1 /*
2 * Copyright 2012 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkBitmapProcState_opts_SSSE3.h"
9 #include "SkColorPriv.h"
10 #include "SkPaint.h"
11 #include "SkUtils.h"
12
13 /* With the exception of the compilers that don't support it, we always build the
14 * SSSE3 functions and enable the caller to determine SSSE3 support. However for
15 * compilers that do not support SSSE3 we provide a stub implementation.
16 */
17 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
18
19 #include <tmmintrin.h> // SSSE3
20
21 // adding anonymous namespace seemed to force gcc to inline directly the
22 // instantiation, instead of creating the functions
23 // S32_generic_D32_filter_DX_SSSE3<true> and
24 // S32_generic_D32_filter_DX_SSSE3<false> which were then called by the
25 // external functions.
26 namespace {
27 // In this file, variations for alpha and non alpha versions are implemented
28 // with a template, as it makes the code more compact and a bit easier to
29 // maintain, while making the compiler generate the same exact code as with
30 // two functions that only differ by a few lines.
31
32
33 // Prepare all necessary constants for a round of processing for two pixel
34 // pairs.
35 // @param xy is the location where the xy parameters for four pixels should be
36 // read from. It is identical in concept with argument two of
37 // S32_{opaque}_D32_filter_DX methods.
38 // @param mask_3FFF vector of 32 bit constants containing 3FFF,
39 // suitable to mask the bottom 14 bits of a XY value.
40 // @param mask_000F vector of 32 bit constants containing 000F,
41 // suitable to mask the bottom 4 bits of a XY value.
42 // @param sixteen_8bit vector of 8 bit components containing the value 16.
43 // @param mask_dist_select vector of 8 bit components containing the shuffling
44 // parameters to reorder x[0-3] parameters.
45 // @param all_x_result vector of 8 bit components that will contain the
46 // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return.
47 // @param sixteen_minus_x vector of 8 bit components, containing
48 // (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0))
PrepareConstantsTwoPixelPairs(const uint32_t * xy,const __m128i & mask_3FFF,const __m128i & mask_000F,const __m128i & sixteen_8bit,const __m128i & mask_dist_select,__m128i * all_x_result,__m128i * sixteen_minus_x,int * x0,int * x1)49 inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy,
50 const __m128i& mask_3FFF,
51 const __m128i& mask_000F,
52 const __m128i& sixteen_8bit,
53 const __m128i& mask_dist_select,
54 __m128i* all_x_result,
55 __m128i* sixteen_minus_x,
56 int* x0,
57 int* x1) {
58 const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
59
60 // 4 delta X
61 // (x03, x02, x01, x00)
62 const __m128i x0_wide = _mm_srli_epi32(xx, 18);
63 // (x13, x12, x11, x10)
64 const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF);
65
66 _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide);
67 _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide);
68
69 __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F);
70
71 // (4x(x3), 4x(x2), 4x(x1), 4x(x0))
72 all_x = _mm_shuffle_epi8(all_x, mask_dist_select);
73
74 *all_x_result = all_x;
75 // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0))
76 *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x);
77 }
78
79 // Prepare all necessary constants for a round of processing for two pixel
80 // pairs.
81 // @param xy is the location where the xy parameters for four pixels should be
82 // read from. It is identical in concept with argument two of
83 // S32_{opaque}_D32_filter_DXDY methods.
84 // @param mask_3FFF vector of 32 bit constants containing 3FFF,
85 // suitable to mask the bottom 14 bits of a XY value.
86 // @param mask_000F vector of 32 bit constants containing 000F,
87 // suitable to mask the bottom 4 bits of a XY value.
88 // @param sixteen_8bit vector of 8 bit components containing the value 16.
89 // @param mask_dist_select vector of 8 bit components containing the shuffling
90 // parameters to reorder x[0-3] parameters.
91 // @param all_xy_result vector of 8 bit components that will contain the
92 // (4x(y1), 4x(y0), 4x(x1), 4x(x0)) upon return.
93 // @param sixteen_minus_x vector of 8 bit components, containing
94 // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)).
