1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17
18 #include "vpx_dsp/vpx_dsp_common.h"
19 #include "vpx_mem/vpx_mem.h"
20 #include "vpx_ports/mem.h"
21 #include "vpx_ports/system_state.h"
22
23 #include "vp9/common/vp9_alloccommon.h"
24 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
25 #include "vp9/common/vp9_common.h"
26 #include "vp9/common/vp9_entropymode.h"
27 #include "vp9/common/vp9_quant_common.h"
28 #include "vp9/common/vp9_seg_common.h"
29
30 #include "vp9/encoder/vp9_encodemv.h"
31 #include "vp9/encoder/vp9_ratectrl.h"
32
33 // Max rate target for 1080P and below encodes under normal circumstances
34 // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
35 #define MAX_MB_RATE 250
36 #define MAXRATE_1080P 2025000
37
38 #define DEFAULT_KF_BOOST 2000
39 #define DEFAULT_GF_BOOST 2000
40
41 #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
42
43 #define MIN_BPB_FACTOR 0.005
44 #define MAX_BPB_FACTOR 50
45
46 #define FRAME_OVERHEAD_BITS 200
47
48 #if CONFIG_VP9_HIGHBITDEPTH
49 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
50 do { \
51 switch (bit_depth) { \
52 case VPX_BITS_8: \
53 name = name##_8; \
54 break; \
55 case VPX_BITS_10: \
56 name = name##_10; \
57 break; \
58 case VPX_BITS_12: \
59 name = name##_12; \
60 break; \
61 default: \
62 assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10" \
63 " or VPX_BITS_12"); \
64 name = NULL; \
65 } \
66 } while (0)
67 #else
68 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
69 do { \
70 (void) bit_depth; \
71 name = name##_8; \
72 } while (0)
73 #endif
74
75 // Tables relating active max Q to active min Q
76 static int kf_low_motion_minq_8[QINDEX_RANGE];
77 static int kf_high_motion_minq_8[QINDEX_RANGE];
78 static int arfgf_low_motion_minq_8[QINDEX_RANGE];
79 static int arfgf_high_motion_minq_8[QINDEX_RANGE];
80 static int inter_minq_8[QINDEX_RANGE];
81 static int rtc_minq_8[QINDEX_RANGE];
82
83 #if CONFIG_VP9_HIGHBITDEPTH
84 static int kf_low_motion_minq_10[QINDEX_RANGE];
85 static int kf_high_motion_minq_10[QINDEX_RANGE];
86 static int arfgf_low_motion_minq_10[QINDEX_RANGE];
87 static int arfgf_high_motion_minq_10[QINDEX_RANGE];
88 static int inter_minq_10[QINDEX_RANGE];
89 static int rtc_minq_10[QINDEX_RANGE];
90 static int kf_low_motion_minq_12[QINDEX_RANGE];
91 static int kf_high_motion_minq_12[QINDEX_RANGE];
92 static int arfgf_low_motion_minq_12[QINDEX_RANGE];
93 static int arfgf_high_motion_minq_12[QINDEX_RANGE];
94 static int inter_minq_12[QINDEX_RANGE];
95 static int rtc_minq_12[QINDEX_RANGE];
96 #endif
97
98 static int gf_high = 2000;
99 static int gf_low = 400;
100 static int kf_high = 5000;
101 static int kf_low = 400;
102
103 // Functions to compute the active minq lookup table entries based on a
104 // formulaic approach to facilitate easier adjustment of the Q tables.
105 // The formulae were derived from computing a 3rd order polynomial best
106 // fit to the original data (after plotting real maxq vs minq (not q index))
get_minq_index(double maxq,double x3,double x2,double x1,vpx_bit_depth_t bit_depth)107 static int get_minq_index(double maxq, double x3, double x2, double x1,
108 vpx_bit_depth_t bit_depth) {
109 int i;
110 const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq,
111 maxq);
112
113 // Special case handling to deal with the step from q2.0
114 // down to lossless mode represented by q 1.0.
115 if (minqtarget <= 2.0)
116 return 0;
117
118 for (i = 0; i < QINDEX_RANGE; i++) {
119 if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth))
120 return i;
121 }
122
123 return QINDEX_RANGE - 1;
124 }
125
init_minq_luts(int * kf_low_m,int * kf_high_m,int * arfgf_low,int * arfgf_high,int * inter,int * rtc,vpx_bit_depth_t bit_depth)126 static void init_minq_luts(int *kf_low_m, int *kf_high_m,
127 int *arfgf_low, int *arfgf_high,
128 int *inter, int *rtc, vpx_bit_depth_t bit_depth) {
129 int i;
130 for (i = 0; i < QINDEX_RANGE; i++) {
131 const double maxq = vp9_convert_qindex_to_q(i, bit_depth);
132 kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
133 kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
134 arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
135 arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
136 inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
137 rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
138 }
139 }
140
vp9_rc_init_minq_luts(void)141 void vp9_rc_init_minq_luts(void) {
142 init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
143 arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
144 inter_minq_8, rtc_minq_8, VPX_BITS_8);
145 #if CONFIG_VP9_HIGHBITDEPTH
146 init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
147 arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
148 inter_minq_10, rtc_minq_10, VPX_BITS_10);
149 init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
150 arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
151 inter_minq_12, rtc_minq_12, VPX_BITS_12);
152 #endif
153 }
154
155 // These functions use formulaic calculations to make playing with the
156 // quantizer tables easier. If necessary they can be replaced by lookup
157 // tables if and when things settle down in the experimental bitstream
vp9_convert_qindex_to_q(int qindex,vpx_bit_depth_t bit_depth)158 double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
159 // Convert the index to a real Q value (scaled down to match old Q values)
160 #if CONFIG_VP9_HIGHBITDEPTH
161 switch (bit_depth) {
162 case VPX_BITS_8:
163 return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
164 case VPX_BITS_10:
165 return vp9_ac_quant(qindex, 0, bit_depth) / 16.0;
166 case VPX_BITS_12:
167 return vp9_ac_quant(qindex, 0, bit_depth) / 64.0;
168 default:
169 assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
170 return -1.0;
171 }
172 #else
173 return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
174 #endif
175 }
176
vp9_rc_bits_per_mb(FRAME_TYPE frame_type,int qindex,double correction_factor,vpx_bit_depth_t bit_depth)177 int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
178 double correction_factor,
179 vpx_bit_depth_t bit_depth) {
180 const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
181 int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
182
183 assert(correction_factor <= MAX_BPB_FACTOR &&
184 correction_factor >= MIN_BPB_FACTOR);
185
186 // q based adjustment to baseline enumerator
187 enumerator += (int)(enumerator * q) >> 12;
188 return (int)(enumerator * correction_factor / q);
189 }
190
vp9_estimate_bits_at_q(FRAME_TYPE frame_type,int q,int mbs,double correction_factor,vpx_bit_depth_t bit_depth)191 int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
192 double correction_factor,
193 vpx_bit_depth_t bit_depth) {
194 const int bpm = (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor,
195 bit_depth));
196 return VPXMAX(FRAME_OVERHEAD_BITS,
197 (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
198 }
199
vp9_rc_clamp_pframe_target_size(const VP9_COMP * const cpi,int target)200 int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
201 const RATE_CONTROL *rc = &cpi->rc;
202 const VP9EncoderConfig *oxcf = &cpi->oxcf;
203 const int min_frame_target = VPXMAX(rc->min_frame_bandwidth,
204 rc->avg_frame_bandwidth >> 5);
205 if (target < min_frame_target)
206 target = min_frame_target;
207 if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
208 // If there is an active ARF at this location use the minimum
209 // bits on this frame even if it is a constructed arf.
210 // The active maximum quantizer insures that an appropriate
211 // number of bits will be spent if needed for constructed ARFs.
212 target = min_frame_target;
213 }
214 // Clip the frame target to the maximum allowed value.
215 if (target > rc->max_frame_bandwidth)
216 target = rc->max_frame_bandwidth;
217 if (oxcf->rc_max_inter_bitrate_pct) {
218 const int max_rate = rc->avg_frame_bandwidth *
219 oxcf->rc_max_inter_bitrate_pct / 100;
220 target = VPXMIN(target, max_rate);
221 }
222 return target;
223 }
224
vp9_rc_clamp_iframe_target_size(const VP9_COMP * const cpi,int target)225 int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
226 const RATE_CONTROL *rc = &cpi->rc;
227 const VP9EncoderConfig *oxcf = &cpi->oxcf;
228 if (oxcf->rc_max_intra_bitrate_pct) {
229 const int max_rate = rc->avg_frame_bandwidth *
230 oxcf->rc_max_intra_bitrate_pct / 100;
231 target = VPXMIN(target, max_rate);
232 }
233 if (target > rc->max_frame_bandwidth)
234 target = rc->max_frame_bandwidth;
235 return target;
236 }
237
238 // Update the buffer level for higher temporal layers, given the encoded current
239 // temporal layer.
update_layer_buffer_level(SVC * svc,int encoded_frame_size)240 static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) {
241 int i = 0;
242 int current_temporal_layer = svc->temporal_layer_id;
243 for (i = current_temporal_layer + 1;
244 i < svc->number_temporal_layers; ++i) {
245 const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
246 svc->number_temporal_layers);
247 LAYER_CONTEXT *lc = &svc->layer_context[layer];
248 RATE_CONTROL *lrc = &lc->rc;
249 int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate -
250 encoded_frame_size);
251 lrc->bits_off_target += bits_off_for_this_layer;
252
253 // Clip buffer level to maximum buffer size for the layer.
254 lrc->bits_off_target =
255 VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
256 lrc->buffer_level = lrc->bits_off_target;
257 }
258 }
259
260 // Update the buffer level: leaky bucket model.
update_buffer_level(VP9_COMP * cpi,int encoded_frame_size)261 static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
262 const VP9_COMMON *const cm = &cpi->common;
263 RATE_CONTROL *const rc = &cpi->rc;
264
265 // Non-viewable frames are a special case and are treated as pure overhead.
