• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <assert.h>
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 
18 #include "vpx_dsp/vpx_dsp_common.h"
19 #include "vpx_mem/vpx_mem.h"
20 #include "vpx_ports/mem.h"
21 #include "vpx_ports/system_state.h"
22 
23 #include "vp9/common/vp9_alloccommon.h"
24 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
25 #include "vp9/common/vp9_common.h"
26 #include "vp9/common/vp9_entropymode.h"
27 #include "vp9/common/vp9_quant_common.h"
28 #include "vp9/common/vp9_seg_common.h"
29 
30 #include "vp9/encoder/vp9_encodemv.h"
31 #include "vp9/encoder/vp9_ratectrl.h"
32 
33 // Max rate target for 1080P and below encodes under normal circumstances
34 // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
35 #define MAX_MB_RATE 250
36 #define MAXRATE_1080P 2025000
37 
38 #define DEFAULT_KF_BOOST 2000
39 #define DEFAULT_GF_BOOST 2000
40 
41 #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
42 
43 #define MIN_BPB_FACTOR 0.005
44 #define MAX_BPB_FACTOR 50
45 
46 #define FRAME_OVERHEAD_BITS 200
47 
48 #if CONFIG_VP9_HIGHBITDEPTH
49 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
50   do { \
51     switch (bit_depth) { \
52       case VPX_BITS_8: \
53         name = name##_8; \
54         break; \
55       case VPX_BITS_10: \
56         name = name##_10; \
57         break; \
58       case VPX_BITS_12: \
59         name = name##_12; \
60         break; \
61       default: \
62         assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10" \
63                     " or VPX_BITS_12"); \
64         name = NULL; \
65     } \
66   } while (0)
67 #else
68 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
69   do { \
70     (void) bit_depth; \
71     name = name##_8; \
72   } while (0)
73 #endif
74 
75 // Tables relating active max Q to active min Q
76 static int kf_low_motion_minq_8[QINDEX_RANGE];
77 static int kf_high_motion_minq_8[QINDEX_RANGE];
78 static int arfgf_low_motion_minq_8[QINDEX_RANGE];
79 static int arfgf_high_motion_minq_8[QINDEX_RANGE];
80 static int inter_minq_8[QINDEX_RANGE];
81 static int rtc_minq_8[QINDEX_RANGE];
82 
83 #if CONFIG_VP9_HIGHBITDEPTH
84 static int kf_low_motion_minq_10[QINDEX_RANGE];
85 static int kf_high_motion_minq_10[QINDEX_RANGE];
86 static int arfgf_low_motion_minq_10[QINDEX_RANGE];
87 static int arfgf_high_motion_minq_10[QINDEX_RANGE];
88 static int inter_minq_10[QINDEX_RANGE];
89 static int rtc_minq_10[QINDEX_RANGE];
90 static int kf_low_motion_minq_12[QINDEX_RANGE];
91 static int kf_high_motion_minq_12[QINDEX_RANGE];
92 static int arfgf_low_motion_minq_12[QINDEX_RANGE];
93 static int arfgf_high_motion_minq_12[QINDEX_RANGE];
94 static int inter_minq_12[QINDEX_RANGE];
95 static int rtc_minq_12[QINDEX_RANGE];
96 #endif
97 
98 static int gf_high = 2000;
99 static int gf_low = 400;
100 static int kf_high = 5000;
101 static int kf_low = 400;
102 
103 // Functions to compute the active minq lookup table entries based on a
104 // formulaic approach to facilitate easier adjustment of the Q tables.
105 // The formulae were derived from computing a 3rd order polynomial best
106 // fit to the original data (after plotting real maxq vs minq (not q index))
get_minq_index(double maxq,double x3,double x2,double x1,vpx_bit_depth_t bit_depth)107 static int get_minq_index(double maxq, double x3, double x2, double x1,
108                           vpx_bit_depth_t bit_depth) {
109   int i;
110   const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq,
111                                    maxq);
112 
113   // Special case handling to deal with the step from q2.0
114   // down to lossless mode represented by q 1.0.
115   if (minqtarget <= 2.0)
116     return 0;
117 
118   for (i = 0; i < QINDEX_RANGE; i++) {
119     if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth))
120       return i;
121   }
122 
123   return QINDEX_RANGE - 1;
124 }
125 
init_minq_luts(int * kf_low_m,int * kf_high_m,int * arfgf_low,int * arfgf_high,int * inter,int * rtc,vpx_bit_depth_t bit_depth)126 static void init_minq_luts(int *kf_low_m, int *kf_high_m,
127                            int *arfgf_low, int *arfgf_high,
128                            int *inter, int *rtc, vpx_bit_depth_t bit_depth) {
129   int i;
130   for (i = 0; i < QINDEX_RANGE; i++) {
131     const double maxq = vp9_convert_qindex_to_q(i, bit_depth);
132     kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
133     kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
134     arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
135     arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
136     inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
137     rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
138   }
139 }
140 
vp9_rc_init_minq_luts(void)141 void vp9_rc_init_minq_luts(void) {
142   init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
143                  arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
144                  inter_minq_8, rtc_minq_8, VPX_BITS_8);
145 #if CONFIG_VP9_HIGHBITDEPTH
146   init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
147                  arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
148                  inter_minq_10, rtc_minq_10, VPX_BITS_10);
149   init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
150                  arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
151                  inter_minq_12, rtc_minq_12, VPX_BITS_12);
152 #endif
153 }
154 
155 // These functions use formulaic calculations to make playing with the
156 // quantizer tables easier. If necessary they can be replaced by lookup
157 // tables if and when things settle down in the experimental bitstream
vp9_convert_qindex_to_q(int qindex,vpx_bit_depth_t bit_depth)158 double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
159   // Convert the index to a real Q value (scaled down to match old Q values)
160 #if CONFIG_VP9_HIGHBITDEPTH
161   switch (bit_depth) {
162     case VPX_BITS_8:
163       return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
164     case VPX_BITS_10:
165       return vp9_ac_quant(qindex, 0, bit_depth) / 16.0;
166     case VPX_BITS_12:
167       return vp9_ac_quant(qindex, 0, bit_depth) / 64.0;
168     default:
169       assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
170       return -1.0;
171   }
172 #else
173   return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
174 #endif
175 }
176 
vp9_rc_bits_per_mb(FRAME_TYPE frame_type,int qindex,double correction_factor,vpx_bit_depth_t bit_depth)177 int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
178                        double correction_factor,
179                        vpx_bit_depth_t bit_depth) {
180   const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
181   int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
182 
183   assert(correction_factor <= MAX_BPB_FACTOR &&
184          correction_factor >= MIN_BPB_FACTOR);
185 
186   // q based adjustment to baseline enumerator
187   enumerator += (int)(enumerator * q) >> 12;
188   return (int)(enumerator * correction_factor / q);
189 }
190 
vp9_estimate_bits_at_q(FRAME_TYPE frame_type,int q,int mbs,double correction_factor,vpx_bit_depth_t bit_depth)191 int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
192                            double correction_factor,
193                            vpx_bit_depth_t bit_depth) {
194   const int bpm = (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor,
195                                            bit_depth));
196   return VPXMAX(FRAME_OVERHEAD_BITS,
197                 (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
198 }
199 
vp9_rc_clamp_pframe_target_size(const VP9_COMP * const cpi,int target)200 int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
201   const RATE_CONTROL *rc = &cpi->rc;
202   const VP9EncoderConfig *oxcf = &cpi->oxcf;
203   const int min_frame_target = VPXMAX(rc->min_frame_bandwidth,
204                                       rc->avg_frame_bandwidth >> 5);
205   if (target < min_frame_target)
206     target = min_frame_target;
207   if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
208     // If there is an active ARF at this location use the minimum
209     // bits on this frame even if it is a constructed arf.
210     // The active maximum quantizer insures that an appropriate
211     // number of bits will be spent if needed for constructed ARFs.
212     target = min_frame_target;
213   }
214   // Clip the frame target to the maximum allowed value.
215   if (target > rc->max_frame_bandwidth)
216     target = rc->max_frame_bandwidth;
217   if (oxcf->rc_max_inter_bitrate_pct) {
218     const int max_rate = rc->avg_frame_bandwidth *
219                          oxcf->rc_max_inter_bitrate_pct / 100;
220     target = VPXMIN(target, max_rate);
221   }
222   return target;
223 }
224 
vp9_rc_clamp_iframe_target_size(const VP9_COMP * const cpi,int target)225 int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
226   const RATE_CONTROL *rc = &cpi->rc;
227   const VP9EncoderConfig *oxcf = &cpi->oxcf;
228   if (oxcf->rc_max_intra_bitrate_pct) {
229     const int max_rate = rc->avg_frame_bandwidth *
230                              oxcf->rc_max_intra_bitrate_pct / 100;
231     target = VPXMIN(target, max_rate);
232   }
233   if (target > rc->max_frame_bandwidth)
234     target = rc->max_frame_bandwidth;
235   return target;
236 }
237 
238 // Update the buffer level for higher temporal layers, given the encoded current
239 // temporal layer.
update_layer_buffer_level(SVC * svc,int encoded_frame_size)240 static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) {
241   int i = 0;
242   int current_temporal_layer = svc->temporal_layer_id;
243   for (i = current_temporal_layer + 1;
244       i < svc->number_temporal_layers; ++i) {
245     const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
246                                        svc->number_temporal_layers);
247     LAYER_CONTEXT *lc = &svc->layer_context[layer];
248     RATE_CONTROL *lrc = &lc->rc;
249     int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate -
250         encoded_frame_size);
251     lrc->bits_off_target += bits_off_for_this_layer;
252 
253     // Clip buffer level to maximum buffer size for the layer.
254     lrc->bits_off_target =
255         VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
256     lrc->buffer_level = lrc->bits_off_target;
257   }
258 }
259 
260 // Update the buffer level: leaky bucket model.
update_buffer_level(VP9_COMP * cpi,int encoded_frame_size)261 static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
262   const VP9_COMMON *const cm = &cpi->common;
263   RATE_CONTROL *const rc = &cpi->rc;
264 
265   // Non-viewable frames are a special case and are treated as pure overhead.