PrepareConstantsTwoPixelPairsDXDY(const uint32_t * xy,const __m128i & mask_3FFF,const __m128i & mask_000F,const __m128i & sixteen_8bit,const __m128i & mask_dist_select,__m128i * all_xy_result,__m128i * sixteen_minus_xy,int * xy0,int * xy1)95 inline void PrepareConstantsTwoPixelPairsDXDY(const uint32_t* xy,
96 const __m128i& mask_3FFF,
97 const __m128i& mask_000F,
98 const __m128i& sixteen_8bit,
99 const __m128i& mask_dist_select,
100 __m128i* all_xy_result,
101 __m128i* sixteen_minus_xy,
102 int* xy0, int* xy1) {
103 const __m128i xy_wide =
104 _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
105
106 // (x10, y10, x00, y00)
107 __m128i xy0_wide = _mm_srli_epi32(xy_wide, 18);
108 // (y10, y00, x10, x00)
109 xy0_wide = _mm_shuffle_epi32(xy0_wide, _MM_SHUFFLE(2, 0, 3, 1));
110 // (x11, y11, x01, y01)
111 __m128i xy1_wide = _mm_and_si128(xy_wide, mask_3FFF);
112 // (y11, y01, x11, x01)
113 xy1_wide = _mm_shuffle_epi32(xy1_wide, _MM_SHUFFLE(2, 0, 3, 1));
114
115 _mm_storeu_si128(reinterpret_cast<__m128i *>(xy0), xy0_wide);
116 _mm_storeu_si128(reinterpret_cast<__m128i *>(xy1), xy1_wide);
117
118 // (x1, y1, x0, y0)
119 __m128i all_xy = _mm_and_si128(_mm_srli_epi32(xy_wide, 14), mask_000F);
120 // (y1, y0, x1, x0)
121 all_xy = _mm_shuffle_epi32(all_xy, _MM_SHUFFLE(2, 0, 3, 1));
122 // (4x(y1), 4x(y0), 4x(x1), 4x(x0))
123 all_xy = _mm_shuffle_epi8(all_xy, mask_dist_select);
124
125 *all_xy_result = all_xy;
126 // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0))
127 *sixteen_minus_xy = _mm_sub_epi8(sixteen_8bit, all_xy);
128 }
129
130 // Helper function used when processing one pixel pair.
131 // @param pixel0..3 are the four input pixels
132 // @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This
133 // will contain (4x(x1, 16-x1), 4x(x0, 16-x0))
134 // or (4x(x3, 16-x3), 4x(x2, 16-x2))
135 // @return a vector of 16 bit components containing:
136 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
ProcessPixelPairHelper(uint32_t pixel0,uint32_t pixel1,uint32_t pixel2,uint32_t pixel3,const __m128i & scale_x)137 inline __m128i ProcessPixelPairHelper(uint32_t pixel0,
138 uint32_t pixel1,
139 uint32_t pixel2,
140 uint32_t pixel3,
141 const __m128i& scale_x) {
142 __m128i a0, a1, a2, a3;
143 // Load 2 pairs of pixels
144 a0 = _mm_cvtsi32_si128(pixel0);
145 a1 = _mm_cvtsi32_si128(pixel1);
146
147 // Interleave pixels.
148 // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
149 a0 = _mm_unpacklo_epi8(a0, a1);
150
151 a2 = _mm_cvtsi32_si128(pixel2);
152 a3 = _mm_cvtsi32_si128(pixel3);
153 // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2)
154 a2 = _mm_unpacklo_epi8(a2, a3);
155
156 // two pairs of pixel pairs, interleaved.
157 // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2,
158 // Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
159 a0 = _mm_unpacklo_epi64(a0, a2);
160
161 // multiply and sum to 16 bit components.
162 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
163 // At that point, we use up a bit less than 12 bits for each 16 bit
164 // component:
165 // All components are less than 255. So,
166 // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16.
167 return _mm_maddubs_epi16(a0, scale_x);
168 }
169
170 // Scale back the results after multiplications to the [0:255] range, and scale
171 // by alpha when has_alpha is true.
172 // Depending on whether one set or two sets of multiplications had been applied,
173 // the results have to be shifted by four places (dividing by 16), or shifted
174 // by eight places (dividing by 256), since each multiplication is by a quantity
175 // in the range [0:16].
176 template<bool has_alpha, int scale>
ScaleFourPixels(__m128i * pixels,const __m128i & alpha)177 inline __m128i ScaleFourPixels(__m128i* pixels,
178 const __m128i& alpha) {
179 // Divide each 16 bit component by 16 (or 256 depending on scale).