266 if (!cm->show_frame) {
267 rc->bits_off_target -= encoded_frame_size;
268 } else {
269 rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
270 }
271
272 // Clip the buffer level to the maximum specified buffer size.
273 rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
274
275 // For screen-content mode, and if frame-dropper is off, don't let buffer
276 // level go below threshold, given here as -rc->maximum_ buffer_size.
277 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
278 cpi->oxcf.drop_frames_water_mark == 0)
279 rc->bits_off_target = VPXMAX(rc->bits_off_target, -rc->maximum_buffer_size);
280
281 rc->buffer_level = rc->bits_off_target;
282
283 if (is_one_pass_cbr_svc(cpi)) {
284 update_layer_buffer_level(&cpi->svc, encoded_frame_size);
285 }
286 }
287
vp9_rc_get_default_min_gf_interval(int width,int height,double framerate)288 int vp9_rc_get_default_min_gf_interval(
289 int width, int height, double framerate) {
290 // Assume we do not need any constraint lower than 4K 20 fps
291 static const double factor_safe = 3840 * 2160 * 20.0;
292 const double factor = width * height * framerate;
293 const int default_interval =
294 clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
295
296 if (factor <= factor_safe)
297 return default_interval;
298 else
299 return VPXMAX(default_interval,
300 (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
301 // Note this logic makes:
302 // 4K24: 5
303 // 4K30: 6
304 // 4K60: 12
305 }
306
vp9_rc_get_default_max_gf_interval(double framerate,int min_gf_interval)307 int vp9_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
308 int interval = VPXMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
309 interval += (interval & 0x01); // Round to even value
310 return VPXMAX(interval, min_gf_interval);
311 }
312
vp9_rc_init(const VP9EncoderConfig * oxcf,int pass,RATE_CONTROL * rc)313 void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
314 int i;
315
316 if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
317 rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
318 rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
319 } else {
320 rc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q +
321 oxcf->best_allowed_q) / 2;
322 rc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q +
323 oxcf->best_allowed_q) / 2;
324 }
325
326 rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
327 rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
328
329 rc->buffer_level = rc->starting_buffer_level;
330 rc->bits_off_target = rc->starting_buffer_level;
331
332 rc->rolling_target_bits = rc->avg_frame_bandwidth;
333 rc->rolling_actual_bits = rc->avg_frame_bandwidth;
334 rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
335 rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
336
337 rc->total_actual_bits = 0;
338 rc->total_target_bits = 0;
339 rc->total_target_vs_actual = 0;
340
341 rc->frames_since_key = 8; // Sensible default for first frame.
342 rc->this_key_frame_forced = 0;
343 rc->next_key_frame_forced = 0;
344 rc->source_alt_ref_pending = 0;
345 rc->source_alt_ref_active = 0;
346
347 rc->frames_till_gf_update_due = 0;
348 rc->ni_av_qi = oxcf->worst_allowed_q;
349 rc->ni_tot_qi = 0;
350 rc->ni_frames = 0;
351
352 rc->tot_q = 0.0;
353 rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
354
355 for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
356 rc->rate_correction_factors[i] = 1.0;
357 }
358
359 rc->min_gf_interval = oxcf->min_gf_interval;
360 rc->max_gf_interval = oxcf->max_gf_interval;
361 if (rc->min_gf_interval == 0)
362 rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
363 oxcf->width, oxcf->height, oxcf->init_framerate);
364 if (rc->max_gf_interval == 0)
365 rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
366 oxcf->init_framerate, rc->min_gf_interval);
367 rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
368 }
369
vp9_rc_drop_frame(VP9_COMP * cpi)370 int vp9_rc_drop_frame(VP9_COMP *cpi) {
371 const VP9EncoderConfig *oxcf = &cpi->oxcf;
372 RATE_CONTROL *const rc = &cpi->rc;
373
374 if (!oxcf->drop_frames_water_mark) {
375 return 0;
376 } else {
377 if (rc->buffer_level < 0) {
378 // Always drop if buffer is below 0.
379 return 1;
380 } else {
381 // If buffer is below drop_mark, for now just drop every other frame
382 // (starting with the next frame) until it increases back over drop_mark.
383 int drop_mark = (int)(oxcf->drop_frames_water_mark *
384 rc->optimal_buffer_level / 100);
385 if ((rc->buffer_level > drop_mark) &&
386 (rc->decimation_factor > 0)) {
387 --rc->decimation_factor;
388 } else if (rc->buffer_level <= drop_mark &&
389 rc->decimation_factor == 0) {
390 rc->decimation_factor = 1;
391 }
392 if (rc->decimation_factor > 0) {
393 if (rc->decimation_count > 0) {
394 --rc->decimation_count;
395 return 1;
396 } else {
397 rc->decimation_count = rc->decimation_factor;
398 return 0;
399 }
400 } else {
401 rc->decimation_count = 0;
402 return 0;
403 }
404 }
405 }
406 }
407
get_rate_correction_factor(const VP9_COMP * cpi)408 static double get_rate_correction_factor(const VP9_COMP *cpi) {
409 const RATE_CONTROL *const rc = &cpi->rc;
410 double rcf;
411
412 if (cpi->common.frame_type == KEY_FRAME) {
413 rcf = rc->rate_correction_factors[KF_STD];
414 } else if (cpi->oxcf.pass == 2) {
415 RATE_FACTOR_LEVEL rf_lvl =
416 cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
417 rcf = rc->rate_correction_factors[rf_lvl];
418 } else {
419 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
420 !rc->is_src_frame_alt_ref && !cpi->use_svc &&
421 (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
422 rcf = rc->rate_correction_factors[GF_ARF_STD];
423 else
424 rcf = rc->rate_correction_factors[INTER_NORMAL];
425 }
426 rcf *= rcf_mult[rc->frame_size_selector];
427 return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
428 }
429
set_rate_correction_factor(VP9_COMP * cpi,double factor)430 static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
431 RATE_CONTROL *const rc = &cpi->rc;
432
433 // Normalize RCF to account for the size-dependent scaling factor.
434 factor /= rcf_mult[cpi->rc.frame_size_selector];
435
436 factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
437
438 if (cpi->common.frame_type == KEY_FRAME) {
439 rc->rate_correction_factors[KF_STD] = factor;
440 } else if (cpi->oxcf.pass == 2) {
441 RATE_FACTOR_LEVEL rf_lvl =
442 cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
443 rc->rate_correction_factors[rf_lvl] = factor;
444 } else {
445 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
446 !rc->is_src_frame_alt_ref && !cpi->use_svc &&
447 (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
448 rc->rate_correction_factors[GF_ARF_STD] = factor;
449 else
450 rc->rate_correction_factors[INTER_NORMAL] = factor;
451 }
452 }
453
vp9_rc_update_rate_correction_factors(VP9_COMP * cpi)454 void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) {
455 const VP9_COMMON *const cm = &cpi->common;
456 int correction_factor = 100;
457 double rate_correction_factor = get_rate_correction_factor(cpi);
458 double adjustment_limit;
459
460 int projected_size_based_on_q = 0;
461
462 // Do not update the rate factors for arf overlay frames.
463 if (cpi->rc.is_src_frame_alt_ref)
464 return;
465
466 // Clear down mmx registers to allow floating point in what follows
467 vpx_clear_system_state();
468
469 // Work out how big we would have expected the frame to be at this Q given
470 // the current correction factor.
471 // Stay in double to avoid int overflow when values are large
472 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
473 projected_size_based_on_q =
474 vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
475 } else {
476 projected_size_based_on_q = vp9_estimate_bits_at_q(cpi->common.frame_type,
477 cm->base_qindex,
478 cm->MBs,
479 rate_correction_factor,
480 cm->bit_depth);
481 }
482 // Work out a size correction factor.
483 if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
484 correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
485 projected_size_based_on_q);
486
487 // More heavily damped adjustment used if we have been oscillating either side
488 // of target.
489 adjustment_limit = 0.25 +
490 0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor)));
491
492 cpi->rc.q_2_frame = cpi->rc.q_1_frame;
493 cpi->rc.q_1_frame = cm->base_qindex;
494 cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
495 if (correction_factor > 110)
496 cpi->rc.rc_1_frame = -1;
497 else if (correction_factor < 90)
498 cpi->rc.rc_1_frame = 1;
499 else
500 cpi->rc.rc_1_frame = 0;
501
502 if (correction_factor > 102) {
503 // We are not already at the worst allowable quality
504 correction_factor = (int)(100 + ((correction_factor - 100) *
505 adjustment_limit));
506 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
507 // Keep rate_correction_factor within limits
508 if (rate_correction_factor > MAX_BPB_FACTOR)
509 rate_correction_factor = MAX_BPB_FACTOR;
510 } else if (correction_factor < 99) {
511 // We are not already at the best allowable quality
512 correction_factor = (int)(100 - ((100 - correction_factor) *
513 adjustment_limit));
514 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
515
516 // Keep rate_correction_factor within limits
517 if (rate_correction_factor < MIN_BPB_FACTOR)
518 rate_correction_factor = MIN_BPB_FACTOR;
519 }
520
521 set_rate_correction_factor(cpi, rate_correction_factor);
522 }
523
524
vp9_rc_regulate_q(const VP9_COMP * cpi,int target_bits_per_frame,int active_best_quality,int active_worst_quality)525 int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
526 int active_best_quality, int active_worst_quality) {
527 const VP9_COMMON *const cm = &cpi->common;
528 int q = active_worst_quality;
529 int last_error = INT_MAX;
530 int i, target_bits_per_mb, bits_per_mb_at_this_q;
531 const double correction_factor = get_rate_correction_factor(cpi);
532
533 // Calculate required scaling factor based on target frame size and size of
534 // frame produced using previous Q.
535 target_bits_per_mb =
536 ((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs;
537
538 i = active_best_quality;
539
540 do {
541 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
542 cm->seg.enabled &&
543 cpi->svc.temporal_layer_id == 0) {
544 bits_per_mb_at_this_q =
545 (int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
546 } else {
547 bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cm->frame_type, i,
548 correction_factor,
549 cm->bit_depth);
550 }
551
552 if (bits_per_mb_at_this_q <= target_bits_per_mb) {
553 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
554 q = i;
555 else
556 q = i - 1;
557
558 break;
559 } else {
560 last_error = bits_per_mb_at_this_q - target_bits_per_mb;
561 }
562 } while (++i <= active_worst_quality);
563
564 // In CBR mode, this makes sure q is between oscillating Qs to prevent
565 // resonance.