266   if (!cm->show_frame) {
267     rc->bits_off_target -= encoded_frame_size;
268   } else {
269     rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
270   }
271 
272   // Clip the buffer level to the maximum specified buffer size.
273   rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
274 
275   // For screen-content mode, and if frame-dropper is off, don't let buffer
276   // level go below threshold, given here as -rc->maximum_ buffer_size.
277   if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
278       cpi->oxcf.drop_frames_water_mark == 0)
279     rc->bits_off_target = VPXMAX(rc->bits_off_target, -rc->maximum_buffer_size);
280 
281   rc->buffer_level = rc->bits_off_target;
282 
283   if (is_one_pass_cbr_svc(cpi)) {
284     update_layer_buffer_level(&cpi->svc, encoded_frame_size);
285   }
286 }
287 
vp9_rc_get_default_min_gf_interval(int width,int height,double framerate)288 int vp9_rc_get_default_min_gf_interval(
289     int width, int height, double framerate) {
290   // Assume we do not need any constraint lower than 4K 20 fps
291   static const double factor_safe = 3840 * 2160 * 20.0;
292   const double factor = width * height * framerate;
293   const int default_interval =
294       clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
295 
296   if (factor <= factor_safe)
297     return default_interval;
298   else
299     return VPXMAX(default_interval,
300                   (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
301   // Note this logic makes:
302   // 4K24: 5
303   // 4K30: 6
304   // 4K60: 12
305 }
306 
vp9_rc_get_default_max_gf_interval(double framerate,int min_gf_interval)307 int vp9_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
308   int interval = VPXMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
309   interval += (interval & 0x01);  // Round to even value
310   return VPXMAX(interval, min_gf_interval);
311 }
312 
vp9_rc_init(const VP9EncoderConfig * oxcf,int pass,RATE_CONTROL * rc)313 void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
314   int i;
315 
316   if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
317     rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
318     rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
319   } else {
320     rc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q +
321                                        oxcf->best_allowed_q) / 2;
322     rc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q +
323                                          oxcf->best_allowed_q) / 2;
324   }
325 
326   rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
327   rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
328 
329   rc->buffer_level =    rc->starting_buffer_level;
330   rc->bits_off_target = rc->starting_buffer_level;
331 
332   rc->rolling_target_bits      = rc->avg_frame_bandwidth;
333   rc->rolling_actual_bits      = rc->avg_frame_bandwidth;
334   rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
335   rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
336 
337   rc->total_actual_bits = 0;
338   rc->total_target_bits = 0;
339   rc->total_target_vs_actual = 0;
340 
341   rc->frames_since_key = 8;  // Sensible default for first frame.
342   rc->this_key_frame_forced = 0;
343   rc->next_key_frame_forced = 0;
344   rc->source_alt_ref_pending = 0;
345   rc->source_alt_ref_active = 0;
346 
347   rc->frames_till_gf_update_due = 0;
348   rc->ni_av_qi = oxcf->worst_allowed_q;
349   rc->ni_tot_qi = 0;
350   rc->ni_frames = 0;
351 
352   rc->tot_q = 0.0;
353   rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
354 
355   for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
356     rc->rate_correction_factors[i] = 1.0;
357   }
358 
359   rc->min_gf_interval = oxcf->min_gf_interval;
360   rc->max_gf_interval = oxcf->max_gf_interval;
361   if (rc->min_gf_interval == 0)
362     rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
363         oxcf->width, oxcf->height, oxcf->init_framerate);
364   if (rc->max_gf_interval == 0)
365     rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
366         oxcf->init_framerate, rc->min_gf_interval);
367   rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
368 }
369 
vp9_rc_drop_frame(VP9_COMP * cpi)370 int vp9_rc_drop_frame(VP9_COMP *cpi) {
371   const VP9EncoderConfig *oxcf = &cpi->oxcf;
372   RATE_CONTROL *const rc = &cpi->rc;
373 
374   if (!oxcf->drop_frames_water_mark) {
375     return 0;
376   } else {
377     if (rc->buffer_level < 0) {
378       // Always drop if buffer is below 0.
379       return 1;
380     } else {
381       // If buffer is below drop_mark, for now just drop every other frame
382       // (starting with the next frame) until it increases back over drop_mark.
383       int drop_mark = (int)(oxcf->drop_frames_water_mark *
384           rc->optimal_buffer_level / 100);
385       if ((rc->buffer_level > drop_mark) &&
386           (rc->decimation_factor > 0)) {
387         --rc->decimation_factor;
388       } else if (rc->buffer_level <= drop_mark &&
389           rc->decimation_factor == 0) {
390         rc->decimation_factor = 1;
391       }
392       if (rc->decimation_factor > 0) {
393         if (rc->decimation_count > 0) {
394           --rc->decimation_count;
395           return 1;
396         } else {
397           rc->decimation_count = rc->decimation_factor;
398           return 0;
399         }
400       } else {
401         rc->decimation_count = 0;
402         return 0;
403       }
404     }
405   }
406 }
407 
get_rate_correction_factor(const VP9_COMP * cpi)408 static double get_rate_correction_factor(const VP9_COMP *cpi) {
409   const RATE_CONTROL *const rc = &cpi->rc;
410   double rcf;
411 
412   if (cpi->common.frame_type == KEY_FRAME) {
413     rcf = rc->rate_correction_factors[KF_STD];
414   } else if (cpi->oxcf.pass == 2) {
415     RATE_FACTOR_LEVEL rf_lvl =
416       cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
417     rcf = rc->rate_correction_factors[rf_lvl];
418   } else {
419     if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
420         !rc->is_src_frame_alt_ref && !cpi->use_svc &&
421         (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
422       rcf = rc->rate_correction_factors[GF_ARF_STD];
423     else
424       rcf = rc->rate_correction_factors[INTER_NORMAL];
425   }
426   rcf *= rcf_mult[rc->frame_size_selector];
427   return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
428 }
429 
set_rate_correction_factor(VP9_COMP * cpi,double factor)430 static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
431   RATE_CONTROL *const rc = &cpi->rc;
432 
433   // Normalize RCF to account for the size-dependent scaling factor.
434   factor /= rcf_mult[cpi->rc.frame_size_selector];
435 
436   factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
437 
438   if (cpi->common.frame_type == KEY_FRAME) {
439     rc->rate_correction_factors[KF_STD] = factor;
440   } else if (cpi->oxcf.pass == 2) {
441     RATE_FACTOR_LEVEL rf_lvl =
442       cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
443     rc->rate_correction_factors[rf_lvl] = factor;
444   } else {
445     if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
446         !rc->is_src_frame_alt_ref && !cpi->use_svc &&
447         (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
448       rc->rate_correction_factors[GF_ARF_STD] = factor;
449     else
450       rc->rate_correction_factors[INTER_NORMAL] = factor;
451   }
452 }
453 
vp9_rc_update_rate_correction_factors(VP9_COMP * cpi)454 void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) {
455   const VP9_COMMON *const cm = &cpi->common;
456   int correction_factor = 100;
457   double rate_correction_factor = get_rate_correction_factor(cpi);
458   double adjustment_limit;
459 
460   int projected_size_based_on_q = 0;
461 
462   // Do not update the rate factors for arf overlay frames.
463   if (cpi->rc.is_src_frame_alt_ref)
464     return;
465 
466   // Clear down mmx registers to allow floating point in what follows
467   vpx_clear_system_state();
468 
469   // Work out how big we would have expected the frame to be at this Q given
470   // the current correction factor.
471   // Stay in double to avoid int overflow when values are large
472   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
473     projected_size_based_on_q =
474         vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
475   } else {
476     projected_size_based_on_q = vp9_estimate_bits_at_q(cpi->common.frame_type,
477                                                        cm->base_qindex,
478                                                        cm->MBs,
479                                                        rate_correction_factor,
480                                                        cm->bit_depth);
481   }
482   // Work out a size correction factor.
483   if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
484     correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
485                         projected_size_based_on_q);
486 
487   // More heavily damped adjustment used if we have been oscillating either side
488   // of target.
489   adjustment_limit = 0.25 +
490       0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor)));
491 
492   cpi->rc.q_2_frame = cpi->rc.q_1_frame;
493   cpi->rc.q_1_frame = cm->base_qindex;
494   cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
495   if (correction_factor > 110)
496     cpi->rc.rc_1_frame = -1;
497   else if (correction_factor < 90)
498     cpi->rc.rc_1_frame = 1;
499   else
500     cpi->rc.rc_1_frame = 0;
501 
502   if (correction_factor > 102) {
503     // We are not already at the worst allowable quality
504     correction_factor = (int)(100 + ((correction_factor - 100) *
505                                   adjustment_limit));
506     rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
507     // Keep rate_correction_factor within limits
508     if (rate_correction_factor > MAX_BPB_FACTOR)
509       rate_correction_factor = MAX_BPB_FACTOR;
510   } else if (correction_factor < 99) {
511     // We are not already at the best allowable quality
512     correction_factor = (int)(100 - ((100 - correction_factor) *
513                                   adjustment_limit));
514     rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
515 
516     // Keep rate_correction_factor within limits
517     if (rate_correction_factor < MIN_BPB_FACTOR)
518       rate_correction_factor = MIN_BPB_FACTOR;
519   }
520 
521   set_rate_correction_factor(cpi, rate_correction_factor);
522 }
523 
524 
vp9_rc_regulate_q(const VP9_COMP * cpi,int target_bits_per_frame,int active_best_quality,int active_worst_quality)525 int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
526                       int active_best_quality, int active_worst_quality) {
527   const VP9_COMMON *const cm = &cpi->common;
528   int q = active_worst_quality;
529   int last_error = INT_MAX;
530   int i, target_bits_per_mb, bits_per_mb_at_this_q;
531   const double correction_factor = get_rate_correction_factor(cpi);
532 
533   // Calculate required scaling factor based on target frame size and size of
534   // frame produced using previous Q.
535   target_bits_per_mb =
536       ((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs;
537 
538   i = active_best_quality;
539 
540   do {
541     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
542         cm->seg.enabled &&
543         cpi->svc.temporal_layer_id == 0) {
544       bits_per_mb_at_this_q =
545           (int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
546     } else {
547       bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cm->frame_type, i,
548                                                       correction_factor,
549                                                       cm->bit_depth);
550     }
551 
552     if (bits_per_mb_at_this_q <= target_bits_per_mb) {
553       if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
554         q = i;
555       else
556         q = i - 1;
557 
558       break;
559     } else {
560       last_error = bits_per_mb_at_this_q - target_bits_per_mb;
561     }
562   } while (++i <= active_worst_quality);
563 
564   // In CBR mode, this makes sure q is between oscillating Qs to prevent
565   // resonance.