180 *pixels = _mm_srli_epi16(*pixels, scale);
181
182 if (has_alpha) {
183 // Multiply by alpha.
184 *pixels = _mm_mullo_epi16(*pixels, alpha);
185
186 // Divide each 16 bit component by 256.
187 *pixels = _mm_srli_epi16(*pixels, 8);
188 }
189 return *pixels;
190 }
191
192 // Wrapper to calculate two output pixels from four input pixels. The
193 // arguments are the same as ProcessPixelPairHelper. Technically, there are
194 // eight input pixels, but since sub_y == 0, the factors applied to half of the
195 // pixels is zero (sub_y), and are therefore omitted here to save on some
196 // processing.
197 // @param alpha when has_alpha is true, scale all resulting components by this
198 // value.
199 // @return a vector of 16 bit components containing:
200 // ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ...,
201 // (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true)
202 // otherwise
203 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
204 // In both cases, the results are renormalized (divided by 16) to match the
205 // expected formats when storing back the results into memory.
206 template<bool has_alpha>
ProcessPixelPairZeroSubY(uint32_t pixel0,uint32_t pixel1,uint32_t pixel2,uint32_t pixel3,const __m128i & scale_x,const __m128i & alpha)207 inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0,
208 uint32_t pixel1,
209 uint32_t pixel2,
210 uint32_t pixel3,
211 const __m128i& scale_x,
212 const __m128i& alpha) {
213 __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
214 scale_x);
215 return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
216 }
217
218 // Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a
219 // time instead of two. As in the above function, only two pixels are needed
220 // to generate a single pixel since sub_y == 0.
221 // @return same as ProcessPixelPairZeroSubY, except that only the bottom 4
222 // 16 bit components are set.
223 template<bool has_alpha>
ProcessOnePixelZeroSubY(uint32_t pixel0,uint32_t pixel1,__m128i scale_x,__m128i alpha)224 inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0,
225 uint32_t pixel1,
226 __m128i scale_x,
227 __m128i alpha) {
228 __m128i a0 = _mm_cvtsi32_si128(pixel0);
229 __m128i a1 = _mm_cvtsi32_si128(pixel1);
230
231 // Interleave
232 a0 = _mm_unpacklo_epi8(a0, a1);
233
234 // (a0 * (16-x) + a1 * x)
235 __m128i sum = _mm_maddubs_epi16(a0, scale_x);
236
237 return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
238 }
239
240 // Methods when sub_y != 0
241
242
243 // Same as ProcessPixelPairHelper, except that the values are scaled by y.
244 // @param y vector of 16 bit components containing 'y' values. There are two
245 // cases in practice, where y will contain the sub_y constant, or will
246 // contain the 16 - sub_y constant.
247 // @return vector of 16 bit components containing:
248 // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0))
ProcessPixelPair(uint32_t pixel0,uint32_t pixel1,uint32_t pixel2,uint32_t pixel3,const __m128i & scale_x,const __m128i & y)249 inline __m128i ProcessPixelPair(uint32_t pixel0,
250 uint32_t pixel1,
251 uint32_t pixel2,
252 uint32_t pixel3,
253 const __m128i& scale_x,
254 const __m128i& y) {
255 __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
256 scale_x);
257
258 // first row times 16-y or y depending on whether 'y' represents one or
259 // the other.
260 // Values will be up to 255 * 16 * 16 = 65280.
261 // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... ,
262 // y * (Ra0 * (16 - x0) + Ra1 * x0))
263 sum = _mm_mullo_epi16(sum, y);
264
265 return sum;
266 }
267
268 // Process two pixel pairs out of eight input pixels.
269 // In other methods, the distinct pixels are passed one by one, but in this
270 // case, the rows, and index offsets to the pixels into the row are passed
271 // to generate the 8 pixels.
272 // @param row0..1 top and bottom row where to find input pixels.
273 // @param x0..1 offsets into the row for all eight input pixels.
274 // @param all_y vector of 16 bit components containing the constant sub_y
275 // @param neg_y vector of 16 bit components containing the constant 16 - sub_y
276 // @param alpha vector of 16 bit components containing the alpha value to scale
277 // the results by, when has_alpha is true.
278 // @return
279 // (alpha * ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
280 // y * (Aa2' * (16-x1) + Aa3' * x1)),
281 // ...