566 if (cpi->oxcf.rc_mode == VPX_CBR &&
567 (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
568 cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
569 q = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
570 VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
571 }
572 return q;
573 }
574
get_active_quality(int q,int gfu_boost,int low,int high,int * low_motion_minq,int * high_motion_minq)575 static int get_active_quality(int q, int gfu_boost, int low, int high,
576 int *low_motion_minq, int *high_motion_minq) {
577 if (gfu_boost > high) {
578 return low_motion_minq[q];
579 } else if (gfu_boost < low) {
580 return high_motion_minq[q];
581 } else {
582 const int gap = high - low;
583 const int offset = high - gfu_boost;
584 const int qdiff = high_motion_minq[q] - low_motion_minq[q];
585 const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
586 return low_motion_minq[q] + adjustment;
587 }
588 }
589
get_kf_active_quality(const RATE_CONTROL * const rc,int q,vpx_bit_depth_t bit_depth)590 static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
591 vpx_bit_depth_t bit_depth) {
592 int *kf_low_motion_minq;
593 int *kf_high_motion_minq;
594 ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
595 ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
596 return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
597 kf_low_motion_minq, kf_high_motion_minq);
598 }
599
get_gf_active_quality(const RATE_CONTROL * const rc,int q,vpx_bit_depth_t bit_depth)600 static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
601 vpx_bit_depth_t bit_depth) {
602 int *arfgf_low_motion_minq;
603 int *arfgf_high_motion_minq;
604 ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
605 ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
606 return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
607 arfgf_low_motion_minq, arfgf_high_motion_minq);
608 }
609
calc_active_worst_quality_one_pass_vbr(const VP9_COMP * cpi)610 static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
611 const RATE_CONTROL *const rc = &cpi->rc;
612 const unsigned int curr_frame = cpi->common.current_video_frame;
613 int active_worst_quality;
614
615 if (cpi->common.frame_type == KEY_FRAME) {
616 active_worst_quality = curr_frame == 0 ? rc->worst_quality
617 : rc->last_q[KEY_FRAME] * 2;
618 } else {
619 if (!rc->is_src_frame_alt_ref &&
620 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
621 active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
622 : rc->last_q[INTER_FRAME];
623 } else {
624 active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
625 : rc->last_q[INTER_FRAME] * 2;
626 }
627 }
628 return VPXMIN(active_worst_quality, rc->worst_quality);
629 }
630
631 // Adjust active_worst_quality level based on buffer level.
calc_active_worst_quality_one_pass_cbr(const VP9_COMP * cpi)632 static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
633 // Adjust active_worst_quality: If buffer is above the optimal/target level,
634 // bring active_worst_quality down depending on fullness of buffer.
635 // If buffer is below the optimal level, let the active_worst_quality go from
636 // ambient Q (at buffer = optimal level) to worst_quality level
637 // (at buffer = critical level).
638 const VP9_COMMON *const cm = &cpi->common;
639 const RATE_CONTROL *rc = &cpi->rc;
640 // Buffer level below which we push active_worst to worst_quality.
641 int64_t critical_level = rc->optimal_buffer_level >> 3;
642 int64_t buff_lvl_step = 0;
643 int adjustment = 0;
644 int active_worst_quality;
645 int ambient_qp;
646 unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers;
647 if (cm->frame_type == KEY_FRAME)
648 return rc->worst_quality;
649 // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
650 // for the first few frames following key frame. These are both initialized
651 // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
652 // So for first few frames following key, the qp of that key frame is weighted
653 // into the active_worst_quality setting.
654 ambient_qp = (cm->current_video_frame < num_frames_weight_key) ?
655 VPXMIN(rc->avg_frame_qindex[INTER_FRAME],
656 rc->avg_frame_qindex[KEY_FRAME]) :
657 rc->avg_frame_qindex[INTER_FRAME];
658 active_worst_quality = VPXMIN(rc->worst_quality, ambient_qp * 5 / 4);
659 if (rc->buffer_level > rc->optimal_buffer_level) {
660 // Adjust down.
661 // Maximum limit for down adjustment, ~30%.
662 int max_adjustment_down = active_worst_quality / 3;
663 if (max_adjustment_down) {
664 buff_lvl_step = ((rc->maximum_buffer_size -
665 rc->optimal_buffer_level) / max_adjustment_down);
666 if (buff_lvl_step)
667 adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
668 buff_lvl_step);
669 active_worst_quality -= adjustment;
670 }
671 } else if (rc->buffer_level > critical_level) {
672 // Adjust up from ambient Q.
673 if (critical_level) {
674 buff_lvl_step = (rc->optimal_buffer_level - critical_level);
675 if (buff_lvl_step) {
676 adjustment = (int)((rc->worst_quality - ambient_qp) *
677 (rc->optimal_buffer_level - rc->buffer_level) /
678 buff_lvl_step);
679 }
680 active_worst_quality = ambient_qp + adjustment;
681 }
682 } else {
683 // Set to worst_quality if buffer is below critical level.
684 active_worst_quality = rc->worst_quality;
685 }
686 return active_worst_quality;
687 }
688
rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP * cpi,int * bottom_index,int * top_index)689 static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
690 int *bottom_index,
691 int *top_index) {
692 const VP9_COMMON *const cm = &cpi->common;
693 const RATE_CONTROL *const rc = &cpi->rc;
694 int active_best_quality;
695 int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
696 int q;
697 int *rtc_minq;
698 ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
699
700 if (frame_is_intra_only(cm)) {
701 active_best_quality = rc->best_quality;
702 // Handle the special case for key frames forced when we have reached
703 // the maximum key frame interval. Here force the Q to a range
704 // based on the ambient Q to reduce the risk of popping.
705 if (rc->this_key_frame_forced) {
706 int qindex = rc->last_boosted_qindex;
707 double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
708 int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
709 (last_boosted_q * 0.75),
710 cm->bit_depth);
711 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
712 } else if (cm->current_video_frame > 0) {
713 // not first frame of one pass and kf_boost is set
714 double q_adj_factor = 1.0;
715 double q_val;
716
717 active_best_quality =
718 get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME],
719 cm->bit_depth);
720
721 // Allow somewhat lower kf minq with small image formats.
722 if ((cm->width * cm->height) <= (352 * 288)) {
723 q_adj_factor -= 0.25;
724 }
725
726 // Convert the adjustment factor to a qindex delta
727 // on active_best_quality.
728 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
729 active_best_quality += vp9_compute_qdelta(rc, q_val,
730 q_val * q_adj_factor,
731 cm->bit_depth);
732 }
733 } else if (!rc->is_src_frame_alt_ref &&
734 !cpi->use_svc &&
735 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
736 // Use the lower of active_worst_quality and recent
737 // average Q as basis for GF/ARF best Q limit unless last frame was
738 // a key frame.
739 if (rc->frames_since_key > 1 &&
740 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
741 q = rc->avg_frame_qindex[INTER_FRAME];
742 } else {
743 q = active_worst_quality;
744 }
745 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
746 } else {
747 // Use the lower of active_worst_quality and recent/average Q.
748 if (cm->current_video_frame > 1) {
749 if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
750 active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
751 else
752 active_best_quality = rtc_minq[active_worst_quality];
753 } else {
754 if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
755 active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
756 else
757 active_best_quality = rtc_minq[active_worst_quality];
758 }
759 }
760
761 // Clip the active best and worst quality values to limits
762 active_best_quality = clamp(active_best_quality,
763 rc->best_quality, rc->worst_quality);
764 active_worst_quality = clamp(active_worst_quality,
765 active_best_quality, rc->worst_quality);
766
767 *top_index = active_worst_quality;
768 *bottom_index = active_best_quality;
769
770 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
771 // Limit Q range for the adaptive loop.
772 if (cm->frame_type == KEY_FRAME &&
773 !rc->this_key_frame_forced &&
774 !(cm->current_video_frame == 0)) {
775 int qdelta = 0;
776 vpx_clear_system_state();
777 qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
778 active_worst_quality, 2.0,
779 cm->bit_depth);
780 *top_index = active_worst_quality + qdelta;
781 *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
782 }
783 #endif
784
785 // Special case code to try and match quality with forced key frames
786 if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
787 q = rc->last_boosted_qindex;
788 } else {
789 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
790 active_best_quality, active_worst_quality);
791 if (q > *top_index) {
792 // Special case when we are targeting the max allowed rate
793 if (rc->this_frame_target >= rc->max_frame_bandwidth)
794 *top_index = q;
795 else
796 q = *top_index;
797 }
798 }
799 assert(*top_index <= rc->worst_quality &&
800 *top_index >= rc->best_quality);
801 assert(*bottom_index <= rc->worst_quality &&
802 *bottom_index >= rc->best_quality);
803 assert(q <= rc->worst_quality && q >= rc->best_quality);
804 return q;
805 }
806
get_active_cq_level(const RATE_CONTROL * rc,const VP9EncoderConfig * const oxcf)807 static int get_active_cq_level(const RATE_CONTROL *rc,
808 const VP9EncoderConfig *const oxcf) {
809 static const double cq_adjust_threshold = 0.1;
810 int active_cq_level = oxcf->cq_level;
811 if (oxcf->rc_mode == VPX_CQ &&
812 rc->total_target_bits > 0) {
813 const double x = (double)rc->total_actual_bits / rc->total_target_bits;
814 if (x < cq_adjust_threshold) {
815 active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
816 }
817 }
818 return active_cq_level;
819 }
820
rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP * cpi,int * bottom_index,int * top_index)821 static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
822 int *bottom_index,
823 int *top_index) {
824 const VP9_COMMON *const cm = &cpi->common;
825 const RATE_CONTROL *const rc = &cpi->rc;
826 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
827 const int cq_level = get_active_cq_level(rc, oxcf);
828 int active_best_quality;
829 int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
830 int q;
831 int *inter_minq;
832 ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
833
834 if (frame_is_intra_only(cm)) {
835 // Handle the special case for key frames forced when we have reached
836 // the maximum key frame interval. Here force the Q to a range
837 // based on the ambient Q to reduce the risk of popping.