566   if (cpi->oxcf.rc_mode == VPX_CBR &&
567       (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
568       cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
569     q = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
570               VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
571   }
572   return q;
573 }
574 
get_active_quality(int q,int gfu_boost,int low,int high,int * low_motion_minq,int * high_motion_minq)575 static int get_active_quality(int q, int gfu_boost, int low, int high,
576                               int *low_motion_minq, int *high_motion_minq) {
577   if (gfu_boost > high) {
578     return low_motion_minq[q];
579   } else if (gfu_boost < low) {
580     return high_motion_minq[q];
581   } else {
582     const int gap = high - low;
583     const int offset = high - gfu_boost;
584     const int qdiff = high_motion_minq[q] - low_motion_minq[q];
585     const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
586     return low_motion_minq[q] + adjustment;
587   }
588 }
589 
get_kf_active_quality(const RATE_CONTROL * const rc,int q,vpx_bit_depth_t bit_depth)590 static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
591                                  vpx_bit_depth_t bit_depth) {
592   int *kf_low_motion_minq;
593   int *kf_high_motion_minq;
594   ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
595   ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
596   return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
597                             kf_low_motion_minq, kf_high_motion_minq);
598 }
599 
get_gf_active_quality(const RATE_CONTROL * const rc,int q,vpx_bit_depth_t bit_depth)600 static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
601                                  vpx_bit_depth_t bit_depth) {
602   int *arfgf_low_motion_minq;
603   int *arfgf_high_motion_minq;
604   ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
605   ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
606   return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
607                             arfgf_low_motion_minq, arfgf_high_motion_minq);
608 }
609 
calc_active_worst_quality_one_pass_vbr(const VP9_COMP * cpi)610 static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
611   const RATE_CONTROL *const rc = &cpi->rc;
612   const unsigned int curr_frame = cpi->common.current_video_frame;
613   int active_worst_quality;
614 
615   if (cpi->common.frame_type == KEY_FRAME) {
616     active_worst_quality = curr_frame == 0 ? rc->worst_quality
617                                            : rc->last_q[KEY_FRAME] * 2;
618   } else {
619     if (!rc->is_src_frame_alt_ref &&
620         (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
621       active_worst_quality =  curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
622                                               : rc->last_q[INTER_FRAME];
623     } else {
624       active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
625                                              : rc->last_q[INTER_FRAME] * 2;
626     }
627   }
628   return VPXMIN(active_worst_quality, rc->worst_quality);
629 }
630 
631 // Adjust active_worst_quality level based on buffer level.
calc_active_worst_quality_one_pass_cbr(const VP9_COMP * cpi)632 static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
633   // Adjust active_worst_quality: If buffer is above the optimal/target level,
634   // bring active_worst_quality down depending on fullness of buffer.
635   // If buffer is below the optimal level, let the active_worst_quality go from
636   // ambient Q (at buffer = optimal level) to worst_quality level
637   // (at buffer = critical level).
638   const VP9_COMMON *const cm = &cpi->common;
639   const RATE_CONTROL *rc = &cpi->rc;
640   // Buffer level below which we push active_worst to worst_quality.
641   int64_t critical_level = rc->optimal_buffer_level >> 3;
642   int64_t buff_lvl_step = 0;
643   int adjustment = 0;
644   int active_worst_quality;
645   int ambient_qp;
646   unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers;
647   if (cm->frame_type == KEY_FRAME)
648     return rc->worst_quality;
649   // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
650   // for the first few frames following key frame. These are both initialized
651   // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
652   // So for first few frames following key, the qp of that key frame is weighted
653   // into the active_worst_quality setting.
654   ambient_qp = (cm->current_video_frame < num_frames_weight_key) ?
655                    VPXMIN(rc->avg_frame_qindex[INTER_FRAME],
656                           rc->avg_frame_qindex[KEY_FRAME]) :
657                    rc->avg_frame_qindex[INTER_FRAME];
658   active_worst_quality = VPXMIN(rc->worst_quality, ambient_qp * 5 / 4);
659   if (rc->buffer_level > rc->optimal_buffer_level) {
660     // Adjust down.
661     // Maximum limit for down adjustment, ~30%.
662     int max_adjustment_down = active_worst_quality / 3;
663     if (max_adjustment_down) {
664       buff_lvl_step = ((rc->maximum_buffer_size -
665                         rc->optimal_buffer_level) / max_adjustment_down);
666       if (buff_lvl_step)
667         adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
668                             buff_lvl_step);
669       active_worst_quality -= adjustment;
670     }
671   } else if (rc->buffer_level > critical_level) {
672     // Adjust up from ambient Q.
673     if (critical_level) {
674       buff_lvl_step = (rc->optimal_buffer_level - critical_level);
675       if (buff_lvl_step) {
676         adjustment = (int)((rc->worst_quality - ambient_qp) *
677                            (rc->optimal_buffer_level - rc->buffer_level) /
678                            buff_lvl_step);
679       }
680       active_worst_quality = ambient_qp + adjustment;
681     }
682   } else {
683     // Set to worst_quality if buffer is below critical level.
684     active_worst_quality = rc->worst_quality;
685   }
686   return active_worst_quality;
687 }
688 
rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP * cpi,int * bottom_index,int * top_index)689 static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
690                                              int *bottom_index,
691                                              int *top_index) {
692   const VP9_COMMON *const cm = &cpi->common;
693   const RATE_CONTROL *const rc = &cpi->rc;
694   int active_best_quality;
695   int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
696   int q;
697   int *rtc_minq;
698   ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
699 
700   if (frame_is_intra_only(cm)) {
701     active_best_quality = rc->best_quality;
702     // Handle the special case for key frames forced when we have reached
703     // the maximum key frame interval. Here force the Q to a range
704     // based on the ambient Q to reduce the risk of popping.
705     if (rc->this_key_frame_forced) {
706       int qindex = rc->last_boosted_qindex;
707       double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
708       int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
709                                             (last_boosted_q * 0.75),
710                                             cm->bit_depth);
711       active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
712     } else if (cm->current_video_frame > 0) {
713       // not first frame of one pass and kf_boost is set
714       double q_adj_factor = 1.0;
715       double q_val;
716 
717       active_best_quality =
718           get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME],
719                                 cm->bit_depth);
720 
721       // Allow somewhat lower kf minq with small image formats.
722       if ((cm->width * cm->height) <= (352 * 288)) {
723         q_adj_factor -= 0.25;
724       }
725 
726       // Convert the adjustment factor to a qindex delta
727       // on active_best_quality.
728       q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
729       active_best_quality += vp9_compute_qdelta(rc, q_val,
730                                                 q_val * q_adj_factor,
731                                                 cm->bit_depth);
732     }
733   } else if (!rc->is_src_frame_alt_ref &&
734              !cpi->use_svc &&
735              (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
736     // Use the lower of active_worst_quality and recent
737     // average Q as basis for GF/ARF best Q limit unless last frame was
738     // a key frame.
739     if (rc->frames_since_key > 1 &&
740         rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
741       q = rc->avg_frame_qindex[INTER_FRAME];
742     } else {
743       q = active_worst_quality;
744     }
745     active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
746   } else {
747     // Use the lower of active_worst_quality and recent/average Q.
748     if (cm->current_video_frame > 1) {
749       if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
750         active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
751       else
752         active_best_quality = rtc_minq[active_worst_quality];
753     } else {
754       if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
755         active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
756       else
757         active_best_quality = rtc_minq[active_worst_quality];
758     }
759   }
760 
761   // Clip the active best and worst quality values to limits
762   active_best_quality = clamp(active_best_quality,
763                               rc->best_quality, rc->worst_quality);
764   active_worst_quality = clamp(active_worst_quality,
765                                active_best_quality, rc->worst_quality);
766 
767   *top_index = active_worst_quality;
768   *bottom_index = active_best_quality;
769 
770 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
771   // Limit Q range for the adaptive loop.
772   if (cm->frame_type == KEY_FRAME &&
773       !rc->this_key_frame_forced  &&
774       !(cm->current_video_frame == 0)) {
775     int qdelta = 0;
776     vpx_clear_system_state();
777     qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
778                                         active_worst_quality, 2.0,
779                                         cm->bit_depth);
780     *top_index = active_worst_quality + qdelta;
781     *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
782   }
783 #endif
784 
785   // Special case code to try and match quality with forced key frames
786   if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
787     q = rc->last_boosted_qindex;
788   } else {
789     q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
790                           active_best_quality, active_worst_quality);
791     if (q > *top_index) {
792       // Special case when we are targeting the max allowed rate
793       if (rc->this_frame_target >= rc->max_frame_bandwidth)
794         *top_index = q;
795       else
796         q = *top_index;
797     }
798   }
799   assert(*top_index <= rc->worst_quality &&
800          *top_index >= rc->best_quality);
801   assert(*bottom_index <= rc->worst_quality &&
802          *bottom_index >= rc->best_quality);
803   assert(q <= rc->worst_quality && q >= rc->best_quality);
804   return q;
805 }
806 
get_active_cq_level(const RATE_CONTROL * rc,const VP9EncoderConfig * const oxcf)807 static int get_active_cq_level(const RATE_CONTROL *rc,
808                                const VP9EncoderConfig *const oxcf) {
809   static const double cq_adjust_threshold = 0.1;
810   int active_cq_level = oxcf->cq_level;
811   if (oxcf->rc_mode == VPX_CQ &&
812       rc->total_target_bits > 0) {
813     const double x = (double)rc->total_actual_bits / rc->total_target_bits;
814     if (x < cq_adjust_threshold) {
815       active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
816     }
817   }
818   return active_cq_level;
819 }
820 
rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP * cpi,int * bottom_index,int * top_index)821 static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
822                                              int *bottom_index,
823                                              int *top_index) {
824   const VP9_COMMON *const cm = &cpi->common;
825   const RATE_CONTROL *const rc = &cpi->rc;
826   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
827   const int cq_level = get_active_cq_level(rc, oxcf);
828   int active_best_quality;
829   int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
830   int q;
831   int *inter_minq;
832   ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
833 
834   if (frame_is_intra_only(cm)) {
835     // Handle the special case for key frames forced when we have reached
836     // the maximum key frame interval. Here force the Q to a range
837     // based on the ambient Q to reduce the risk of popping.