282 // alpha * ((16-y) * (Ra0 * (16-x0) + Ra1 * x0) +
283 // y * (Ra0' * (16-x0) + Ra1' * x0))
284 // With the factor alpha removed when has_alpha is false.
285 // The values are scaled back to 16 bit components, but with only the bottom
286 // 8 bits being set.
287 template<bool has_alpha>
ProcessTwoPixelPairs(const uint32_t * row0,const uint32_t * row1,const int * x0,const int * x1,const __m128i & scale_x,const __m128i & all_y,const __m128i & neg_y,const __m128i & alpha)288 inline __m128i ProcessTwoPixelPairs(const uint32_t* row0,
289 const uint32_t* row1,
290 const int* x0,
291 const int* x1,
292 const __m128i& scale_x,
293 const __m128i& all_y,
294 const __m128i& neg_y,
295 const __m128i& alpha) {
296 __m128i sum0 = ProcessPixelPair(
297 row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
298 scale_x, neg_y);
299 __m128i sum1 = ProcessPixelPair(
300 row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]],
301 scale_x, all_y);
302
303 // 2 samples fully summed.
304 // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
305 // y * (Aa2' * (16-x1) + Aa3' * x1),
306 // ...
307 // (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) +
308 // y * (Ra0' * (16-x0) + Ra1' * x0))
309 // Each component, again can be at most 256 * 255 = 65280, so no overflow.
310 sum0 = _mm_add_epi16(sum0, sum1);
311
312 return ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
313 }
314
315 // Similar to ProcessTwoPixelPairs except the pixel indexes.
316 template<bool has_alpha>
ProcessTwoPixelPairsDXDY(const uint32_t * row00,const uint32_t * row01,const uint32_t * row10,const uint32_t * row11,const int * xy0,const int * xy1,const __m128i & scale_x,const __m128i & all_y,const __m128i & neg_y,const __m128i & alpha)317 inline __m128i ProcessTwoPixelPairsDXDY(const uint32_t* row00,
318 const uint32_t* row01,
319 const uint32_t* row10,
320 const uint32_t* row11,
321 const int* xy0,
322 const int* xy1,
323 const __m128i& scale_x,
324 const __m128i& all_y,
325 const __m128i& neg_y,
326 const __m128i& alpha) {
327 // first row
328 __m128i sum0 = ProcessPixelPair(
329 row00[xy0[0]], row00[xy1[0]], row10[xy0[1]], row10[xy1[1]],
330 scale_x, neg_y);
331 // second row
332 __m128i sum1 = ProcessPixelPair(
333 row01[xy0[0]], row01[xy1[0]], row11[xy0[1]], row11[xy1[1]],
334 scale_x, all_y);
335
336 // 2 samples fully summed.
337 // ((16-y1) * (Aa2 * (16-x1) + Aa3 * x1) +
338 // y0 * (Aa2' * (16-x1) + Aa3' * x1),
339 // ...
340 // (16-y0) * (Ra0 * (16 - x0) + Ra1 * x0)) +
341 // y0 * (Ra0' * (16-x0) + Ra1' * x0))
342 // Each component, again can be at most 256 * 255 = 65280, so no overflow.
343 sum0 = _mm_add_epi16(sum0, sum1);
344
345 return ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
346 }
347
348
349 // Same as ProcessPixelPair, except that performing the math one output pixel
350 // at a time. This means that only the bottom four 16 bit components are set.
ProcessOnePixel(uint32_t pixel0,uint32_t pixel1,const __m128i & scale_x,const __m128i & y)351 inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1,
352 const __m128i& scale_x, const __m128i& y) {
353 __m128i a0 = _mm_cvtsi32_si128(pixel0);
354 __m128i a1 = _mm_cvtsi32_si128(pixel1);
355
356 // Interleave
357 // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
358 a0 = _mm_unpacklo_epi8(a0, a1);
359
360 // (a0 * (16-x) + a1 * x)
361 a0 = _mm_maddubs_epi16(a0, scale_x);
362
363 // scale row by y
364 return _mm_mullo_epi16(a0, y);
365 }
366
367 // Notes about the various tricks that are used in this implementation:
368 // - specialization for sub_y == 0.
369 // Statistically, 1/16th of the samples will have sub_y == 0. When this
370 // happens, the math goes from:
371 // (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11
372 // to:
373 // (16 - x)*a00 + 16*x*a01
374 // much simpler. The simplification makes for an easy boost in performance.