838 if (rc->this_key_frame_forced) {
839 int qindex = rc->last_boosted_qindex;
840 double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
841 int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
842 last_boosted_q * 0.75,
843 cm->bit_depth);
844 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
845 } else {
846 // not first frame of one pass and kf_boost is set
847 double q_adj_factor = 1.0;
848 double q_val;
849
850 active_best_quality =
851 get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME],
852 cm->bit_depth);
853
854 // Allow somewhat lower kf minq with small image formats.
855 if ((cm->width * cm->height) <= (352 * 288)) {
856 q_adj_factor -= 0.25;
857 }
858
859 // Convert the adjustment factor to a qindex delta
860 // on active_best_quality.
861 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
862 active_best_quality += vp9_compute_qdelta(rc, q_val,
863 q_val * q_adj_factor,
864 cm->bit_depth);
865 }
866 } else if (!rc->is_src_frame_alt_ref &&
867 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
868 // Use the lower of active_worst_quality and recent
869 // average Q as basis for GF/ARF best Q limit unless last frame was
870 // a key frame.
871 if (rc->frames_since_key > 1 &&
872 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
873 q = rc->avg_frame_qindex[INTER_FRAME];
874 } else {
875 q = rc->avg_frame_qindex[KEY_FRAME];
876 }
877 // For constrained quality dont allow Q less than the cq level
878 if (oxcf->rc_mode == VPX_CQ) {
879 if (q < cq_level)
880 q = cq_level;
881
882 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
883
884 // Constrained quality use slightly lower active best.
885 active_best_quality = active_best_quality * 15 / 16;
886
887 } else if (oxcf->rc_mode == VPX_Q) {
888 if (!cpi->refresh_alt_ref_frame) {
889 active_best_quality = cq_level;
890 } else {
891 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
892 }
893 } else {
894 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
895 }
896 } else {
897 if (oxcf->rc_mode == VPX_Q) {
898 active_best_quality = cq_level;
899 } else {
900 // Use the lower of active_worst_quality and recent/average Q.
901 if (cm->current_video_frame > 1)
902 active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]];
903 else
904 active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
905 // For the constrained quality mode we don't want
906 // q to fall below the cq level.
907 if ((oxcf->rc_mode == VPX_CQ) &&
908 (active_best_quality < cq_level)) {
909 active_best_quality = cq_level;
910 }
911 }
912 }
913
914 // Clip the active best and worst quality values to limits
915 active_best_quality = clamp(active_best_quality,
916 rc->best_quality, rc->worst_quality);
917 active_worst_quality = clamp(active_worst_quality,
918 active_best_quality, rc->worst_quality);
919
920 *top_index = active_worst_quality;
921 *bottom_index = active_best_quality;
922
923 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
924 {
925 int qdelta = 0;
926 vpx_clear_system_state();
927
928 // Limit Q range for the adaptive loop.
929 if (cm->frame_type == KEY_FRAME &&
930 !rc->this_key_frame_forced &&
931 !(cm->current_video_frame == 0)) {
932 qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
933 active_worst_quality, 2.0,
934 cm->bit_depth);
935 } else if (!rc->is_src_frame_alt_ref &&
936 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
937 qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
938 active_worst_quality, 1.75,
939 cm->bit_depth);
940 }
941 *top_index = active_worst_quality + qdelta;
942 *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
943 }
944 #endif
945
946 if (oxcf->rc_mode == VPX_Q) {
947 q = active_best_quality;
948 // Special case code to try and match quality with forced key frames
949 } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
950 q = rc->last_boosted_qindex;
951 } else {
952 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
953 active_best_quality, active_worst_quality);
954 if (q > *top_index) {
955 // Special case when we are targeting the max allowed rate
956 if (rc->this_frame_target >= rc->max_frame_bandwidth)
957 *top_index = q;
958 else
959 q = *top_index;
960 }
961 }
962
963 assert(*top_index <= rc->worst_quality &&
964 *top_index >= rc->best_quality);
965 assert(*bottom_index <= rc->worst_quality &&
966 *bottom_index >= rc->best_quality);
967 assert(q <= rc->worst_quality && q >= rc->best_quality);
968 return q;
969 }
970
vp9_frame_type_qdelta(const VP9_COMP * cpi,int rf_level,int q)971 int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) {
972 static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
973 1.00, // INTER_NORMAL
974 1.00, // INTER_HIGH
975 1.50, // GF_ARF_LOW
976 1.75, // GF_ARF_STD
977 2.00, // KF_STD
978 };
979 static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] =
980 {INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME};
981 const VP9_COMMON *const cm = &cpi->common;
982 int qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level],
983 q, rate_factor_deltas[rf_level],
984 cm->bit_depth);
985 return qdelta;
986 }
987
988 #define STATIC_MOTION_THRESH 95
rc_pick_q_and_bounds_two_pass(const VP9_COMP * cpi,int * bottom_index,int * top_index)989 static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
990 int *bottom_index,
991 int *top_index) {
992 const VP9_COMMON *const cm = &cpi->common;
993 const RATE_CONTROL *const rc = &cpi->rc;
994 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
995 const GF_GROUP *gf_group = &cpi->twopass.gf_group;
996 const int cq_level = get_active_cq_level(rc, oxcf);
997 int active_best_quality;
998 int active_worst_quality = cpi->twopass.active_worst_quality;
999 int q;
1000 int *inter_minq;
1001 ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
1002
1003 if (frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) {
1004 // Handle the special case for key frames forced when we have reached
1005 // the maximum key frame interval. Here force the Q to a range
1006 // based on the ambient Q to reduce the risk of popping.
1007 if (rc->this_key_frame_forced) {
1008 double last_boosted_q;
1009 int delta_qindex;
1010 int qindex;
1011
1012 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1013 qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1014 active_best_quality = qindex;
1015 last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1016 delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
1017 last_boosted_q * 1.25,
1018 cm->bit_depth);
1019 active_worst_quality =
1020 VPXMIN(qindex + delta_qindex, active_worst_quality);
1021 } else {
1022 qindex = rc->last_boosted_qindex;
1023 last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1024 delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
1025 last_boosted_q * 0.75,
1026 cm->bit_depth);
1027 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1028 }
1029 } else {
1030 // Not forced keyframe.
1031 double q_adj_factor = 1.0;
1032 double q_val;
1033 // Baseline value derived from cpi->active_worst_quality and kf boost.
1034 active_best_quality = get_kf_active_quality(rc, active_worst_quality,
1035 cm->bit_depth);
1036
1037 // Allow somewhat lower kf minq with small image formats.
1038 if ((cm->width * cm->height) <= (352 * 288)) {
1039 q_adj_factor -= 0.25;
1040 }
1041
1042 // Make a further adjustment based on the kf zero motion measure.
1043 q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
1044
1045 // Convert the adjustment factor to a qindex delta
1046 // on active_best_quality.
1047 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
1048 active_best_quality += vp9_compute_qdelta(rc, q_val,
1049 q_val * q_adj_factor,
1050 cm->bit_depth);
1051 }
1052 } else if (!rc->is_src_frame_alt_ref &&
1053 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1054 // Use the lower of active_worst_quality and recent
1055 // average Q as basis for GF/ARF best Q limit unless last frame was
1056 // a key frame.
1057 if (rc->frames_since_key > 1 &&
1058 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1059 q = rc->avg_frame_qindex[INTER_FRAME];
1060 } else {
1061 q = active_worst_quality;
1062 }
1063 // For constrained quality dont allow Q less than the cq level
1064 if (oxcf->rc_mode == VPX_CQ) {
1065 if (q < cq_level)
1066 q = cq_level;
1067
1068 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
1069
1070 // Constrained quality use slightly lower active best.
1071 active_best_quality = active_best_quality * 15 / 16;
1072
1073 } else if (oxcf->rc_mode == VPX_Q) {
1074 if (!cpi->refresh_alt_ref_frame) {
1075 active_best_quality = cq_level;
1076 } else {
1077 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
1078
1079 // Modify best quality for second level arfs. For mode VPX_Q this
1080 // becomes the baseline frame q.
1081 if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)
1082 active_best_quality = (active_best_quality + cq_level + 1) / 2;
1083 }
1084 } else {
1085 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
1086 }
1087 } else {
1088 if (oxcf->rc_mode == VPX_Q) {
1089 active_best_quality = cq_level;
1090 } else {
1091 active_best_quality = inter_minq[active_worst_quality];
1092
1093 // For the constrained quality mode we don't want
1094 // q to fall below the cq level.
1095 if ((oxcf->rc_mode == VPX_CQ) &&
1096 (active_best_quality < cq_level)) {
1097 active_best_quality = cq_level;
1098 }
1099 }
1100 }
1101
1102 // Extension to max or min Q if undershoot or overshoot is outside
1103 // the permitted range.
1104 if ((cpi->oxcf.rc_mode != VPX_Q) &&
1105 (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) {
1106 if (frame_is_intra_only(cm) ||
1107 (!rc->is_src_frame_alt_ref &&
1108 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
1109 active_best_quality -=
1110 (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
1111 active_worst_quality += (cpi->twopass.extend_maxq / 2);
1112 } else {
1113 active_best_quality -=
1114 (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
1115 active_worst_quality += cpi->twopass.extend_maxq;
1116 }
1117 }
1118
1119 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
1120 vpx_clear_system_state();
1121 // Static forced key frames Q restrictions dealt with elsewhere.
1122 if (!((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi))) ||
1123 !rc->this_key_frame_forced ||
1124 (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
1125 int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index],
1126 active_worst_quality);
1127 active_worst_quality = VPXMAX(active_worst_quality + qdelta,
1128 active_best_quality);
1129 }
1130 #endif
1131
1132 // Modify active_best_quality for downscaled normal frames.