838     if (rc->this_key_frame_forced) {
839       int qindex = rc->last_boosted_qindex;
840       double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
841       int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
842                                             last_boosted_q * 0.75,
843                                             cm->bit_depth);
844       active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
845     } else {
846       // not first frame of one pass and kf_boost is set
847       double q_adj_factor = 1.0;
848       double q_val;
849 
850       active_best_quality =
851           get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME],
852                                 cm->bit_depth);
853 
854       // Allow somewhat lower kf minq with small image formats.
855       if ((cm->width * cm->height) <= (352 * 288)) {
856         q_adj_factor -= 0.25;
857       }
858 
859       // Convert the adjustment factor to a qindex delta
860       // on active_best_quality.
861       q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
862       active_best_quality += vp9_compute_qdelta(rc, q_val,
863                                                 q_val * q_adj_factor,
864                                                 cm->bit_depth);
865     }
866   } else if (!rc->is_src_frame_alt_ref &&
867              (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
868     // Use the lower of active_worst_quality and recent
869     // average Q as basis for GF/ARF best Q limit unless last frame was
870     // a key frame.
871     if (rc->frames_since_key > 1 &&
872         rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
873       q = rc->avg_frame_qindex[INTER_FRAME];
874     } else {
875       q = rc->avg_frame_qindex[KEY_FRAME];
876     }
877     // For constrained quality dont allow Q less than the cq level
878     if (oxcf->rc_mode == VPX_CQ) {
879       if (q < cq_level)
880         q = cq_level;
881 
882       active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
883 
884       // Constrained quality use slightly lower active best.
885       active_best_quality = active_best_quality * 15 / 16;
886 
887     } else if (oxcf->rc_mode == VPX_Q) {
888       if (!cpi->refresh_alt_ref_frame) {
889         active_best_quality = cq_level;
890       } else {
891         active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
892       }
893     } else {
894       active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
895     }
896   } else {
897     if (oxcf->rc_mode == VPX_Q) {
898       active_best_quality = cq_level;
899     } else {
900       // Use the lower of active_worst_quality and recent/average Q.
901       if (cm->current_video_frame > 1)
902         active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]];
903       else
904         active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
905       // For the constrained quality mode we don't want
906       // q to fall below the cq level.
907       if ((oxcf->rc_mode == VPX_CQ) &&
908           (active_best_quality < cq_level)) {
909         active_best_quality = cq_level;
910       }
911     }
912   }
913 
914   // Clip the active best and worst quality values to limits
915   active_best_quality = clamp(active_best_quality,
916                               rc->best_quality, rc->worst_quality);
917   active_worst_quality = clamp(active_worst_quality,
918                                active_best_quality, rc->worst_quality);
919 
920   *top_index = active_worst_quality;
921   *bottom_index = active_best_quality;
922 
923 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
924   {
925     int qdelta = 0;
926     vpx_clear_system_state();
927 
928     // Limit Q range for the adaptive loop.
929     if (cm->frame_type == KEY_FRAME &&
930         !rc->this_key_frame_forced &&
931         !(cm->current_video_frame == 0)) {
932       qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
933                                           active_worst_quality, 2.0,
934                                           cm->bit_depth);
935     } else if (!rc->is_src_frame_alt_ref &&
936                (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
937       qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
938                                           active_worst_quality, 1.75,
939                                           cm->bit_depth);
940     }
941     *top_index = active_worst_quality + qdelta;
942     *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
943   }
944 #endif
945 
946   if (oxcf->rc_mode == VPX_Q) {
947     q = active_best_quality;
948   // Special case code to try and match quality with forced key frames
949   } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
950     q = rc->last_boosted_qindex;
951   } else {
952     q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
953                           active_best_quality, active_worst_quality);
954     if (q > *top_index) {
955       // Special case when we are targeting the max allowed rate
956       if (rc->this_frame_target >= rc->max_frame_bandwidth)
957         *top_index = q;
958       else
959         q = *top_index;
960     }
961   }
962 
963   assert(*top_index <= rc->worst_quality &&
964          *top_index >= rc->best_quality);
965   assert(*bottom_index <= rc->worst_quality &&
966          *bottom_index >= rc->best_quality);
967   assert(q <= rc->worst_quality && q >= rc->best_quality);
968   return q;
969 }
970 
vp9_frame_type_qdelta(const VP9_COMP * cpi,int rf_level,int q)971 int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) {
972   static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
973     1.00,  // INTER_NORMAL
974     1.00,  // INTER_HIGH
975     1.50,  // GF_ARF_LOW
976     1.75,  // GF_ARF_STD
977     2.00,  // KF_STD
978   };
979   static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] =
980       {INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME};
981   const VP9_COMMON *const cm = &cpi->common;
982   int qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level],
983                                           q, rate_factor_deltas[rf_level],
984                                           cm->bit_depth);
985   return qdelta;
986 }
987 
988 #define STATIC_MOTION_THRESH 95
rc_pick_q_and_bounds_two_pass(const VP9_COMP * cpi,int * bottom_index,int * top_index)989 static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
990                                          int *bottom_index,
991                                          int *top_index) {
992   const VP9_COMMON *const cm = &cpi->common;
993   const RATE_CONTROL *const rc = &cpi->rc;
994   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
995   const GF_GROUP *gf_group = &cpi->twopass.gf_group;
996   const int cq_level = get_active_cq_level(rc, oxcf);
997   int active_best_quality;
998   int active_worst_quality = cpi->twopass.active_worst_quality;
999   int q;
1000   int *inter_minq;
1001   ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
1002 
1003   if (frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) {
1004     // Handle the special case for key frames forced when we have reached
1005     // the maximum key frame interval. Here force the Q to a range
1006     // based on the ambient Q to reduce the risk of popping.
1007     if (rc->this_key_frame_forced) {
1008       double last_boosted_q;
1009       int delta_qindex;
1010       int qindex;
1011 
1012       if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1013         qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1014         active_best_quality = qindex;
1015         last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1016         delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
1017                                               last_boosted_q * 1.25,
1018                                               cm->bit_depth);
1019         active_worst_quality =
1020             VPXMIN(qindex + delta_qindex, active_worst_quality);
1021       } else {
1022         qindex = rc->last_boosted_qindex;
1023         last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1024         delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
1025                                               last_boosted_q * 0.75,
1026                                               cm->bit_depth);
1027         active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1028       }
1029     } else {
1030       // Not forced keyframe.
1031       double q_adj_factor = 1.0;
1032       double q_val;
1033       // Baseline value derived from cpi->active_worst_quality and kf boost.
1034       active_best_quality = get_kf_active_quality(rc, active_worst_quality,
1035                                                   cm->bit_depth);
1036 
1037       // Allow somewhat lower kf minq with small image formats.
1038       if ((cm->width * cm->height) <= (352 * 288)) {
1039         q_adj_factor -= 0.25;
1040       }
1041 
1042       // Make a further adjustment based on the kf zero motion measure.
1043       q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
1044 
1045       // Convert the adjustment factor to a qindex delta
1046       // on active_best_quality.
1047       q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
1048       active_best_quality += vp9_compute_qdelta(rc, q_val,
1049                                                 q_val * q_adj_factor,
1050                                                 cm->bit_depth);
1051     }
1052   } else if (!rc->is_src_frame_alt_ref &&
1053              (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1054     // Use the lower of active_worst_quality and recent
1055     // average Q as basis for GF/ARF best Q limit unless last frame was
1056     // a key frame.
1057     if (rc->frames_since_key > 1 &&
1058         rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1059       q = rc->avg_frame_qindex[INTER_FRAME];
1060     } else {
1061       q = active_worst_quality;
1062     }
1063     // For constrained quality dont allow Q less than the cq level
1064     if (oxcf->rc_mode == VPX_CQ) {
1065       if (q < cq_level)
1066         q = cq_level;
1067 
1068       active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
1069 
1070       // Constrained quality use slightly lower active best.
1071       active_best_quality = active_best_quality * 15 / 16;
1072 
1073     } else if (oxcf->rc_mode == VPX_Q) {
1074       if (!cpi->refresh_alt_ref_frame) {
1075         active_best_quality = cq_level;
1076       } else {
1077        active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
1078 
1079         // Modify best quality for second level arfs. For mode VPX_Q this
1080         // becomes the baseline frame q.
1081         if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)
1082           active_best_quality = (active_best_quality + cq_level + 1) / 2;
1083       }
1084     } else {
1085       active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
1086     }
1087   } else {
1088     if (oxcf->rc_mode == VPX_Q) {
1089       active_best_quality = cq_level;
1090     } else {
1091       active_best_quality = inter_minq[active_worst_quality];
1092 
1093       // For the constrained quality mode we don't want
1094       // q to fall below the cq level.
1095       if ((oxcf->rc_mode == VPX_CQ) &&
1096           (active_best_quality < cq_level)) {
1097         active_best_quality = cq_level;
1098       }
1099     }
1100   }
1101 
1102   // Extension to max or min Q if undershoot or overshoot is outside
1103   // the permitted range.
1104   if ((cpi->oxcf.rc_mode != VPX_Q) &&
1105       (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) {
1106     if (frame_is_intra_only(cm) ||
1107         (!rc->is_src_frame_alt_ref &&
1108          (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
1109       active_best_quality -=
1110         (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
1111       active_worst_quality += (cpi->twopass.extend_maxq / 2);
1112     } else {
1113       active_best_quality -=
1114         (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
1115       active_worst_quality += cpi->twopass.extend_maxq;
1116     }
1117   }
1118 
1119 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
1120   vpx_clear_system_state();
1121   // Static forced key frames Q restrictions dealt with elsewhere.
1122   if (!((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi))) ||
1123       !rc->this_key_frame_forced ||
1124       (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
1125     int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index],
1126                                        active_worst_quality);
1127     active_worst_quality = VPXMAX(active_worst_quality + qdelta,
1128                                   active_best_quality);
1129   }
1130 #endif
1131 
1132   // Modify active_best_quality for downscaled normal frames.