375 // - calculating 4 output pixels at a time.
376 // This allows loading the coefficients x0 and x1 and shuffling them to the
377 // optimum location only once per loop, instead of twice per loop.
378 // This also allows us to store the four pixels with a single store.
379 // - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction
380 // version):
381 // _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded
382 // in 32 bit values to 8 bit values repeated four times.
383 // _mm_maddubs_epi16 : this allows us to perform multiplications and additions
384 // in one swoop of 8bit values storing the results in 16 bit values. This
385 // instruction is actually crucial for the speed of the implementation since
386 // as one can see in the SSE2 implementation, all inputs have to be used as
387 // 16 bits because the results are 16 bits. This basically allows us to process
388 // twice as many pixel components per iteration.
389 //
390 // As a result, this method behaves faster than the traditional SSE2. The actual
391 // boost varies greatly on the underlying architecture.
392 template<bool has_alpha>
S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)393 void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
394 const uint32_t* xy,
395 int count, uint32_t* colors) {
396 SkASSERT(count > 0 && colors != nullptr);
397 SkASSERT(s.fFilterLevel != kNone_SkFilterQuality);
398 SkASSERT(kN32_SkColorType == s.fPixmap.colorType());
399 if (has_alpha) {
400 SkASSERT(s.fAlphaScale < 256);
401 } else {
402 SkASSERT(s.fAlphaScale == 256);
403 }
404
405 const uint8_t* src_addr =
406 static_cast<const uint8_t*>(s.fPixmap.addr());
407 const size_t rb = s.fPixmap.rowBytes();
408 const uint32_t XY = *xy++;
409 const unsigned y0 = XY >> 14;
410 const uint32_t* row0 =
411 reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb);
412 const uint32_t* row1 =
413 reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb);
414 const unsigned sub_y = y0 & 0xF;
415
416 // vector constants
417 const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
418 8, 8, 8, 8,
419 4, 4, 4, 4,
420 0, 0, 0, 0);
421 const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
422 const __m128i mask_000F = _mm_set1_epi32(0x000F);
423 const __m128i sixteen_8bit = _mm_set1_epi8(16);
424 // (0, 0, 0, 0, 0, 0, 0, 0)
425 const __m128i zero = _mm_setzero_si128();
426
427 __m128i alpha = _mm_setzero_si128();
428 if (has_alpha) {
429 // 8x(alpha)
430 alpha = _mm_set1_epi16(s.fAlphaScale);
431 }
432
433 if (sub_y == 0) {
434 // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
435 while (count > 3) {
436 count -= 4;
437
438 int x0[4];
439 int x1[4];
440 __m128i all_x, sixteen_minus_x;
441 PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
442 sixteen_8bit, mask_dist_select,
443 &all_x, &sixteen_minus_x, x0, x1);
444 xy += 4;
445
446 // First pair of pixel pairs.
447 // (4x(x1, 16-x1), 4x(x0, 16-x0))
448 __m128i scale_x;
449 scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
450
451 __m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>(
452 row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
453 scale_x, alpha);
454
455 // second pair of pixel pairs
456 // (4x (x3, 16-x3), 4x (16-x2, x2))
457 scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
458
459 __m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>(
460 row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]],
461 scale_x, alpha);
462
463 // Pack lower 4 16 bit values of sum into lower 4 bytes.
464 sum0 = _mm_packus_epi16(sum0, sum1);
465
466 // Extract low int and store.
467 _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
468
469 colors += 4;
470 }
471
472 // handle remainder
473 while (count-- > 0) {
474 uint32_t xx = *xy++; // x0:14 | 4 | x1:14
475 unsigned x0 = xx >> 18;
476 unsigned x1 = xx & 0x3FFF;
477
478 // 16x(x)
479 const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
480
481 // (16x(16-x))
482 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
483
484 scale_x = _mm_unpacklo_epi8(scale_x, all_x);
485
486 __m128i sum = ProcessOnePixelZeroSubY<has_alpha>(
487 row0[x0], row0[x1],
488 scale_x, alpha);
489
490 // Pack lower 4 16 bit values of sum into lower 4 bytes.
491 sum = _mm_packus_epi16(sum, zero);
492
493 // Extract low int and store.