1133 if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) {
1134 int qdelta = vp9_compute_qdelta_by_rate(rc, cm->frame_type,
1135 active_best_quality, 2.0,
1136 cm->bit_depth);
1137 active_best_quality =
1138 VPXMAX(active_best_quality + qdelta, rc->best_quality);
1139 }
1140
1141 active_best_quality = clamp(active_best_quality,
1142 rc->best_quality, rc->worst_quality);
1143 active_worst_quality = clamp(active_worst_quality,
1144 active_best_quality, rc->worst_quality);
1145
1146 if (oxcf->rc_mode == VPX_Q) {
1147 q = active_best_quality;
1148 // Special case code to try and match quality with forced key frames.
1149 } else if ((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) &&
1150 rc->this_key_frame_forced) {
1151 // If static since last kf use better of last boosted and last kf q.
1152 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1153 q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1154 } else {
1155 q = rc->last_boosted_qindex;
1156 }
1157 } else {
1158 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
1159 active_best_quality, active_worst_quality);
1160 if (q > active_worst_quality) {
1161 // Special case when we are targeting the max allowed rate.
1162 if (rc->this_frame_target >= rc->max_frame_bandwidth)
1163 active_worst_quality = q;
1164 else
1165 q = active_worst_quality;
1166 }
1167 }
1168 clamp(q, active_best_quality, active_worst_quality);
1169
1170 *top_index = active_worst_quality;
1171 *bottom_index = active_best_quality;
1172
1173 assert(*top_index <= rc->worst_quality &&
1174 *top_index >= rc->best_quality);
1175 assert(*bottom_index <= rc->worst_quality &&
1176 *bottom_index >= rc->best_quality);
1177 assert(q <= rc->worst_quality && q >= rc->best_quality);
1178 return q;
1179 }
1180
vp9_rc_pick_q_and_bounds(const VP9_COMP * cpi,int * bottom_index,int * top_index)1181 int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi,
1182 int *bottom_index, int *top_index) {
1183 int q;
1184 if (cpi->oxcf.pass == 0) {
1185 if (cpi->oxcf.rc_mode == VPX_CBR)
1186 q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
1187 else
1188 q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
1189 } else {
1190 q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index);
1191 }
1192 if (cpi->sf.use_nonrd_pick_mode) {
1193 if (cpi->sf.force_frame_boost == 1)
1194 q -= cpi->sf.max_delta_qindex;
1195
1196 if (q < *bottom_index)
1197 *bottom_index = q;
1198 else if (q > *top_index)
1199 *top_index = q;
1200 }
1201 return q;
1202 }
1203
vp9_rc_compute_frame_size_bounds(const VP9_COMP * cpi,int frame_target,int * frame_under_shoot_limit,int * frame_over_shoot_limit)1204 void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
1205 int frame_target,
1206 int *frame_under_shoot_limit,
1207 int *frame_over_shoot_limit) {
1208 if (cpi->oxcf.rc_mode == VPX_Q) {
1209 *frame_under_shoot_limit = 0;
1210 *frame_over_shoot_limit = INT_MAX;
1211 } else {
1212 // For very small rate targets where the fractional adjustment
1213 // may be tiny make sure there is at least a minimum range.
1214 const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
1215 *frame_under_shoot_limit = VPXMAX(frame_target - tolerance - 200, 0);
1216 *frame_over_shoot_limit = VPXMIN(frame_target + tolerance + 200,
1217 cpi->rc.max_frame_bandwidth);
1218 }
1219 }
1220
vp9_rc_set_frame_target(VP9_COMP * cpi,int target)1221 void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
1222 const VP9_COMMON *const cm = &cpi->common;
1223 RATE_CONTROL *const rc = &cpi->rc;
1224
1225 rc->this_frame_target = target;
1226
1227 // Modify frame size target when down-scaling.
1228 if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
1229 rc->frame_size_selector != UNSCALED)
1230 rc->this_frame_target = (int)(rc->this_frame_target
1231 * rate_thresh_mult[rc->frame_size_selector]);
1232
1233 // Target rate per SB64 (including partial SB64s.
1234 rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) /
1235 (cm->width * cm->height);
1236 }
1237
update_alt_ref_frame_stats(VP9_COMP * cpi)1238 static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
1239 // this frame refreshes means next frames don't unless specified by user
1240 RATE_CONTROL *const rc = &cpi->rc;
1241 rc->frames_since_golden = 0;
1242
1243 // Mark the alt ref as done (setting to 0 means no further alt refs pending).
1244 rc->source_alt_ref_pending = 0;
1245
1246 // Set the alternate reference frame active flag
1247 rc->source_alt_ref_active = 1;
1248 }
1249
update_golden_frame_stats(VP9_COMP * cpi)1250 static void update_golden_frame_stats(VP9_COMP *cpi) {
1251 RATE_CONTROL *const rc = &cpi->rc;
1252
1253 // Update the Golden frame usage counts.
1254 if (cpi->refresh_golden_frame) {
1255 // this frame refreshes means next frames don't unless specified by user
1256 rc->frames_since_golden = 0;
1257
1258 // If we are not using alt ref in the up and coming group clear the arf
1259 // active flag.
1260 if (!rc->source_alt_ref_pending) {
1261 rc->source_alt_ref_active = 0;
1262 }
1263
1264 // Decrement count down till next gf
1265 if (rc->frames_till_gf_update_due > 0)
1266 rc->frames_till_gf_update_due--;
1267
1268 } else if (!cpi->refresh_alt_ref_frame) {
1269 // Decrement count down till next gf
1270 if (rc->frames_till_gf_update_due > 0)
1271 rc->frames_till_gf_update_due--;
1272
1273 rc->frames_since_golden++;
1274 }
1275 }
1276
vp9_rc_postencode_update(VP9_COMP * cpi,uint64_t bytes_used)1277 void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
1278 const VP9_COMMON *const cm = &cpi->common;
1279 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1280 RATE_CONTROL *const rc = &cpi->rc;
1281 const int qindex = cm->base_qindex;
1282
1283 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
1284 vp9_cyclic_refresh_postencode(cpi);
1285 }
1286
1287 // Update rate control heuristics
1288 rc->projected_frame_size = (int)(bytes_used << 3);
1289
1290 // Post encode loop adjustment of Q prediction.
1291 vp9_rc_update_rate_correction_factors(cpi);
1292
1293 // Keep a record of last Q and ambient average Q.
1294 if (cm->frame_type == KEY_FRAME) {
1295 rc->last_q[KEY_FRAME] = qindex;
1296 rc->avg_frame_qindex[KEY_FRAME] =
1297 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
1298 if (cpi->use_svc) {
1299 int i = 0;
1300 SVC *svc = &cpi->svc;
1301 for (i = 0; i < svc->number_temporal_layers; ++i) {
1302 const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
1303 svc->number_temporal_layers);
1304 LAYER_CONTEXT *lc = &svc->layer_context[layer];
1305 RATE_CONTROL *lrc = &lc->rc;
1306 lrc->last_q[KEY_FRAME] = rc->last_q[KEY_FRAME];
1307 lrc->avg_frame_qindex[KEY_FRAME] = rc->avg_frame_qindex[KEY_FRAME];
1308 }
1309 }
1310 } else {
1311 if (rc->is_src_frame_alt_ref ||
1312 !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) ||
1313 (cpi->use_svc && oxcf->rc_mode == VPX_CBR)) {
1314 rc->last_q[INTER_FRAME] = qindex;
1315 rc->avg_frame_qindex[INTER_FRAME] =
1316 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
1317 rc->ni_frames++;
1318 rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1319 rc->avg_q = rc->tot_q / rc->ni_frames;
1320 // Calculate the average Q for normal inter frames (not key or GFU
1321 // frames).
1322 rc->ni_tot_qi += qindex;
1323 rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
1324 }
1325 }
1326
1327 // Keep record of last boosted (KF/KF/ARF) Q value.
1328 // If the current frame is coded at a lower Q then we also update it.
1329 // If all mbs in this group are skipped only update if the Q value is
1330 // better than that already stored.
1331 // This is used to help set quality in forced key frames to reduce popping
1332 if ((qindex < rc->last_boosted_qindex) ||
1333 (cm->frame_type == KEY_FRAME) ||
1334 (!rc->constrained_gf_group &&
1335 (cpi->refresh_alt_ref_frame ||
1336 (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
1337 rc->last_boosted_qindex = qindex;
1338 }
1339 if (cm->frame_type == KEY_FRAME)
1340 rc->last_kf_qindex = qindex;
1341
1342 update_buffer_level(cpi, rc->projected_frame_size);
1343
1344 // Rolling monitors of whether we are over or underspending used to help
1345 // regulate min and Max Q in two pass.
1346 if (cm->frame_type != KEY_FRAME) {
1347 rc->rolling_target_bits = ROUND_POWER_OF_TWO(
1348 rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
1349 rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
1350 rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
1351 rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
1352 rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
1353 rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
1354 rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
1355 }
1356
1357 // Actual bits spent
1358 rc->total_actual_bits += rc->projected_frame_size;
1359 rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
1360
1361 rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
1362
1363 if (!cpi->use_svc || is_two_pass_svc(cpi)) {
1364 if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
1365 (cm->frame_type != KEY_FRAME))
1366 // Update the alternate reference frame stats as appropriate.
1367 update_alt_ref_frame_stats(cpi);
1368 else
1369 // Update the Golden frame stats as appropriate.
1370 update_golden_frame_stats(cpi);
1371 }
1372
1373 if (cm->frame_type == KEY_FRAME)
1374 rc->frames_since_key = 0;
1375 if (cm->show_frame) {
1376 rc->frames_since_key++;
1377 rc->frames_to_key--;
1378 }
1379
1380 // Trigger the resizing of the next frame if it is scaled.
1381 if (oxcf->pass != 0) {
1382 cpi->resize_pending =
1383 rc->next_frame_size_selector != rc->frame_size_selector;
1384 rc->frame_size_selector = rc->next_frame_size_selector;
1385 }
1386 }
1387
vp9_rc_postencode_update_drop_frame(VP9_COMP * cpi)1388 void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
1389 // Update buffer level with zero size, update frame counters, and return.