1133   if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) {
1134     int qdelta = vp9_compute_qdelta_by_rate(rc, cm->frame_type,
1135                                             active_best_quality, 2.0,
1136                                             cm->bit_depth);
1137     active_best_quality =
1138         VPXMAX(active_best_quality + qdelta, rc->best_quality);
1139   }
1140 
1141   active_best_quality = clamp(active_best_quality,
1142                               rc->best_quality, rc->worst_quality);
1143   active_worst_quality = clamp(active_worst_quality,
1144                                active_best_quality, rc->worst_quality);
1145 
1146   if (oxcf->rc_mode == VPX_Q) {
1147     q = active_best_quality;
1148   // Special case code to try and match quality with forced key frames.
1149   } else if ((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) &&
1150              rc->this_key_frame_forced) {
1151     // If static since last kf use better of last boosted and last kf q.
1152     if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1153       q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1154     } else {
1155       q = rc->last_boosted_qindex;
1156     }
1157   } else {
1158     q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
1159                           active_best_quality, active_worst_quality);
1160     if (q > active_worst_quality) {
1161       // Special case when we are targeting the max allowed rate.
1162       if (rc->this_frame_target >= rc->max_frame_bandwidth)
1163         active_worst_quality = q;
1164       else
1165         q = active_worst_quality;
1166     }
1167   }
1168   clamp(q, active_best_quality, active_worst_quality);
1169 
1170   *top_index = active_worst_quality;
1171   *bottom_index = active_best_quality;
1172 
1173   assert(*top_index <= rc->worst_quality &&
1174          *top_index >= rc->best_quality);
1175   assert(*bottom_index <= rc->worst_quality &&
1176          *bottom_index >= rc->best_quality);
1177   assert(q <= rc->worst_quality && q >= rc->best_quality);
1178   return q;
1179 }
1180 
vp9_rc_pick_q_and_bounds(const VP9_COMP * cpi,int * bottom_index,int * top_index)1181 int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi,
1182                              int *bottom_index, int *top_index) {
1183   int q;
1184   if (cpi->oxcf.pass == 0) {
1185     if (cpi->oxcf.rc_mode == VPX_CBR)
1186       q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
1187     else
1188       q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
1189   } else {
1190     q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index);
1191   }
1192   if (cpi->sf.use_nonrd_pick_mode) {
1193     if (cpi->sf.force_frame_boost == 1)
1194       q -= cpi->sf.max_delta_qindex;
1195 
1196     if (q < *bottom_index)
1197       *bottom_index = q;
1198     else if (q > *top_index)
1199       *top_index = q;
1200   }
1201   return q;
1202 }
1203 
vp9_rc_compute_frame_size_bounds(const VP9_COMP * cpi,int frame_target,int * frame_under_shoot_limit,int * frame_over_shoot_limit)1204 void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
1205                                       int frame_target,
1206                                       int *frame_under_shoot_limit,
1207                                       int *frame_over_shoot_limit) {
1208   if (cpi->oxcf.rc_mode == VPX_Q) {
1209     *frame_under_shoot_limit = 0;
1210     *frame_over_shoot_limit  = INT_MAX;
1211   } else {
1212     // For very small rate targets where the fractional adjustment
1213     // may be tiny make sure there is at least a minimum range.
1214     const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
1215     *frame_under_shoot_limit = VPXMAX(frame_target - tolerance - 200, 0);
1216     *frame_over_shoot_limit = VPXMIN(frame_target + tolerance + 200,
1217                                      cpi->rc.max_frame_bandwidth);
1218   }
1219 }
1220 
vp9_rc_set_frame_target(VP9_COMP * cpi,int target)1221 void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
1222   const VP9_COMMON *const cm = &cpi->common;
1223   RATE_CONTROL *const rc = &cpi->rc;
1224 
1225   rc->this_frame_target = target;
1226 
1227   // Modify frame size target when down-scaling.
1228   if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
1229       rc->frame_size_selector != UNSCALED)
1230     rc->this_frame_target = (int)(rc->this_frame_target
1231         * rate_thresh_mult[rc->frame_size_selector]);
1232 
1233   // Target rate per SB64 (including partial SB64s.
1234   rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) /
1235                              (cm->width * cm->height);
1236 }
1237 
update_alt_ref_frame_stats(VP9_COMP * cpi)1238 static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
1239   // this frame refreshes means next frames don't unless specified by user
1240   RATE_CONTROL *const rc = &cpi->rc;
1241   rc->frames_since_golden = 0;
1242 
1243   // Mark the alt ref as done (setting to 0 means no further alt refs pending).
1244   rc->source_alt_ref_pending = 0;
1245 
1246   // Set the alternate reference frame active flag
1247   rc->source_alt_ref_active = 1;
1248 }
1249 
update_golden_frame_stats(VP9_COMP * cpi)1250 static void update_golden_frame_stats(VP9_COMP *cpi) {
1251   RATE_CONTROL *const rc = &cpi->rc;
1252 
1253   // Update the Golden frame usage counts.
1254   if (cpi->refresh_golden_frame) {
1255     // this frame refreshes means next frames don't unless specified by user
1256     rc->frames_since_golden = 0;
1257 
1258     // If we are not using alt ref in the up and coming group clear the arf
1259     // active flag.
1260     if (!rc->source_alt_ref_pending) {
1261       rc->source_alt_ref_active = 0;
1262     }
1263 
1264     // Decrement count down till next gf
1265     if (rc->frames_till_gf_update_due > 0)
1266       rc->frames_till_gf_update_due--;
1267 
1268   } else if (!cpi->refresh_alt_ref_frame) {
1269     // Decrement count down till next gf
1270     if (rc->frames_till_gf_update_due > 0)
1271       rc->frames_till_gf_update_due--;
1272 
1273     rc->frames_since_golden++;
1274   }
1275 }
1276 
vp9_rc_postencode_update(VP9_COMP * cpi,uint64_t bytes_used)1277 void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
1278   const VP9_COMMON *const cm = &cpi->common;
1279   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1280   RATE_CONTROL *const rc = &cpi->rc;
1281   const int qindex = cm->base_qindex;
1282 
1283   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
1284     vp9_cyclic_refresh_postencode(cpi);
1285   }
1286 
1287   // Update rate control heuristics
1288   rc->projected_frame_size = (int)(bytes_used << 3);
1289 
1290   // Post encode loop adjustment of Q prediction.
1291   vp9_rc_update_rate_correction_factors(cpi);
1292 
1293   // Keep a record of last Q and ambient average Q.
1294   if (cm->frame_type == KEY_FRAME) {
1295     rc->last_q[KEY_FRAME] = qindex;
1296     rc->avg_frame_qindex[KEY_FRAME] =
1297         ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
1298     if (cpi->use_svc) {
1299       int i = 0;
1300       SVC *svc = &cpi->svc;
1301       for (i = 0; i < svc->number_temporal_layers; ++i) {
1302         const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
1303                                            svc->number_temporal_layers);
1304         LAYER_CONTEXT *lc = &svc->layer_context[layer];
1305         RATE_CONTROL *lrc = &lc->rc;
1306         lrc->last_q[KEY_FRAME] = rc->last_q[KEY_FRAME];
1307         lrc->avg_frame_qindex[KEY_FRAME] = rc->avg_frame_qindex[KEY_FRAME];
1308       }
1309     }
1310   } else {
1311     if (rc->is_src_frame_alt_ref ||
1312         !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) ||
1313         (cpi->use_svc && oxcf->rc_mode == VPX_CBR)) {
1314       rc->last_q[INTER_FRAME] = qindex;
1315       rc->avg_frame_qindex[INTER_FRAME] =
1316         ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
1317       rc->ni_frames++;
1318       rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1319       rc->avg_q = rc->tot_q / rc->ni_frames;
1320       // Calculate the average Q for normal inter frames (not key or GFU
1321       // frames).
1322       rc->ni_tot_qi += qindex;
1323       rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
1324     }
1325   }
1326 
1327   // Keep record of last boosted (KF/KF/ARF) Q value.
1328   // If the current frame is coded at a lower Q then we also update it.
1329   // If all mbs in this group are skipped only update if the Q value is
1330   // better than that already stored.
1331   // This is used to help set quality in forced key frames to reduce popping
1332   if ((qindex < rc->last_boosted_qindex) ||
1333       (cm->frame_type == KEY_FRAME) ||
1334       (!rc->constrained_gf_group &&
1335        (cpi->refresh_alt_ref_frame ||
1336         (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
1337     rc->last_boosted_qindex = qindex;
1338   }
1339   if (cm->frame_type == KEY_FRAME)
1340     rc->last_kf_qindex = qindex;
1341 
1342   update_buffer_level(cpi, rc->projected_frame_size);
1343 
1344   // Rolling monitors of whether we are over or underspending used to help
1345   // regulate min and Max Q in two pass.
1346   if (cm->frame_type != KEY_FRAME) {
1347     rc->rolling_target_bits = ROUND_POWER_OF_TWO(
1348         rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
1349     rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
1350         rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
1351     rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
1352         rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
1353     rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
1354         rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
1355   }
1356 
1357   // Actual bits spent
1358   rc->total_actual_bits += rc->projected_frame_size;
1359   rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
1360 
1361   rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
1362 
1363   if (!cpi->use_svc || is_two_pass_svc(cpi)) {
1364     if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
1365         (cm->frame_type != KEY_FRAME))
1366       // Update the alternate reference frame stats as appropriate.
1367       update_alt_ref_frame_stats(cpi);
1368     else
1369       // Update the Golden frame stats as appropriate.
1370       update_golden_frame_stats(cpi);
1371   }
1372 
1373   if (cm->frame_type == KEY_FRAME)
1374     rc->frames_since_key = 0;
1375   if (cm->show_frame) {
1376     rc->frames_since_key++;
1377     rc->frames_to_key--;
1378   }
1379 
1380   // Trigger the resizing of the next frame if it is scaled.
1381   if (oxcf->pass != 0) {
1382     cpi->resize_pending =
1383         rc->next_frame_size_selector != rc->frame_size_selector;
1384     rc->frame_size_selector = rc->next_frame_size_selector;
1385   }
1386 }
1387 
vp9_rc_postencode_update_drop_frame(VP9_COMP * cpi)1388 void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
1389   // Update buffer level with zero size, update frame counters, and return.
