int bw, int bh) {
1645   const BLOCK_SIZE block_size = mbmi->sb_type;
1646   const TX_SIZE tx_size_y = mbmi->tx_size;
1647   const loop_filter_info_n *const lfi_n = &cm->lf_info;
1648   const int filter_level = get_filter_level(lfi_n, mbmi);
1649   const TX_SIZE tx_size_uv = get_uv_tx_size_impl(tx_size_y, block_size, 1, 1);
1650   LOOP_FILTER_MASK *const lfm = get_lfm(&cm->lf, mi_row, mi_col);
1651   uint64_t *const left_y = &lfm->left_y[tx_size_y];
1652   uint64_t *const above_y = &lfm->above_y[tx_size_y];
1653   uint64_t *const int_4x4_y = &lfm->int_4x4_y;
1654   uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
1655   uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
1656   uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
1657   const int row_in_sb = (mi_row & 7);
1658   const int col_in_sb = (mi_col & 7);
1659   const int shift_y = col_in_sb + (row_in_sb << 3);
1660   const int shift_uv = (col_in_sb >> 1) + ((row_in_sb >> 1) << 2);
1661   const int build_uv = first_block_in_16x16[row_in_sb][col_in_sb];
1662 
1663   if (!filter_level) {
1664     return;
1665   } else {
1666     int index = shift_y;
1667     int i;
1668     for (i = 0; i < bh; i++) {
1669       memset(&lfm->lfl_y[index], filter_level, bw);
1670       index += 8;
1671     }
1672   }
1673 
1674   // These set 1 in the current block size for the block size edges.
1675   // For instance if the block size is 32x16, we'll set:
1676   //    above =   1111
1677   //              0000
1678   //    and
1679   //    left  =   1000
1680   //          =   1000
1681   // NOTE : In this example the low bit is left most ( 1000 ) is stored as
1682   //        1,  not 8...
1683   //
1684   // U and V set things on a 16 bit scale.
1685   //
1686   *above_y |= above_prediction_mask[block_size] << shift_y;
1687   *left_y |= left_prediction_mask[block_size] << shift_y;
1688 
1689   if (build_uv) {
1690     *above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
1691     *left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
1692   }
1693 
1694   // If the block has no coefficients and is not intra we skip applying
1695   // the loop filter on block edges.
1696   if (mbmi->skip && is_inter_block(mbmi))
1697     return;
1698 
1699   // Add a mask for the transform size. The transform size mask is set to
1700   // be correct for a 64x64 prediction block size. Mask to match the size of
1701   // the block we are working on and then shift it into place.
1702   *above_y |= (size_mask[block_size] &
1703                above_64x64_txform_mask[tx_size_y]) << shift_y;
1704   *left_y |= (size_mask[block_size] &
1705               left_64x64_txform_mask[tx_size_y]) << shift_y;
1706 
1707   if (build_uv) {
1708     *above_uv |= (size_mask_uv[block_size] &
1709                   above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
1710 
1711     *left_uv |= (size_mask_uv[block_size] &
1712                  left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
1713   }
1714 
1715   // Try to determine what to do with the internal 4x4 block boundaries.  These
1716   // differ from the 4x4 boundaries on the outside edge of an 8x8 in that the
1717   // internal ones can be skipped and don't depend on the prediction block size.
1718   if (tx_size_y == TX_4X4)
1719     *int_4x4_y |= size_mask[block_size] << shift_y;
1720 
1721   if (build_uv && tx_size_uv == TX_4X4)
1722     *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
1723 }
1724 
vp9_loop_filter_data_reset(LFWorkerData * lf_data,YV12_BUFFER_CONFIG * frame_buffer,struct VP9Common * cm,const struct macroblockd_plane planes[MAX_MB_PLANE])1725 void vp9_loop_filter_data_reset(
1726     LFWorkerData *lf_data, YV12_BUFFER_CONFIG *frame_buffer,
1727     struct VP9Common *cm, const struct macroblockd_plane planes[MAX_MB_PLANE]) {
1728   lf_data->frame_buffer = frame_buffer;
1729   lf_data->cm = cm;
1730   lf_data->start = 0;
1731   lf_data->stop = 0;
1732   lf_data->y_only = 0;
1733   memcpy(lf_data->planes, planes, sizeof(lf_data->planes));
1734 }
1735 
vp9_reset_lfm(VP9_COMMON * const cm)1736 void vp9_reset_lfm(VP9_COMMON *const cm) {
1737   if (cm->lf.filter_level) {
1738     memset(cm->lf.lfm, 0,
1739            ((cm->mi_rows + (MI_BLOCK_SIZE - 1)) >> 3) * cm->lf.lfm_stride *
1740             sizeof(*cm->lf.lfm));
1741   }
1742 }
1743 
vp9_loop_filter_worker(LFWorkerData * const lf_data,void * unused)1744 int vp9_loop_filter_worker(LFWorkerData *const lf_data, void *unused) {
1745   (void)unused;
1746   loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
1747                    lf_data->start, lf_data->stop, lf_data->y_only);
1748   return 1;
1749 }
1750