1390 update_buffer_level(cpi, 0);
1391 cpi->rc.frames_since_key++;
1392 cpi->rc.frames_to_key--;
1393 cpi->rc.rc_2_frame = 0;
1394 cpi->rc.rc_1_frame = 0;
1395 }
1396
1397 // Use this macro to turn on/off use of alt-refs in one-pass mode.
1398 #define USE_ALTREF_FOR_ONE_PASS 1
1399
calc_pframe_target_size_one_pass_vbr(const VP9_COMP * const cpi)1400 static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
1401 static const int af_ratio = 10;
1402 const RATE_CONTROL *const rc = &cpi->rc;
1403 int target;
1404 #if USE_ALTREF_FOR_ONE_PASS
1405 target = (!rc->is_src_frame_alt_ref &&
1406 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) ?
1407 (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
1408 (rc->baseline_gf_interval + af_ratio - 1) :
1409 (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
1410 (rc->baseline_gf_interval + af_ratio - 1);
1411 #else
1412 target = rc->avg_frame_bandwidth;
1413 #endif
1414 return vp9_rc_clamp_pframe_target_size(cpi, target);
1415 }
1416
calc_iframe_target_size_one_pass_vbr(const VP9_COMP * const cpi)1417 static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
1418 static const int kf_ratio = 25;
1419 const RATE_CONTROL *rc = &cpi->rc;
1420 const int target = rc->avg_frame_bandwidth * kf_ratio;
1421 return vp9_rc_clamp_iframe_target_size(cpi, target);
1422 }
1423
vp9_rc_get_one_pass_vbr_params(VP9_COMP * cpi)1424 void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
1425 VP9_COMMON *const cm = &cpi->common;
1426 RATE_CONTROL *const rc = &cpi->rc;
1427 int target;
1428 // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
1429 if (!cpi->refresh_alt_ref_frame &&
1430 (cm->current_video_frame == 0 ||
1431 (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1432 rc->frames_to_key == 0 ||
1433 (cpi->oxcf.auto_key && 0))) {
1434 cm->frame_type = KEY_FRAME;
1435 rc->this_key_frame_forced = cm->current_video_frame != 0 &&
1436 rc->frames_to_key == 0;
1437 rc->frames_to_key = cpi->oxcf.key_freq;
1438 rc->kf_boost = DEFAULT_KF_BOOST;
1439 rc->source_alt_ref_active = 0;
1440 } else {
1441 cm->frame_type = INTER_FRAME;
1442 }
1443 if (rc->frames_till_gf_update_due == 0) {
1444 rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
1445 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1446 // NOTE: frames_till_gf_update_due must be <= frames_to_key.
1447 if (rc->frames_till_gf_update_due > rc->frames_to_key) {
1448 rc->frames_till_gf_update_due = rc->frames_to_key;
1449 rc->constrained_gf_group = 1;
1450 } else {
1451 rc->constrained_gf_group = 0;
1452 }
1453 cpi->refresh_golden_frame = 1;
1454 rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
1455 rc->gfu_boost = DEFAULT_GF_BOOST;
1456 }
1457 if (cm->frame_type == KEY_FRAME)
1458 target = calc_iframe_target_size_one_pass_vbr(cpi);
1459 else
1460 target = calc_pframe_target_size_one_pass_vbr(cpi);
1461 vp9_rc_set_frame_target(cpi, target);
1462 }
1463
calc_pframe_target_size_one_pass_cbr(const VP9_COMP * cpi)1464 static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
1465 const VP9EncoderConfig *oxcf = &cpi->oxcf;
1466 const RATE_CONTROL *rc = &cpi->rc;
1467 const SVC *const svc = &cpi->svc;
1468 const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
1469 const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
1470 int min_frame_target =
1471 VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
1472 int target;
1473
1474 if (oxcf->gf_cbr_boost_pct) {
1475 const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
1476 target = cpi->refresh_golden_frame ?
1477 (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) /
1478 (rc->baseline_gf_interval * 100 + af_ratio_pct - 100) :
1479 (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
1480 (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
1481 } else {
1482 target = rc->avg_frame_bandwidth;
1483 }
1484 if (is_one_pass_cbr_svc(cpi)) {
1485 // Note that for layers, avg_frame_bandwidth is the cumulative
1486 // per-frame-bandwidth. For the target size of this frame, use the
1487 // layer average frame size (i.e., non-cumulative per-frame-bw).
1488 int layer =
1489 LAYER_IDS_TO_IDX(svc->spatial_layer_id,
1490 svc->temporal_layer_id, svc->number_temporal_layers);
1491 const LAYER_CONTEXT *lc = &svc->layer_context[layer];
1492 target = lc->avg_frame_size;
1493 min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
1494 }
1495 if (diff > 0) {
1496 // Lower the target bandwidth for this frame.
1497 const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
1498 target -= (target * pct_low) / 200;
1499 } else if (diff < 0) {
1500 // Increase the target bandwidth for this frame.
1501 const int pct_high =
1502 (int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
1503 target += (target * pct_high) / 200;
1504 }
1505 if (oxcf->rc_max_inter_bitrate_pct) {
1506 const int max_rate = rc->avg_frame_bandwidth *
1507 oxcf->rc_max_inter_bitrate_pct / 100;
1508 target = VPXMIN(target, max_rate);
1509 }
1510 return VPXMAX(min_frame_target, target);
1511 }
1512
calc_iframe_target_size_one_pass_cbr(const VP9_COMP * cpi)1513 static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
1514 const RATE_CONTROL *rc = &cpi->rc;
1515 const VP9EncoderConfig *oxcf = &cpi->oxcf;
1516 const SVC *const svc = &cpi->svc;
1517 int target;
1518 if (cpi->common.current_video_frame == 0) {
1519 target = ((rc->starting_buffer_level / 2) > INT_MAX)
1520 ? INT_MAX : (int)(rc->starting_buffer_level / 2);
1521 } else {
1522 int kf_boost = 32;
1523 double framerate = cpi->framerate;
1524 if (svc->number_temporal_layers > 1 &&
1525 oxcf->rc_mode == VPX_CBR) {
1526 // Use the layer framerate for temporal layers CBR mode.
1527 const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id,
1528 svc->temporal_layer_id, svc->number_temporal_layers);
1529 const LAYER_CONTEXT *lc = &svc->layer_context[layer];
1530 framerate = lc->framerate;
1531 }
1532 kf_boost = VPXMAX(kf_boost, (int)(2 * framerate - 16));
1533 if (rc->frames_since_key < framerate / 2) {
1534 kf_boost = (int)(kf_boost * rc->frames_since_key /
1535 (framerate / 2));
1536 }
1537 target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
1538 }
1539 return vp9_rc_clamp_iframe_target_size(cpi, target);
1540 }
1541
1542 // Reset information needed to set proper reference frames and buffer updates
1543 // for temporal layering. This is called when a key frame is encoded.
reset_temporal_layer_to_zero(VP9_COMP * cpi)1544 static void reset_temporal_layer_to_zero(VP9_COMP *cpi) {
1545 int sl;
1546 LAYER_CONTEXT *lc = NULL;
1547 cpi->svc.temporal_layer_id = 0;
1548
1549 for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) {
1550 lc = &cpi->svc.layer_context[sl * cpi->svc.number_temporal_layers];
1551 lc->current_video_frame_in_layer = 0;
1552 lc->frames_from_key_frame = 0;
1553 }
1554 }
1555
vp9_rc_get_svc_params(VP9_COMP * cpi)1556 void vp9_rc_get_svc_params(VP9_COMP *cpi) {
1557 VP9_COMMON *const cm = &cpi->common;
1558 RATE_CONTROL *const rc = &cpi->rc;
1559 int target = rc->avg_frame_bandwidth;
1560 const int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id,
1561 cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers);
1562
1563 if ((cm->current_video_frame == 0) ||
1564 (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1565 (cpi->oxcf.auto_key && (rc->frames_since_key %
1566 cpi->oxcf.key_freq == 0))) {
1567 cm->frame_type = KEY_FRAME;
1568 rc->source_alt_ref_active = 0;
1569
1570 if (is_two_pass_svc(cpi)) {
1571 cpi->svc.layer_context[layer].is_key_frame = 1;
1572 cpi->ref_frame_flags &=
1573 (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
1574 } else if (is_one_pass_cbr_svc(cpi)) {
1575 cpi->svc.layer_context[layer].is_key_frame = 1;
1576 reset_temporal_layer_to_zero(cpi);
1577 cpi->ref_frame_flags &=
1578 (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
1579 // Assumption here is that LAST_FRAME is being updated for a keyframe.
1580 // Thus no change in update flags.
1581 target = calc_iframe_target_size_one_pass_cbr(cpi);
1582 }
1583 } else {
1584 cm->frame_type = INTER_FRAME;
1585 if (is_two_pass_svc(cpi)) {
1586 LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
1587 if (cpi->svc.spatial_layer_id == 0) {
1588 lc->is_key_frame = 0;
1589 } else {
1590 lc->is_key_frame =
1591 cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame;
1592 if (lc->is_key_frame)
1593 cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
1594 }
1595 cpi->ref_frame_flags &= (~VP9_ALT_FLAG);
1596 } else if (is_one_pass_cbr_svc(cpi)) {
1597 LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
1598 if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode) {
1599 lc->is_key_frame = 0;
1600 } else {
1601 lc->is_key_frame =
1602 cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame;
1603 }
1604 target = calc_pframe_target_size_one_pass_cbr(cpi);
1605 }
1606 }
1607
1608 // Any update/change of global cyclic refresh parameters (amount/delta-qp)
1609 // should be done here, before the frame qp is selected.