1390   update_buffer_level(cpi, 0);
1391   cpi->rc.frames_since_key++;
1392   cpi->rc.frames_to_key--;
1393   cpi->rc.rc_2_frame = 0;
1394   cpi->rc.rc_1_frame = 0;
1395 }
1396 
1397 // Use this macro to turn on/off use of alt-refs in one-pass mode.
1398 #define USE_ALTREF_FOR_ONE_PASS   1
1399 
calc_pframe_target_size_one_pass_vbr(const VP9_COMP * const cpi)1400 static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
1401   static const int af_ratio = 10;
1402   const RATE_CONTROL *const rc = &cpi->rc;
1403   int target;
1404 #if USE_ALTREF_FOR_ONE_PASS
1405   target = (!rc->is_src_frame_alt_ref &&
1406             (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) ?
1407       (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
1408       (rc->baseline_gf_interval + af_ratio - 1) :
1409       (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
1410       (rc->baseline_gf_interval + af_ratio - 1);
1411 #else
1412   target = rc->avg_frame_bandwidth;
1413 #endif
1414   return vp9_rc_clamp_pframe_target_size(cpi, target);
1415 }
1416 
calc_iframe_target_size_one_pass_vbr(const VP9_COMP * const cpi)1417 static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
1418   static const int kf_ratio = 25;
1419   const RATE_CONTROL *rc = &cpi->rc;
1420   const int target = rc->avg_frame_bandwidth * kf_ratio;
1421   return vp9_rc_clamp_iframe_target_size(cpi, target);
1422 }
1423 
vp9_rc_get_one_pass_vbr_params(VP9_COMP * cpi)1424 void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
1425   VP9_COMMON *const cm = &cpi->common;
1426   RATE_CONTROL *const rc = &cpi->rc;
1427   int target;
1428   // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
1429   if (!cpi->refresh_alt_ref_frame &&
1430       (cm->current_video_frame == 0 ||
1431        (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1432        rc->frames_to_key == 0 ||
1433        (cpi->oxcf.auto_key && 0))) {
1434     cm->frame_type = KEY_FRAME;
1435     rc->this_key_frame_forced = cm->current_video_frame != 0 &&
1436                                 rc->frames_to_key == 0;
1437     rc->frames_to_key = cpi->oxcf.key_freq;
1438     rc->kf_boost = DEFAULT_KF_BOOST;
1439     rc->source_alt_ref_active = 0;
1440   } else {
1441     cm->frame_type = INTER_FRAME;
1442   }
1443   if (rc->frames_till_gf_update_due == 0) {
1444     rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
1445     rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1446     // NOTE: frames_till_gf_update_due must be <= frames_to_key.
1447     if (rc->frames_till_gf_update_due > rc->frames_to_key) {
1448       rc->frames_till_gf_update_due = rc->frames_to_key;
1449       rc->constrained_gf_group = 1;
1450     } else {
1451       rc->constrained_gf_group = 0;
1452     }
1453     cpi->refresh_golden_frame = 1;
1454     rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
1455     rc->gfu_boost = DEFAULT_GF_BOOST;
1456   }
1457   if (cm->frame_type == KEY_FRAME)
1458     target = calc_iframe_target_size_one_pass_vbr(cpi);
1459   else
1460     target = calc_pframe_target_size_one_pass_vbr(cpi);
1461   vp9_rc_set_frame_target(cpi, target);
1462 }
1463 
calc_pframe_target_size_one_pass_cbr(const VP9_COMP * cpi)1464 static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
1465   const VP9EncoderConfig *oxcf = &cpi->oxcf;
1466   const RATE_CONTROL *rc = &cpi->rc;
1467   const SVC *const svc = &cpi->svc;
1468   const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
1469   const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
1470   int min_frame_target =
1471       VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
1472   int target;
1473 
1474   if (oxcf->gf_cbr_boost_pct) {
1475     const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
1476     target =  cpi->refresh_golden_frame ?
1477       (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) /
1478       (rc->baseline_gf_interval * 100 + af_ratio_pct - 100) :
1479       (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
1480       (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
1481   } else {
1482     target = rc->avg_frame_bandwidth;
1483   }
1484   if (is_one_pass_cbr_svc(cpi)) {
1485     // Note that for layers, avg_frame_bandwidth is the cumulative
1486     // per-frame-bandwidth. For the target size of this frame, use the
1487     // layer average frame size (i.e., non-cumulative per-frame-bw).
1488     int layer =
1489         LAYER_IDS_TO_IDX(svc->spatial_layer_id,
1490             svc->temporal_layer_id, svc->number_temporal_layers);
1491     const LAYER_CONTEXT *lc = &svc->layer_context[layer];
1492     target = lc->avg_frame_size;
1493     min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
1494   }
1495   if (diff > 0) {
1496     // Lower the target bandwidth for this frame.
1497     const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
1498     target -= (target * pct_low) / 200;
1499   } else if (diff < 0) {
1500     // Increase the target bandwidth for this frame.
1501     const int pct_high =
1502         (int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
1503     target += (target * pct_high) / 200;
1504   }
1505   if (oxcf->rc_max_inter_bitrate_pct) {
1506     const int max_rate = rc->avg_frame_bandwidth *
1507                          oxcf->rc_max_inter_bitrate_pct / 100;
1508     target = VPXMIN(target, max_rate);
1509   }
1510   return VPXMAX(min_frame_target, target);
1511 }
1512 
calc_iframe_target_size_one_pass_cbr(const VP9_COMP * cpi)1513 static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
1514   const RATE_CONTROL *rc = &cpi->rc;
1515   const VP9EncoderConfig *oxcf = &cpi->oxcf;
1516   const SVC *const svc = &cpi->svc;
1517   int target;
1518   if (cpi->common.current_video_frame == 0) {
1519     target = ((rc->starting_buffer_level / 2) > INT_MAX)
1520       ? INT_MAX : (int)(rc->starting_buffer_level / 2);
1521   } else {
1522     int kf_boost = 32;
1523     double framerate = cpi->framerate;
1524     if (svc->number_temporal_layers > 1 &&
1525         oxcf->rc_mode == VPX_CBR) {
1526       // Use the layer framerate for temporal layers CBR mode.
1527       const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id,
1528           svc->temporal_layer_id, svc->number_temporal_layers);
1529       const LAYER_CONTEXT *lc = &svc->layer_context[layer];
1530       framerate = lc->framerate;
1531     }
1532     kf_boost = VPXMAX(kf_boost, (int)(2 * framerate - 16));
1533     if (rc->frames_since_key <  framerate / 2) {
1534       kf_boost = (int)(kf_boost * rc->frames_since_key /
1535                        (framerate / 2));
1536     }
1537     target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
1538   }
1539   return vp9_rc_clamp_iframe_target_size(cpi, target);
1540 }
1541 
1542 // Reset information needed to set proper reference frames and buffer updates
1543 // for temporal layering. This is called when a key frame is encoded.
reset_temporal_layer_to_zero(VP9_COMP * cpi)1544 static void reset_temporal_layer_to_zero(VP9_COMP *cpi) {
1545   int sl;
1546   LAYER_CONTEXT *lc = NULL;
1547   cpi->svc.temporal_layer_id = 0;
1548 
1549   for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) {
1550     lc = &cpi->svc.layer_context[sl * cpi->svc.number_temporal_layers];
1551     lc->current_video_frame_in_layer = 0;
1552     lc->frames_from_key_frame = 0;
1553   }
1554 }
1555 
vp9_rc_get_svc_params(VP9_COMP * cpi)1556 void vp9_rc_get_svc_params(VP9_COMP *cpi) {
1557   VP9_COMMON *const cm = &cpi->common;
1558   RATE_CONTROL *const rc = &cpi->rc;
1559   int target = rc->avg_frame_bandwidth;
1560   const int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id,
1561       cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers);
1562 
1563   if ((cm->current_video_frame == 0) ||
1564       (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1565       (cpi->oxcf.auto_key && (rc->frames_since_key %
1566           cpi->oxcf.key_freq == 0))) {
1567     cm->frame_type = KEY_FRAME;
1568     rc->source_alt_ref_active = 0;
1569 
1570     if (is_two_pass_svc(cpi)) {
1571       cpi->svc.layer_context[layer].is_key_frame = 1;
1572       cpi->ref_frame_flags &=
1573           (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
1574     } else if (is_one_pass_cbr_svc(cpi)) {
1575       cpi->svc.layer_context[layer].is_key_frame = 1;
1576       reset_temporal_layer_to_zero(cpi);
1577       cpi->ref_frame_flags &=
1578                 (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
1579       // Assumption here is that LAST_FRAME is being updated for a keyframe.
1580       // Thus no change in update flags.
1581       target = calc_iframe_target_size_one_pass_cbr(cpi);
1582     }
1583   } else {
1584     cm->frame_type = INTER_FRAME;
1585     if (is_two_pass_svc(cpi)) {
1586       LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
1587       if (cpi->svc.spatial_layer_id == 0) {
1588         lc->is_key_frame = 0;
1589       } else {
1590         lc->is_key_frame =
1591             cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame;
1592         if (lc->is_key_frame)
1593           cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
1594       }
1595       cpi->ref_frame_flags &= (~VP9_ALT_FLAG);
1596     } else if (is_one_pass_cbr_svc(cpi)) {
1597       LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
1598       if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode) {
1599         lc->is_key_frame = 0;
1600       } else {
1601         lc->is_key_frame =
1602             cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame;
1603       }
1604       target = calc_pframe_target_size_one_pass_cbr(cpi);
1605     }
1606   }
1607 
1608   // Any update/change of global cyclic refresh parameters (amount/delta-qp)
1609   // should be done here, before the frame qp is selected.
