1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stdint.h>
6
7 #include <cmath>
8
9 #include "src/base/logging.h"
10 #include "src/utils.h"
11
12 #include "src/double.h"
13 #include "src/fixed-dtoa.h"
14
15 namespace v8 {
16 namespace internal {
17
18 // Represents a 128bit type. This class should be replaced by a native type on
19 // platforms that support 128bit integers.
20 class UInt128 {
21 public:
UInt128()22 UInt128() : high_bits_(0), low_bits_(0) { }
UInt128(uint64_t high,uint64_t low)23 UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
24
Multiply(uint32_t multiplicand)25 void Multiply(uint32_t multiplicand) {
26 uint64_t accumulator;
27
28 accumulator = (low_bits_ & kMask32) * multiplicand;
29 uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
30 accumulator >>= 32;
31 accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
32 low_bits_ = (accumulator << 32) + part;
33 accumulator >>= 32;
34 accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
35 part = static_cast<uint32_t>(accumulator & kMask32);
36 accumulator >>= 32;
37 accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
38 high_bits_ = (accumulator << 32) + part;
39 DCHECK((accumulator >> 32) == 0);
40 }
41
Shift(int shift_amount)42 void Shift(int shift_amount) {
43 DCHECK(-64 <= shift_amount && shift_amount <= 64);
44 if (shift_amount == 0) {
45 return;
46 } else if (shift_amount == -64) {
47 high_bits_ = low_bits_;
48 low_bits_ = 0;
49 } else if (shift_amount == 64) {
50 low_bits_ = high_bits_;
51 high_bits_ = 0;
52 } else if (shift_amount <= 0) {
53 high_bits_ <<= -shift_amount;
54 high_bits_ += low_bits_ >> (64 + shift_amount);
55 low_bits_ <<= -shift_amount;
56 } else {
57 low_bits_ >>= shift_amount;
58 low_bits_ += high_bits_ << (64 - shift_amount);
59 high_bits_ >>= shift_amount;
60 }
61 }
62
63 // Modifies *this to *this MOD (2^power).
64 // Returns *this DIV (2^power).
DivModPowerOf2(int power)65 int DivModPowerOf2(int power) {
66 if (power >= 64) {
67 int result = static_cast<int>(high_bits_ >> (power - 64));
68 high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
69 return result;
70 } else {
71 uint64_t part_low = low_bits_ >> power;
72 uint64_t part_high = high_bits_ << (64 - power);
73 int result = static_cast<int>(part_low + part_high);
74 high_bits_ = 0;
75 low_bits_ -= part_low << power;
76 return result;
77 }
78 }
79
IsZero() const80 bool IsZero() const {
81 return high_bits_ == 0 && low_bits_ == 0;
82 }
83
BitAt(int position)84 int BitAt(int position) {
85 if (position >= 64) {
86 return static_cast<int>(high_bits_ >> (position - 64)) & 1;
87 } else {
88 return static_cast<int>(low_bits_ >> position) & 1;
89 }
90 }
91
92 private:
93 static const uint64_t kMask32 = 0xFFFFFFFF;
94 // Value == (high_bits_ << 64) + low_bits_
95 uint64_t high_bits_;
96 uint64_t low_bits_;
97 };
98
99
100 static const int kDoubleSignificandSize = 53; // Includes the hidden bit.
101
102
FillDigits32FixedLength(uint32_t number,int requested_length,Vector<char> buffer,int * length)103 static void FillDigits32FixedLength(uint32_t number, int requested_length,
104 Vector<char> buffer, int* length) {
105 for (int i = requested_length - 1; i >= 0; --i) {
106 buffer[(*length) + i] = '0' + number % 10;
107 number /= 10;
108 }
109 *length += requested_length;
110 }
111
112
FillDigits32(uint32_t number,Vector<char> buffer,int * length)113 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
114 int number_length = 0;
115 // We fill the digits in reverse order and exchange them afterwards.
116 while (number != 0) {
117 int digit = number % 10;
118 number /= 10;
119 buffer[(*length) + number_length] = '0' + digit;
120 number_length++;
121 }
122 // Exchange the digits.
123 int i = *length;
124 int j = *length + number_length - 1;
125 while (i < j) {
126 char tmp = buffer[i];
127 buffer[i] = buffer[j];
128 buffer[j] = tmp;
129 i++;
130 j--;
131 }
132 *length += number_length;
133 }
134
135
FillDigits64FixedLength(uint64_t number,int requested_length,Vector<char> buffer,int * length)136 static void FillDigits64FixedLength(uint64_t number, int requested_length,
137 Vector<char> buffer, int* length) {
138 const uint32_t kTen7 = 10000000;
139 // For efficiency cut the number into 3 uint32_t parts, and print those.