494 *colors++ = _mm_cvtsi128_si32(sum);
495 }
496 } else { // more general case, y != 0
497 // 8x(16)
498 const __m128i sixteen_16bit = _mm_set1_epi16(16);
499
500 // 8x (y)
501 const __m128i all_y = _mm_set1_epi16(sub_y);
502
503 // 8x (16-y)
504 const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
505
506 // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
507 while (count > 3) {
508 count -= 4;
509
510 int x0[4];
511 int x1[4];
512 __m128i all_x, sixteen_minus_x;
513 PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
514 sixteen_8bit, mask_dist_select,
515 &all_x, &sixteen_minus_x, x0, x1);
516 xy += 4;
517
518 // First pair of pixel pairs
519 // (4x(x1, 16-x1), 4x(x0, 16-x0))
520 __m128i scale_x;
521 scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
522
523 __m128i sum0 = ProcessTwoPixelPairs<has_alpha>(
524 row0, row1, x0, x1,
525 scale_x, all_y, neg_y, alpha);
526
527 // second pair of pixel pairs
528 // (4x (x3, 16-x3), 4x (16-x2, x2))
529 scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
530
531 __m128i sum1 = ProcessTwoPixelPairs<has_alpha>(
532 row0, row1, x0 + 2, x1 + 2,
533 scale_x, all_y, neg_y, alpha);
534
535 // Do the final packing of the two results
536
537 // Pack lower 4 16 bit values of sum into lower 4 bytes.
538 sum0 = _mm_packus_epi16(sum0, sum1);
539
540 // Extract low int and store.
541 _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
542
543 colors += 4;
544 }
545
546 // Left over.
547 while (count-- > 0) {
548 const uint32_t xx = *xy++; // x0:14 | 4 | x1:14
549 const unsigned x0 = xx >> 18;
550 const unsigned x1 = xx & 0x3FFF;
551
552 // 16x(x)
553 const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
554
555 // 16x (16-x)
556 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
557
558 // (8x (x, 16-x))
559 scale_x = _mm_unpacklo_epi8(scale_x, all_x);
560
561 // first row.
562 __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
563 // second row.
564 __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
565
566 // Add both rows for full sample
567 sum0 = _mm_add_epi16(sum0, sum1);
568
569 sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
570
571 // Pack lower 4 16 bit values of sum into lower 4 bytes.
572 sum0 = _mm_packus_epi16(sum0, zero);
573
574 // Extract low int and store.
575 *colors++ = _mm_cvtsi128_si32(sum0);
576 }
577 }
578 }
579
580 /*
581 * Similar to S32_generic_D32_filter_DX_SSSE3, we do not need to handle the
582 * special case suby == 0 as suby is changing in every loop.
583 */
584 template<bool has_alpha>
S32_generic_D32_filter_DXDY_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)585 void S32_generic_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
586 const uint32_t* xy,
587 int count, uint32_t* colors) {
588 SkASSERT(count > 0 && colors != nullptr);
589 SkASSERT(s.fFilterLevel != kNone_SkFilterQuality);
590 SkASSERT(kN32_SkColorType == s.fPixmap.colorType());
591 if (has_alpha) {
592 SkASSERT(s.fAlphaScale < 256);
593 } else {
594 SkASSERT(s.fAlphaScale == 256);
595 }
596
597 const uint8_t* src_addr =
598 static_cast<const uint8_t*>(s.fPixmap.addr());
599 const size_t rb = s.fPixmap.rowBytes();
600
601 // vector constants
602 const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
603 8, 8, 8, 8,
604 4, 4, 4, 4,
605 0, 0, 0, 0);
606 const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
607 const __m128i mask_000F = _mm_set1_epi32(0x000F);
608 const __m128i sixteen_8bit = _mm_set1_epi8(16);
609
610 __m128i alpha;
611 if (has_alpha) {
612 // 8x(alpha)
613 alpha = _mm_set1_epi16(s.fAlphaScale);
614 }
615
616 // Unroll 2x, interleave bytes, use pmaddubsw (all_x is small)
617 while (count >= 2) {
618 int xy0[4];
619 int xy1[4];
620 __m128i all_xy, sixteen_minus_xy;
621 PrepareConstantsTwoPixelPairsDXDY(xy, mask_3FFF, mask_000F,
622 sixteen_8bit, mask_dist_select,
623 &all_xy, &sixteen_minus_xy, xy0, xy1);
624
625 // (4x(x1, 16-x1), 4x(x0, 16-x0))
626 __m128i scale_x = _mm_unpacklo_epi8(sixteen_minus_xy, all_xy);
627 // (4x(0, y1), 4x(0, y0))
628 __m128i all_y = _mm_unpackhi_epi8(all_xy, _mm_setzero_si128());
629 __m128i neg_y = _mm_sub_epi16(_mm_set1_epi16(16), all_y);
630
631 const uint32_t* row00 =
632 reinterpret_cast<const uint32_t*>(src_addr + xy0[2] * rb);
633 const uint32_t* row01 =
634 reinterpret_cast<const uint32_t*>(src_addr + xy1[2] * rb);
635 const uint32_t* row10 =
636 reinterpret_cast<const uint32_t*>(src_addr + xy0[3] * rb);
637 const uint32_t* row11 =
638 reinterpret_cast<const uint32_t*>(src_addr + xy1[3] * rb);
639
640 __m128i sum0 = ProcessTwoPixelPairsDXDY<has_alpha>(
641 row00, row01, row10, row11, xy0, xy1,
642 scale_x, all_y, neg_y, alpha);
643
644 // Pack lower 4 16 bit values of sum into lower 4 bytes.