1610   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1611     vp9_cyclic_refresh_update_parameters(cpi);
1612 
1613   vp9_rc_set_frame_target(cpi, target);
1614   rc->frames_till_gf_update_due = INT_MAX;
1615   rc->baseline_gf_interval = INT_MAX;
1616 }
1617 
vp9_rc_get_one_pass_cbr_params(VP9_COMP * cpi)1618 void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
1619   VP9_COMMON *const cm = &cpi->common;
1620   RATE_CONTROL *const rc = &cpi->rc;
1621   int target;
1622   // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
1623   if ((cm->current_video_frame == 0 ||
1624       (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1625       rc->frames_to_key == 0 ||
1626       (cpi->oxcf.auto_key && 0))) {
1627     cm->frame_type = KEY_FRAME;
1628     rc->this_key_frame_forced = cm->current_video_frame != 0 &&
1629                                 rc->frames_to_key == 0;
1630     rc->frames_to_key = cpi->oxcf.key_freq;
1631     rc->kf_boost = DEFAULT_KF_BOOST;
1632     rc->source_alt_ref_active = 0;
1633   } else {
1634     cm->frame_type = INTER_FRAME;
1635   }
1636   if (rc->frames_till_gf_update_due == 0) {
1637     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1638       vp9_cyclic_refresh_set_golden_update(cpi);
1639     else
1640       rc->baseline_gf_interval =
1641           (rc->min_gf_interval + rc->max_gf_interval) / 2;
1642     rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1643     // NOTE: frames_till_gf_update_due must be <= frames_to_key.
1644     if (rc->frames_till_gf_update_due > rc->frames_to_key)
1645       rc->frames_till_gf_update_due = rc->frames_to_key;
1646     cpi->refresh_golden_frame = 1;
1647     rc->gfu_boost = DEFAULT_GF_BOOST;
1648   }
1649 
1650   // Any update/change of global cyclic refresh parameters (amount/delta-qp)
1651   // should be done here, before the frame qp is selected.
1652   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1653     vp9_cyclic_refresh_update_parameters(cpi);
1654 
1655   if (cm->frame_type == KEY_FRAME)
1656     target = calc_iframe_target_size_one_pass_cbr(cpi);
1657   else
1658     target = calc_pframe_target_size_one_pass_cbr(cpi);
1659 
1660   vp9_rc_set_frame_target(cpi, target);
1661   if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC)
1662     cpi->resize_pending = vp9_resize_one_pass_cbr(cpi);
1663   else
1664     cpi->resize_pending = 0;
1665 }
1666 
vp9_compute_qdelta(const RATE_CONTROL * rc,double qstart,double qtarget,vpx_bit_depth_t bit_depth)1667 int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
1668                        vpx_bit_depth_t bit_depth) {
1669   int start_index = rc->worst_quality;
1670   int target_index = rc->worst_quality;
1671   int i;
1672 
1673   // Convert the average q value to an index.
1674   for (i = rc->best_quality; i < rc->worst_quality; ++i) {
1675     start_index = i;
1676     if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart)
1677       break;
1678   }
1679 
1680   // Convert the q target to an index
1681   for (i = rc->best_quality; i < rc->worst_quality; ++i) {
1682     target_index = i;
1683     if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget)
1684       break;
1685   }
1686 
1687   return target_index - start_index;
1688 }
1689 
vp9_compute_qdelta_by_rate(const RATE_CONTROL * rc,FRAME_TYPE frame_type,int qindex,double rate_target_ratio,vpx_bit_depth_t bit_depth)1690 int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
1691                                int qindex, double rate_target_ratio,
1692                                vpx_bit_depth_t bit_depth) {
1693   int target_index = rc->worst_quality;
1694   int i;
1695 
1696   // Look up the current projected bits per block for the base index
1697   const int base_bits_per_mb = vp9_rc_bits_per_mb(frame_type, qindex, 1.0,
1698                                                   bit_depth);
1699 
1700   // Find the target bits per mb based on the base value and given ratio.
1701   const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
1702 
1703   // Convert the q target to an index
1704   for (i = rc->best_quality; i < rc->worst_quality; ++i) {
1705     if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
1706         target_bits_per_mb) {
1707       target_index = i;
1708       break;
1709     }
1710   }
1711   return target_index - qindex;
1712 }
1713 
vp9_rc_set_gf_interval_range(const VP9_COMP * const cpi,RATE_CONTROL * const rc)1714 void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi,
1715                                   RATE_CONTROL *const rc) {
1716   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1717 
1718   // Set Maximum gf/arf interval
1719   rc->max_gf_interval = oxcf->max_gf_interval;
1720   rc->min_gf_interval = oxcf->min_gf_interval;
1721   if (rc->min_gf_interval == 0)
1722     rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
1723         oxcf->width, oxcf->height, cpi->framerate);
1724   if (rc->max_gf_interval == 0)
1725     rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
1726         cpi->framerate, rc->min_gf_interval);
1727 
1728   // Extended interval for genuinely static scenes
1729   rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2;
1730 
1731   if (is_altref_enabled(cpi)) {
1732     if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)
1733       rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1;
1734   }
1735 
1736   if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
1737     rc->max_gf_interval = rc->static_scene_max_gf_interval;
1738 
1739   // Clamp min to max
1740   rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval);
1741 }
1742 
vp9_rc_update_framerate(VP9_COMP * cpi)1743 void vp9_rc_update_framerate(VP9_COMP *cpi) {
1744   const VP9_COMMON *const cm = &cpi->common;
1745   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1746   RATE_CONTROL *const rc = &cpi->rc;
1747   int vbr_max_bits;
1748 
1749   rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
1750   rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth *
1751                                 oxcf->two_pass_vbrmin_section / 100);
1752 
1753   rc->min_frame_bandwidth =
1754       VPXMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
1755 
1756   // A maximum bitrate for a frame is defined.
1757   // The baseline for this aligns with HW implementations that
1758   // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
1759   // per 16x16 MB (averaged over a frame). However this limit is extended if
1760   // a very high rate is given on the command line or the the rate cannnot
1761   // be acheived because of a user specificed max q (e.g. when the user
1762   // specifies lossless encode.
1763   vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth *
1764                      oxcf->two_pass_vbrmax_section) / 100);
1765   rc->max_frame_bandwidth =
1766       VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
1767 
1768   vp9_rc_set_gf_interval_range(cpi, rc);
1769 }
1770 
1771 #define VBR_PCT_ADJUSTMENT_LIMIT 50
1772 // For VBR...adjustment to the frame target based on error from previous frames
vbr_rate_correction(VP9_COMP * cpi,int * this_frame_target)1773 static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) {
1774   RATE_CONTROL *const rc = &cpi->rc;
1775   int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
1776   int max_delta;
1777   double position_factor = 1.0;
1778 
1779   // How far through the clip are we.
1780   // This number is used to damp the per frame rate correction.
1781   // Range 0 - 1.0
1782   if (cpi->twopass.total_stats.count) {
1783     position_factor = sqrt((double)cpi->common.current_video_frame /
1784                            cpi->twopass.total_stats.count);
1785   }
1786   max_delta = (int)(position_factor *
1787                     ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
1788 
1789   // vbr_bits_off_target > 0 means we have extra bits to spend
1790   if (vbr_bits_off_target > 0) {
1791     *this_frame_target +=
1792       (vbr_bits_off_target > max_delta) ? max_delta
1793                                         : (int)vbr_bits_off_target;
1794   } else {
1795     *this_frame_target -=
1796       (vbr_bits_off_target < -max_delta) ? max_delta
1797                                          : (int)-vbr_bits_off_target;
1798   }
1799 
1800   // Fast redistribution of bits arising from massive local undershoot.
1801   // Dont do it for kf,arf,gf or overlay frames.
1802   if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
1803       rc->vbr_bits_off_target_fast) {
1804     int one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, *this_frame_target);
1805     int fast_extra_bits;
1806     fast_extra_bits = (int)VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
1807     fast_extra_bits = (int)VPXMIN(
1808         fast_extra_bits,
1809         VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
1810     *this_frame_target += (int)fast_extra_bits;
1811     rc->vbr_bits_off_target_fast -= fast_extra_bits;
1812   }
1813 }
1814 
vp9_set_target_rate(VP9_COMP * cpi)1815 void vp9_set_target_rate(VP9_COMP *cpi) {
1816   RATE_CONTROL *const rc = &cpi->rc;
1817   int target_rate = rc->base_frame_target;
1818 
1819   if (cpi->common.frame_type == KEY_FRAME)
1820     target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
1821   else
1822     target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
1823 
1824   // Correction to rate target based on prior over or under shoot.
1825   if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ)
1826     vbr_rate_correction(cpi, &target_rate);
1827   vp9_rc_set_frame_target(cpi, target_rate);
1828 }
1829 
1830 // Check if we should resize, based on average QP from past x frames.
1831 // Only allow for resize at most one scale down for now, scaling factor is 2.
vp9_resize_one_pass_cbr(VP9_COMP * cpi)1832 int vp9_resize_one_pass_cbr(VP9_COMP *cpi) {
1833   const VP9_COMMON *const cm = &cpi->common;
1834   RATE_CONTROL *const rc = &cpi->rc;
1835   RESIZE_ACTION resize_action = NO_RESIZE;
1836   int avg_qp_thr1 = 70;
1837   int avg_qp_thr2 = 50;
1838   cpi->resize_scale_num = 1;
1839   cpi->resize_scale_den = 1;
1840   // Don't resize on key frame; reset the counters on key frame.
1841   if (cm->frame_type == KEY_FRAME) {
1842     cpi->resize_avg_qp = 0;
1843     cpi->resize_count = 0;
1844     return 0;
1845   }
1846 
1847 #if CONFIG_VP9_TEMPORAL_DENOISING
1848   // If denoiser is on, apply a smaller qp threshold.
1849   if (cpi->oxcf.noise_sensitivity > 0) {
1850     avg_qp_thr1 = 60;
1851     avg_qp_thr2 = 40;
1852   }
1853 #endif
1854 
1855   // Resize based on average buffer underflow and QP over some window.
1856   // Ignore samples close to key frame, since QP is usually high after key.
1857   if (cpi->rc.frames_since_key > 1 * cpi->framerate) {
1858     const int window = (int)(4 * cpi->framerate);
1859     cpi->resize_avg_qp += cm->base_qindex;
1860     if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100))
1861       ++cpi->resize_buffer_underflow;
1862     ++cpi->resize_count;
1863     // Check for resize action every "window" frames.
1864     if (cpi->resize_count >= window) {
1865       int avg_qp = cpi->resize_avg_qp / cpi->resize_count;
1866       // Resize down if buffer level has underflowed sufficient amount in past
1867       // window, and we are at original or 3/4 of original resolution.