140 uint32_t part2 = static_cast<uint32_t>(number % kTen7);
141 number /= kTen7;
142 uint32_t part1 = static_cast<uint32_t>(number % kTen7);
143 uint32_t part0 = static_cast<uint32_t>(number / kTen7);
144
145 FillDigits32FixedLength(part0, 3, buffer, length);
146 FillDigits32FixedLength(part1, 7, buffer, length);
147 FillDigits32FixedLength(part2, 7, buffer, length);
148 }
149
150
FillDigits64(uint64_t number,Vector<char> buffer,int * length)151 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
152 const uint32_t kTen7 = 10000000;
153 // For efficiency cut the number into 3 uint32_t parts, and print those.
154 uint32_t part2 = static_cast<uint32_t>(number % kTen7);
155 number /= kTen7;
156 uint32_t part1 = static_cast<uint32_t>(number % kTen7);
157 uint32_t part0 = static_cast<uint32_t>(number / kTen7);
158
159 if (part0 != 0) {
160 FillDigits32(part0, buffer, length);
161 FillDigits32FixedLength(part1, 7, buffer, length);
162 FillDigits32FixedLength(part2, 7, buffer, length);
163 } else if (part1 != 0) {
164 FillDigits32(part1, buffer, length);
165 FillDigits32FixedLength(part2, 7, buffer, length);
166 } else {
167 FillDigits32(part2, buffer, length);
168 }
169 }
170
171
RoundUp(Vector<char> buffer,int * length,int * decimal_point)172 static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
173 // An empty buffer represents 0.
174 if (*length == 0) {
175 buffer[0] = '1';
176 *decimal_point = 1;
177 *length = 1;
178 return;
179 }
180 // Round the last digit until we either have a digit that was not '9' or until
181 // we reached the first digit.
182 buffer[(*length) - 1]++;
183 for (int i = (*length) - 1; i > 0; --i) {
184 if (buffer[i] != '0' + 10) {
185 return;
186 }
187 buffer[i] = '0';
188 buffer[i - 1]++;
189 }
190 // If the first digit is now '0' + 10, we would need to set it to '0' and add
191 // a '1' in front. However we reach the first digit only if all following
192 // digits had been '9' before rounding up. Now all trailing digits are '0' and
193 // we simply switch the first digit to '1' and update the decimal-point
194 // (indicating that the point is now one digit to the right).
195 if (buffer[0] == '0' + 10) {
196 buffer[0] = '1';
197 (*decimal_point)++;
198 }
199 }
200
201
202 // The given fractionals number represents a fixed-point number with binary
203 // point at bit (-exponent).
204 // Preconditions:
205 // -128 <= exponent <= 0.
206 // 0 <= fractionals * 2^exponent < 1
207 // The buffer holds the result.
208 // The function will round its result. During the rounding-process digits not
209 // generated by this function might be updated, and the decimal-point variable
210 // might be updated. If this function generates the digits 99 and the buffer
211 // already contained "199" (thus yielding a buffer of "19999") then a
212 // rounding-up will change the contents of the buffer to "20000".
FillFractionals(uint64_t fractionals,int exponent,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)213 static void FillFractionals(uint64_t fractionals, int exponent,
214 int fractional_count, Vector<char> buffer,
215 int* length, int* decimal_point) {
216 DCHECK(-128 <= exponent && exponent <= 0);
217 // 'fractionals' is a fixed-point number, with binary point at bit
218 // (-exponent). Inside the function the non-converted remainder of fractionals
219 // is a fixed-point number, with binary point at bit 'point'.
220 if (-exponent <= 64) {
221 // One 64 bit number is sufficient.
222 DCHECK(fractionals >> 56 == 0);
223 int point = -exponent;
224 for (int i = 0; i < fractional_count; ++i) {
225 if (fractionals == 0) break;
226 // Instead of multiplying by 10 we multiply by 5 and adjust the point
227 // location. This way the fractionals variable will not overflow.
228 // Invariant at the beginning of the loop: fractionals < 2^point.
229 // Initially we have: point <= 64 and fractionals < 2^56
230 // After each iteration the point is decremented by one.
231 // Note that 5^3 = 125 < 128 = 2^7.
232 // Therefore three iterations of this loop will not overflow fractionals
233 // (even without the subtraction at the end of the loop body). At this
234 // time point will satisfy point <= 61 and therefore fractionals < 2^point
235 // and any further multiplication of fractionals by 5 will not overflow.
236 fractionals *= 5;
237 point--;
238 int digit = static_cast<int>(fractionals >> point);
239 buffer[*length] = '0' + digit;
240 (*length)++;
241 fractionals -= static_cast<uint64_t>(digit) << point;
242 }
243 // If the first bit after the point is set we have to round up.
244 if (((fractionals >> (point - 1)) & 1) == 1) {
245 RoundUp(buffer, length, decimal_point);
246 }
247 } else { // We need 128 bits.