645 sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128());
646
647 // Extract low int and store.
648 _mm_storel_epi64(reinterpret_cast<__m128i *>(colors), sum0);
649
650 xy += 4;
651 colors += 2;
652 count -= 2;
653 }
654
655 // Handle the remainder
656 while (count-- > 0) {
657 uint32_t data = *xy++;
658 unsigned y0 = data >> 14;
659 unsigned y1 = data & 0x3FFF;
660 unsigned subY = y0 & 0xF;
661 y0 >>= 4;
662
663 data = *xy++;
664 unsigned x0 = data >> 14;
665 unsigned x1 = data & 0x3FFF;
666 unsigned subX = x0 & 0xF;
667 x0 >>= 4;
668
669 const uint32_t* row0 =
670 reinterpret_cast<const uint32_t*>(src_addr + y0 * rb);
671 const uint32_t* row1 =
672 reinterpret_cast<const uint32_t*>(src_addr + y1 * rb);
673
674 // 16x(x)
675 const __m128i all_x = _mm_set1_epi8(subX);
676
677 // 16x (16-x)
678 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
679
680 // (8x (x, 16-x))
681 scale_x = _mm_unpacklo_epi8(scale_x, all_x);
682
683 // 8x(16)
684 const __m128i sixteen_16bit = _mm_set1_epi16(16);
685
686 // 8x (y)
687 const __m128i all_y = _mm_set1_epi16(subY);
688
689 // 8x (16-y)
690 const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
691
692 // first row.
693 __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
694 // second row.
695 __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
696
697 // Add both rows for full sample
698 sum0 = _mm_add_epi16(sum0, sum1);
699
700 sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
701
702 // Pack lower 4 16 bit values of sum into lower 4 bytes.
703 sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128());
704
705 // Extract low int and store.
706 *colors++ = _mm_cvtsi128_si32(sum0);
707 }
708 }
709 } // namespace
710
S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)711 void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
712 const uint32_t* xy,
713 int count, uint32_t* colors) {
714 S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors);
715 }
716
S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)717 void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
718 const uint32_t* xy,
719 int count, uint32_t* colors) {
720 S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors);
721 }
722
S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)723 void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
724 const uint32_t* xy,
725 int count, uint32_t* colors) {
726 S32_generic_D32_filter_DXDY_SSSE3<false>(s, xy, count, colors);
727 }
728
S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)729 void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
730 const uint32_t* xy,
731 int count, uint32_t* colors) {
732 S32_generic_D32_filter_DXDY_SSSE3<true>(s, xy, count, colors);
733 }
734
735 #else // SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
736
S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)737 void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
738 const uint32_t* xy,
739 int count, uint32_t* colors) {
740 sk_throw();
741 }
742
S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)743 void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
744 const uint32_t* xy,
745 int count, uint32_t* colors) {
746 sk_throw();
747 }
748
S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)749 void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
750 const uint32_t* xy,
751 int count, uint32_t* colors) {
752 sk_throw();
753 }
754
S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)755 void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
756 const uint32_t* xy,
757 int count, uint32_t* colors) {
758 sk_throw();
759 }
760
761 #endif
762