1610 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1611 vp9_cyclic_refresh_update_parameters(cpi);
1612
1613 vp9_rc_set_frame_target(cpi, target);
1614 rc->frames_till_gf_update_due = INT_MAX;
1615 rc->baseline_gf_interval = INT_MAX;
1616 }
1617
vp9_rc_get_one_pass_cbr_params(VP9_COMP * cpi)1618 void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
1619 VP9_COMMON *const cm = &cpi->common;
1620 RATE_CONTROL *const rc = &cpi->rc;
1621 int target;
1622 // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
1623 if ((cm->current_video_frame == 0 ||
1624 (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1625 rc->frames_to_key == 0 ||
1626 (cpi->oxcf.auto_key && 0))) {
1627 cm->frame_type = KEY_FRAME;
1628 rc->this_key_frame_forced = cm->current_video_frame != 0 &&
1629 rc->frames_to_key == 0;
1630 rc->frames_to_key = cpi->oxcf.key_freq;
1631 rc->kf_boost = DEFAULT_KF_BOOST;
1632 rc->source_alt_ref_active = 0;
1633 } else {
1634 cm->frame_type = INTER_FRAME;
1635 }
1636 if (rc->frames_till_gf_update_due == 0) {
1637 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1638 vp9_cyclic_refresh_set_golden_update(cpi);
1639 else
1640 rc->baseline_gf_interval =
1641 (rc->min_gf_interval + rc->max_gf_interval) / 2;
1642 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1643 // NOTE: frames_till_gf_update_due must be <= frames_to_key.
1644 if (rc->frames_till_gf_update_due > rc->frames_to_key)
1645 rc->frames_till_gf_update_due = rc->frames_to_key;
1646 cpi->refresh_golden_frame = 1;
1647 rc->gfu_boost = DEFAULT_GF_BOOST;
1648 }
1649
1650 // Any update/change of global cyclic refresh parameters (amount/delta-qp)
1651 // should be done here, before the frame qp is selected.
1652 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1653 vp9_cyclic_refresh_update_parameters(cpi);
1654
1655 if (cm->frame_type == KEY_FRAME)
1656 target = calc_iframe_target_size_one_pass_cbr(cpi);
1657 else
1658 target = calc_pframe_target_size_one_pass_cbr(cpi);
1659
1660 vp9_rc_set_frame_target(cpi, target);
1661 if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC)
1662 cpi->resize_pending = vp9_resize_one_pass_cbr(cpi);
1663 else
1664 cpi->resize_pending = 0;
1665 }
1666
vp9_compute_qdelta(const RATE_CONTROL * rc,double qstart,double qtarget,vpx_bit_depth_t bit_depth)1667 int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
1668 vpx_bit_depth_t bit_depth) {
1669 int start_index = rc->worst_quality;
1670 int target_index = rc->worst_quality;
1671 int i;
1672
1673 // Convert the average q value to an index.
1674 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
1675 start_index = i;
1676 if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart)
1677 break;
1678 }
1679
1680 // Convert the q target to an index
1681 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
1682 target_index = i;
1683 if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget)
1684 break;
1685 }
1686
1687 return target_index - start_index;
1688 }
1689
vp9_compute_qdelta_by_rate(const RATE_CONTROL * rc,FRAME_TYPE frame_type,int qindex,double rate_target_ratio,vpx_bit_depth_t bit_depth)1690 int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
1691 int qindex, double rate_target_ratio,
1692 vpx_bit_depth_t bit_depth) {
1693 int target_index = rc->worst_quality;
1694 int i;
1695
1696 // Look up the current projected bits per block for the base index
1697 const int base_bits_per_mb = vp9_rc_bits_per_mb(frame_type, qindex, 1.0,
1698 bit_depth);
1699
1700 // Find the target bits per mb based on the base value and given ratio.
1701 const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
1702
1703 // Convert the q target to an index
1704 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
1705 if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
1706 target_bits_per_mb) {
1707 target_index = i;
1708 break;
1709 }
1710 }
1711 return target_index - qindex;
1712 }
1713
vp9_rc_set_gf_interval_range(const VP9_COMP * const cpi,RATE_CONTROL * const rc)1714 void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi,
1715 RATE_CONTROL *const rc) {
1716 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1717
1718 // Set Maximum gf/arf interval
1719 rc->max_gf_interval = oxcf->max_gf_interval;
1720 rc->min_gf_interval = oxcf->min_gf_interval;
1721 if (rc->min_gf_interval == 0)
1722 rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
1723 oxcf->width, oxcf->height, cpi->framerate);
1724 if (rc->max_gf_interval == 0)
1725 rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
1726 cpi->framerate, rc->min_gf_interval);
1727
1728 // Extended interval for genuinely static scenes
1729 rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2;
1730
1731 if (is_altref_enabled(cpi)) {
1732 if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)
1733 rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1;
1734 }
1735
1736 if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
1737 rc->max_gf_interval = rc->static_scene_max_gf_interval;
1738
1739 // Clamp min to max
1740 rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval);
1741 }
1742
vp9_rc_update_framerate(VP9_COMP * cpi)1743 void vp9_rc_update_framerate(VP9_COMP *cpi) {
1744 const VP9_COMMON *const cm = &cpi->common;
1745 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1746 RATE_CONTROL *const rc = &cpi->rc;
1747 int vbr_max_bits;
1748
1749 rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
1750 rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth *
1751 oxcf->two_pass_vbrmin_section / 100);
1752
1753 rc->min_frame_bandwidth =
1754 VPXMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
1755
1756 // A maximum bitrate for a frame is defined.
1757 // The baseline for this aligns with HW implementations that
1758 // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
1759 // per 16x16 MB (averaged over a frame). However this limit is extended if
1760 // a very high rate is given on the command line or the the rate cannnot
1761 // be acheived because of a user specificed max q (e.g. when the user
1762 // specifies lossless encode.
1763 vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth *
1764 oxcf->two_pass_vbrmax_section) / 100);
1765 rc->max_frame_bandwidth =
1766 VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
1767
1768 vp9_rc_set_gf_interval_range(cpi, rc);
1769 }
1770
1771 #define VBR_PCT_ADJUSTMENT_LIMIT 50
1772 // For VBR...adjustment to the frame target based on error from previous frames
vbr_rate_correction(VP9_COMP * cpi,int * this_frame_target)1773 static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) {
1774 RATE_CONTROL *const rc = &cpi->rc;
1775 int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
1776 int max_delta;
1777 double position_factor = 1.0;
1778
1779 // How far through the clip are we.
1780 // This number is used to damp the per frame rate correction.
1781 // Range 0 - 1.0
1782 if (cpi->twopass.total_stats.count) {
1783 position_factor = sqrt((double)cpi->common.current_video_frame /
1784 cpi->twopass.total_stats.count);
1785 }
1786 max_delta = (int)(position_factor *
1787 ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
1788
1789 // vbr_bits_off_target > 0 means we have extra bits to spend
1790 if (vbr_bits_off_target > 0) {
1791 *this_frame_target +=
1792 (vbr_bits_off_target > max_delta) ? max_delta
1793 : (int)vbr_bits_off_target;
1794 } else {
1795 *this_frame_target -=
1796 (vbr_bits_off_target < -max_delta) ? max_delta
1797 : (int)-vbr_bits_off_target;
1798 }
1799
1800 // Fast redistribution of bits arising from massive local undershoot.
1801 // Dont do it for kf,arf,gf or overlay frames.
1802 if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
1803 rc->vbr_bits_off_target_fast) {
1804 int one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, *this_frame_target);
1805 int fast_extra_bits;
1806 fast_extra_bits = (int)VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
1807 fast_extra_bits = (int)VPXMIN(
1808 fast_extra_bits,
1809 VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
1810 *this_frame_target += (int)fast_extra_bits;
1811 rc->vbr_bits_off_target_fast -= fast_extra_bits;
1812 }
1813 }
1814
vp9_set_target_rate(VP9_COMP * cpi)1815 void vp9_set_target_rate(VP9_COMP *cpi) {
1816 RATE_CONTROL *const rc = &cpi->rc;
1817 int target_rate = rc->base_frame_target;
1818
1819 if (cpi->common.frame_type == KEY_FRAME)
1820 target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
1821 else
1822 target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
1823
1824 // Correction to rate target based on prior over or under shoot.
1825 if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ)
1826 vbr_rate_correction(cpi, &target_rate);
1827 vp9_rc_set_frame_target(cpi, target_rate);
1828 }
1829
1830 // Check if we should resize, based on average QP from past x frames.
1831 // Only allow for resize at most one scale down for now, scaling factor is 2.
vp9_resize_one_pass_cbr(VP9_COMP * cpi)1832 int vp9_resize_one_pass_cbr(VP9_COMP *cpi) {
1833 const VP9_COMMON *const cm = &cpi->common;
1834 RATE_CONTROL *const rc = &cpi->rc;
1835 RESIZE_ACTION resize_action = NO_RESIZE;
1836 int avg_qp_thr1 = 70;
1837 int avg_qp_thr2 = 50;
1838 cpi->resize_scale_num = 1;
1839 cpi->resize_scale_den = 1;
1840 // Don't resize on key frame; reset the counters on key frame.
1841 if (cm->frame_type == KEY_FRAME) {
1842 cpi->resize_avg_qp = 0;
1843 cpi->resize_count = 0;
1844 return 0;
1845 }
1846
1847 #if CONFIG_VP9_TEMPORAL_DENOISING
1848 // If denoiser is on, apply a smaller qp threshold.
1849 if (cpi->oxcf.noise_sensitivity > 0) {
1850 avg_qp_thr1 = 60;
1851 avg_qp_thr2 = 40;
1852 }
1853 #endif
1854
1855 // Resize based on average buffer underflow and QP over some window.
1856 // Ignore samples close to key frame, since QP is usually high after key.
1857 if (cpi->rc.frames_since_key > 1 * cpi->framerate) {
1858 const int window = (int)(4 * cpi->framerate);
1859 cpi->resize_avg_qp += cm->base_qindex;
1860 if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100))
1861 ++cpi->resize_buffer_underflow;
1862 ++cpi->resize_count;
1863 // Check for resize action every "window" frames.
1864 if (cpi->resize_count >= window) {
1865 int avg_qp = cpi->resize_avg_qp / cpi->resize_count;
1866 // Resize down if buffer level has underflowed sufficient amount in past
1867 // window, and we are at original or 3/4 of original resolution.