1868       // Resize back up if average QP is low, and we are currently in a resized
1869       // down state, i.e. 1/2 or 3/4 of original resolution.
1870       // Currently, use a flag to turn 3/4 resizing feature on/off.
1871       if (cpi->resize_buffer_underflow > (cpi->resize_count >> 2)) {
1872         if (cpi->resize_state == THREE_QUARTER) {
1873           resize_action = DOWN_ONEHALF;
1874           cpi->resize_state = ONE_HALF;
1875         } else if (cpi->resize_state == ORIG) {
1876           resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR;
1877           cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER;
1878         }
1879       } else if (cpi->resize_state != ORIG &&
1880                  avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) {
1881         if (cpi->resize_state == THREE_QUARTER ||
1882             avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100 ||
1883             ONEHALFONLY_RESIZE) {
1884           resize_action = UP_ORIG;
1885           cpi->resize_state = ORIG;
1886         } else if (cpi->resize_state == ONE_HALF) {
1887           resize_action = UP_THREEFOUR;
1888           cpi->resize_state = THREE_QUARTER;
1889         }
1890       }
1891       // Reset for next window measurement.
1892       cpi->resize_avg_qp = 0;
1893       cpi->resize_count = 0;
1894       cpi->resize_buffer_underflow = 0;
1895     }
1896   }
1897   // If decision is to resize, reset some quantities, and check is we should
1898   // reduce rate correction factor,
1899   if (resize_action != NO_RESIZE) {
1900     int target_bits_per_frame;
1901     int active_worst_quality;
1902     int qindex;
1903     int tot_scale_change;
1904     if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) {
1905       cpi->resize_scale_num = 3;
1906       cpi->resize_scale_den = 4;
1907     } else if (resize_action == DOWN_ONEHALF) {
1908       cpi->resize_scale_num = 1;
1909       cpi->resize_scale_den = 2;
1910     } else {  // UP_ORIG or anything else
1911       cpi->resize_scale_num = 1;
1912       cpi->resize_scale_den = 1;
1913     }
1914     tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) /
1915         (cpi->resize_scale_num * cpi->resize_scale_num);
1916     // Reset buffer level to optimal, update target size.
1917     rc->buffer_level = rc->optimal_buffer_level;
1918     rc->bits_off_target = rc->optimal_buffer_level;
1919     rc->this_frame_target = calc_pframe_target_size_one_pass_cbr(cpi);
1920     // Get the projected qindex, based on the scaled target frame size (scaled
1921     // so target_bits_per_mb in vp9_rc_regulate_q will be correct target).
1922     target_bits_per_frame = (resize_action >= 0) ?
1923         rc->this_frame_target * tot_scale_change :
1924         rc->this_frame_target / tot_scale_change;
1925     active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
1926     qindex = vp9_rc_regulate_q(cpi,
1927                                target_bits_per_frame,
1928                                rc->best_quality,
1929                                active_worst_quality);
1930     // If resize is down, check if projected q index is close to worst_quality,
1931     // and if so, reduce the rate correction factor (since likely can afford
1932     // lower q for resized frame).
1933     if (resize_action > 0 &&
1934         qindex > 90 * cpi->rc.worst_quality / 100) {
1935       rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
1936     }
1937     // If resize is back up, check if projected q index is too much above the
1938     // current base_qindex, and if so, reduce the rate correction factor
1939     // (since prefer to keep q for resized frame at least close to previous q).
1940     if (resize_action < 0 &&
1941        qindex > 130 * cm->base_qindex / 100) {
1942       rc->rate_correction_factors[INTER_NORMAL] *= 0.9;
1943     }
1944   }
1945   return resize_action;
1946 }
1947 
1948 // Compute average source sad (temporal sad: between current source and
1949 // previous source) over a subset of superblocks. Use this is detect big changes
1950 // in content and allow rate control to react.
1951 // TODO(marpan): Superblock sad is computed again in variance partition for
1952 // non-rd mode (but based on last reconstructed frame). Should try to reuse
1953 // these computations.
vp9_avg_source_sad(VP9_COMP * cpi)1954 void vp9_avg_source_sad(VP9_COMP *cpi) {
1955   VP9_COMMON * const cm = &cpi->common;
1956   RATE_CONTROL *const rc = &cpi->rc;
1957   rc->high_source_sad = 0;
1958   if (cpi->Last_Source != NULL) {
1959     const uint8_t *src_y = cpi->Source->y_buffer;
1960     const int src_ystride = cpi->Source->y_stride;
1961     const uint8_t *last_src_y = cpi->Last_Source->y_buffer;
1962     const int last_src_ystride = cpi->Last_Source->y_stride;
1963     int sbi_row, sbi_col;
1964     const BLOCK_SIZE bsize = BLOCK_64X64;
1965     // Loop over sub-sample of frame, and compute average sad over 64x64 blocks.
1966     uint64_t avg_sad = 0;
1967     int num_samples = 0;
1968     int sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
1969     int sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
1970     for (sbi_row = 0; sbi_row < sb_rows; sbi_row ++) {
1971       for (sbi_col = 0; sbi_col < sb_cols; sbi_col ++) {
1972         // Checker-board pattern, ignore boundary.
1973         if ((sbi_row > 0 && sbi_col > 0) &&
1974             (sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) &&
1975             ((sbi_row % 2 == 0 && sbi_col % 2 == 0) ||
1976             (sbi_row % 2 != 0 && sbi_col % 2 != 0))) {
1977           num_samples++;
1978           avg_sad += cpi->fn_ptr[bsize].sdf(src_y,
1979                                             src_ystride,
1980                                             last_src_y,
1981                                             last_src_ystride);
1982         }
1983         src_y += 64;
1984         last_src_y += 64;
1985       }
1986       src_y += (src_ystride << 6) - (sb_cols << 6);
1987       last_src_y += (last_src_ystride << 6) - (sb_cols << 6);
1988     }
1989     if (num_samples > 0)
1990       avg_sad = avg_sad / num_samples;
1991     // Set high_source_sad flag if we detect very high increase in avg_sad
1992     // between current and the previous frame value(s). Use a minimum threshold
1993     // for cases where there is small change from content that is completely
1994     // static.
1995     if (avg_sad > VPXMAX(4000, (rc->avg_source_sad << 3)) &&
1996         rc->frames_since_key > 1)
1997       rc->high_source_sad = 1;
1998     else
1999       rc->high_source_sad = 0;
2000     rc->avg_source_sad = (rc->avg_source_sad + avg_sad) >> 1;
2001   }
2002 }
2003 
2004 // Test if encoded frame will significantly overshoot the target bitrate, and
2005 // if so, set the QP, reset/adjust some rate control parameters, and return 1.
vp9_encodedframe_overshoot(VP9_COMP * cpi,int frame_size,int * q)2006 int vp9_encodedframe_overshoot(VP9_COMP *cpi,
2007                                int frame_size,
2008                                int *q) {
2009   VP9_COMMON * const cm = &cpi->common;
2010   RATE_CONTROL *const rc = &cpi->rc;
2011   int thresh_qp = 3 * (rc->worst_quality >> 2);
2012   int thresh_rate = rc->avg_frame_bandwidth * 10;
2013   if (cm->base_qindex < thresh_qp &&
2014       frame_size > thresh_rate) {
2015     double rate_correction_factor =
2016         cpi->rc.rate_correction_factors[INTER_NORMAL];
2017     const int target_size = cpi->rc.avg_frame_bandwidth;
2018     double new_correction_factor;
2019     int target_bits_per_mb;
2020     double q2;
2021     int enumerator;
2022     // Force a re-encode, and for now use max-QP.
2023     *q = cpi->rc.worst_quality;
2024     // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as
2025     // these parameters will affect QP selection for subsequent frames. If they
2026     // have settled down to a very different (low QP) state, then not adjusting
2027     // them may cause next frame to select low QP and overshoot again.
2028     cpi->rc.avg_frame_qindex[INTER_FRAME] = *q;
2029     rc->buffer_level = rc->optimal_buffer_level;
2030     rc->bits_off_target = rc->optimal_buffer_level;
2031     // Reset rate under/over-shoot flags.
2032     cpi->rc.rc_1_frame = 0;
2033     cpi->rc.rc_2_frame = 0;
2034     // Adjust rate correction factor.
2035     target_bits_per_mb = ((uint64_t)target_size << BPER_MB_NORMBITS) / cm->MBs;
2036     // Rate correction factor based on target_bits_per_mb and qp (==max_QP).
2037     // This comes from the inverse computation of vp9_rc_bits_per_mb().
2038     q2 = vp9_convert_qindex_to_q(*q, cm->bit_depth);
2039     enumerator = 1800000;  // Factor for inter frame.
2040     enumerator += (int)(enumerator * q2) >> 12;
2041     new_correction_factor = (double)target_bits_per_mb * q2 / enumerator;
2042     if (new_correction_factor > rate_correction_factor) {
2043       rate_correction_factor =
2044           VPXMIN(2.0 * rate_correction_factor, new_correction_factor);
2045       if (rate_correction_factor > MAX_BPB_FACTOR)
2046         rate_correction_factor = MAX_BPB_FACTOR;
2047       cpi->rc.rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
2048     }
2049     // For temporal layers, reset the rate control parametes across all
2050     // temporal layers.
2051     if (cpi->use_svc) {
2052       int i = 0;
2053       SVC *svc = &cpi->svc;
2054       for (i = 0; i < svc->number_temporal_layers; ++i) {
2055         const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
2056                                            svc->number_temporal_layers);
2057         LAYER_CONTEXT *lc = &svc->layer_context[layer];
2058         RATE_CONTROL *lrc = &lc->rc;
2059         lrc->avg_frame_qindex[INTER_FRAME] = *q;
2060         lrc->buffer_level = rc->optimal_buffer_level;
2061         lrc->bits_off_target = rc->optimal_buffer_level;
2062         lrc->rc_1_frame = 0;
2063         lrc->rc_2_frame = 0;
2064         lrc->rate_correction_factors[INTER_NORMAL] =
2065             rate_correction_factor;
2066       }
2067     }
2068     return 1;
2069   } else {
2070     return 0;
2071   }
2072 }
2073