1868 // Resize back up if average QP is low, and we are currently in a resized
1869 // down state, i.e. 1/2 or 3/4 of original resolution.
1870 // Currently, use a flag to turn 3/4 resizing feature on/off.
1871 if (cpi->resize_buffer_underflow > (cpi->resize_count >> 2)) {
1872 if (cpi->resize_state == THREE_QUARTER) {
1873 resize_action = DOWN_ONEHALF;
1874 cpi->resize_state = ONE_HALF;
1875 } else if (cpi->resize_state == ORIG) {
1876 resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR;
1877 cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER;
1878 }
1879 } else if (cpi->resize_state != ORIG &&
1880 avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) {
1881 if (cpi->resize_state == THREE_QUARTER ||
1882 avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100 ||
1883 ONEHALFONLY_RESIZE) {
1884 resize_action = UP_ORIG;
1885 cpi->resize_state = ORIG;
1886 } else if (cpi->resize_state == ONE_HALF) {
1887 resize_action = UP_THREEFOUR;
1888 cpi->resize_state = THREE_QUARTER;
1889 }
1890 }
1891 // Reset for next window measurement.
1892 cpi->resize_avg_qp = 0;
1893 cpi->resize_count = 0;
1894 cpi->resize_buffer_underflow = 0;
1895 }
1896 }
1897 // If decision is to resize, reset some quantities, and check is we should
1898 // reduce rate correction factor,
1899 if (resize_action != NO_RESIZE) {
1900 int target_bits_per_frame;
1901 int active_worst_quality;
1902 int qindex;
1903 int tot_scale_change;
1904 if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) {
1905 cpi->resize_scale_num = 3;
1906 cpi->resize_scale_den = 4;
1907 } else if (resize_action == DOWN_ONEHALF) {
1908 cpi->resize_scale_num = 1;
1909 cpi->resize_scale_den = 2;
1910 } else { // UP_ORIG or anything else
1911 cpi->resize_scale_num = 1;
1912 cpi->resize_scale_den = 1;
1913 }
1914 tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) /
1915 (cpi->resize_scale_num * cpi->resize_scale_num);
1916 // Reset buffer level to optimal, update target size.
1917 rc->buffer_level = rc->optimal_buffer_level;
1918 rc->bits_off_target = rc->optimal_buffer_level;
1919 rc->this_frame_target = calc_pframe_target_size_one_pass_cbr(cpi);
1920 // Get the projected qindex, based on the scaled target frame size (scaled
1921 // so target_bits_per_mb in vp9_rc_regulate_q will be correct target).
1922 target_bits_per_frame = (resize_action >= 0) ?
1923 rc->this_frame_target * tot_scale_change :
1924 rc->this_frame_target / tot_scale_change;
1925 active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
1926 qindex = vp9_rc_regulate_q(cpi,
1927 target_bits_per_frame,
1928 rc->best_quality,
1929 active_worst_quality);
1930 // If resize is down, check if projected q index is close to worst_quality,
1931 // and if so, reduce the rate correction factor (since likely can afford
1932 // lower q for resized frame).
1933 if (resize_action > 0 &&
1934 qindex > 90 * cpi->rc.worst_quality / 100) {
1935 rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
1936 }
1937 // If resize is back up, check if projected q index is too much above the
1938 // current base_qindex, and if so, reduce the rate correction factor
1939 // (since prefer to keep q for resized frame at least close to previous q).
1940 if (resize_action < 0 &&
1941 qindex > 130 * cm->base_qindex / 100) {
1942 rc->rate_correction_factors[INTER_NORMAL] *= 0.9;
1943 }
1944 }
1945 return resize_action;
1946 }
1947
1948 // Compute average source sad (temporal sad: between current source and
1949 // previous source) over a subset of superblocks. Use this is detect big changes
1950 // in content and allow rate control to react.
1951 // TODO(marpan): Superblock sad is computed again in variance partition for
1952 // non-rd mode (but based on last reconstructed frame). Should try to reuse
1953 // these computations.
vp9_avg_source_sad(VP9_COMP * cpi)1954 void vp9_avg_source_sad(VP9_COMP *cpi) {
1955 VP9_COMMON * const cm = &cpi->common;
1956 RATE_CONTROL *const rc = &cpi->rc;
1957 rc->high_source_sad = 0;
1958 if (cpi->Last_Source != NULL) {
1959 const uint8_t *src_y = cpi->Source->y_buffer;
1960 const int src_ystride = cpi->Source->y_stride;
1961 const uint8_t *last_src_y = cpi->Last_Source->y_buffer;
1962 const int last_src_ystride = cpi->Last_Source->y_stride;
1963 int sbi_row, sbi_col;
1964 const BLOCK_SIZE bsize = BLOCK_64X64;
1965 // Loop over sub-sample of frame, and compute average sad over 64x64 blocks.
1966 uint64_t avg_sad = 0;
1967 int num_samples = 0;
1968 int sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
1969 int sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
1970 for (sbi_row = 0; sbi_row < sb_rows; sbi_row ++) {
1971 for (sbi_col = 0; sbi_col < sb_cols; sbi_col ++) {
1972 // Checker-board pattern, ignore boundary.
1973 if ((sbi_row > 0 && sbi_col > 0) &&
1974 (sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) &&
1975 ((sbi_row % 2 == 0 && sbi_col % 2 == 0) ||
1976 (sbi_row % 2 != 0 && sbi_col % 2 != 0))) {
1977 num_samples++;
1978 avg_sad += cpi->fn_ptr[bsize].sdf(src_y,
1979 src_ystride,
1980 last_src_y,
1981 last_src_ystride);
1982 }
1983 src_y += 64;
1984 last_src_y += 64;
1985 }
1986 src_y += (src_ystride << 6) - (sb_cols << 6);
1987 last_src_y += (last_src_ystride << 6) - (sb_cols << 6);
1988 }
1989 if (num_samples > 0)
1990 avg_sad = avg_sad / num_samples;
1991 // Set high_source_sad flag if we detect very high increase in avg_sad
1992 // between current and the previous frame value(s). Use a minimum threshold
1993 // for cases where there is small change from content that is completely
1994 // static.
1995 if (avg_sad > VPXMAX(4000, (rc->avg_source_sad << 3)) &&
1996 rc->frames_since_key > 1)
1997 rc->high_source_sad = 1;
1998 else
1999 rc->high_source_sad = 0;
2000 rc->avg_source_sad = (rc->avg_source_sad + avg_sad) >> 1;
2001 }
2002 }
2003
2004 // Test if encoded frame will significantly overshoot the target bitrate, and
2005 // if so, set the QP, reset/adjust some rate control parameters, and return 1.
vp9_encodedframe_overshoot(VP9_COMP * cpi,int frame_size,int * q)2006 int vp9_encodedframe_overshoot(VP9_COMP *cpi,
2007 int frame_size,
2008 int *q) {
2009 VP9_COMMON * const cm = &cpi->common;
2010 RATE_CONTROL *const rc = &cpi->rc;
2011 int thresh_qp = 3 * (rc->worst_quality >> 2);
2012 int thresh_rate = rc->avg_frame_bandwidth * 10;
2013 if (cm->base_qindex < thresh_qp &&
2014 frame_size > thresh_rate) {
2015 double rate_correction_factor =
2016 cpi->rc.rate_correction_factors[INTER_NORMAL];
2017 const int target_size = cpi->rc.avg_frame_bandwidth;
2018 double new_correction_factor;
2019 int target_bits_per_mb;
2020 double q2;
2021 int enumerator;
2022 // Force a re-encode, and for now use max-QP.
2023 *q = cpi->rc.worst_quality;
2024 // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as
2025 // these parameters will affect QP selection for subsequent frames. If they
2026 // have settled down to a very different (low QP) state, then not adjusting
2027 // them may cause next frame to select low QP and overshoot again.
2028 cpi->rc.avg_frame_qindex[INTER_FRAME] = *q;
2029 rc->buffer_level = rc->optimal_buffer_level;
2030 rc->bits_off_target = rc->optimal_buffer_level;
2031 // Reset rate under/over-shoot flags.
2032 cpi->rc.rc_1_frame = 0;
2033 cpi->rc.rc_2_frame = 0;
2034 // Adjust rate correction factor.
2035 target_bits_per_mb = ((uint64_t)target_size << BPER_MB_NORMBITS) / cm->MBs;
2036 // Rate correction factor based on target_bits_per_mb and qp (==max_QP).
2037 // This comes from the inverse computation of vp9_rc_bits_per_mb().
2038 q2 = vp9_convert_qindex_to_q(*q, cm->bit_depth);
2039 enumerator = 1800000; // Factor for inter frame.
2040 enumerator += (int)(enumerator * q2) >> 12;
2041 new_correction_factor = (double)target_bits_per_mb * q2 / enumerator;
2042 if (new_correction_factor > rate_correction_factor) {
2043 rate_correction_factor =
2044 VPXMIN(2.0 * rate_correction_factor, new_correction_factor);
2045 if (rate_correction_factor > MAX_BPB_FACTOR)
2046 rate_correction_factor = MAX_BPB_FACTOR;
2047 cpi->rc.rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
2048 }
2049 // For temporal layers, reset the rate control parametes across all
2050 // temporal layers.
2051 if (cpi->use_svc) {
2052 int i = 0;
2053 SVC *svc = &cpi->svc;
2054 for (i = 0; i < svc->number_temporal_layers; ++i) {
2055 const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
2056 svc->number_temporal_layers);
2057 LAYER_CONTEXT *lc = &svc->layer_context[layer];
2058 RATE_CONTROL *lrc = &lc->rc;
2059 lrc->avg_frame_qindex[INTER_FRAME] = *q;
2060 lrc->buffer_level = rc->optimal_buffer_level;
2061 lrc->bits_off_target = rc->optimal_buffer_level;
2062 lrc->rc_1_frame = 0;
2063 lrc->rc_2_frame = 0;
2064 lrc->rate_correction_factors[INTER_NORMAL] =
2065 rate_correction_factor;
2066 }
2067 }
2068 return 1;
2069 } else {
2070 return 0;
2071 }
2072 }
2073