248 DCHECK(64 < -exponent && -exponent <= 128);
249 UInt128 fractionals128 = UInt128(fractionals, 0);
250 fractionals128.Shift(-exponent - 64);
251 int point = 128;
252 for (int i = 0; i < fractional_count; ++i) {
253 if (fractionals128.IsZero()) break;
254 // As before: instead of multiplying by 10 we multiply by 5 and adjust the
255 // point location.
256 // This multiplication will not overflow for the same reasons as before.
257 fractionals128.Multiply(5);
258 point--;
259 int digit = fractionals128.DivModPowerOf2(point);
260 buffer[*length] = '0' + digit;
261 (*length)++;
262 }
263 if (fractionals128.BitAt(point - 1) == 1) {
264 RoundUp(buffer, length, decimal_point);
265 }
266 }
267 }
268
269
270 // Removes leading and trailing zeros.
271 // If leading zeros are removed then the decimal point position is adjusted.
TrimZeros(Vector<char> buffer,int * length,int * decimal_point)272 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
273 while (*length > 0 && buffer[(*length) - 1] == '0') {
274 (*length)--;
275 }
276 int first_non_zero = 0;
277 while (first_non_zero < *length && buffer[first_non_zero] == '0') {
278 first_non_zero++;
279 }
280 if (first_non_zero != 0) {
281 for (int i = first_non_zero; i < *length; ++i) {
282 buffer[i - first_non_zero] = buffer[i];
283 }
284 *length -= first_non_zero;
285 *decimal_point -= first_non_zero;
286 }
287 }
288
289
FastFixedDtoa(double v,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)290 bool FastFixedDtoa(double v,
291 int fractional_count,
292 Vector<char> buffer,
293 int* length,
294 int* decimal_point) {
295 const uint32_t kMaxUInt32 = 0xFFFFFFFF;
296 uint64_t significand = Double(v).Significand();
297 int exponent = Double(v).Exponent();
298 // v = significand * 2^exponent (with significand a 53bit integer).
299 // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
300 // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
301 // If necessary this limit could probably be increased, but we don't need
302 // more.
303 if (exponent > 20) return false;
304 if (fractional_count > 20) return false;
305 *length = 0;
306 // At most kDoubleSignificandSize bits of the significand are non-zero.
307 // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
308 // bits: 0..11*..0xxx..53*..xx
309 if (exponent + kDoubleSignificandSize > 64) {
310 // The exponent must be > 11.
311 //
312 // We know that v = significand * 2^exponent.
313 // And the exponent > 11.
314 // We simplify the task by dividing v by 10^17.
315 // The quotient delivers the first digits, and the remainder fits into a 64
316 // bit number.
317 // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
318 const uint64_t kFive17 = V8_2PART_UINT64_C(0xB1, A2BC2EC5); // 5^17
319 uint64_t divisor = kFive17;
320 int divisor_power = 17;
321 uint64_t dividend = significand;
322 uint32_t quotient;
323 uint64_t remainder;
324 // Let v = f * 2^e with f == significand and e == exponent.
325 // Then need q (quotient) and r (remainder) as follows:
326 // v = q * 10^17 + r
327 // f * 2^e = q * 10^17 + r
328 // f * 2^e = q * 5^17 * 2^17 + r
329 // If e > 17 then
330 // f * 2^(e-17) = q * 5^17 + r/2^17
331 // else
332 // f = q * 5^17 * 2^(17-e) + r/2^e
333 if (exponent > divisor_power) {
334 // We only allow exponents of up to 20 and therefore (17 - e) <= 3
335 dividend <<= exponent - divisor_power;
336 quotient = static_cast<uint32_t>(dividend / divisor);
337 remainder = (dividend % divisor) << divisor_power;
338 } else {
339 divisor <<= divisor_power - exponent;
340 quotient = static_cast<uint32_t>(dividend / divisor);
341 remainder = (dividend % divisor) << exponent;
342 }
343 FillDigits32(quotient, buffer, length);
344 FillDigits64FixedLength(remainder, divisor_power, buffer, length);
345 *decimal_point = *length;
346 } else if (exponent >= 0) {
347 // 0 <= exponent <= 11
348 significand <<= exponent;
349 FillDigits64(significand, buffer, length);
350 *decimal_point = *length;
351 } else if (exponent > -kDoubleSignificandSize) {
352 // We have to cut the number.
353 uint64_t integrals = significand >> -exponent;
354 uint64_t fractionals = significand - (integrals << -exponent);
355 if (integrals > kMaxUInt32) {
356 FillDigits64(integrals, buffer, length);
357 } else {
358 FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
359 }
360 *decimal_point = *length;
361 FillFractionals(fractionals, exponent, fractional_count,
362 buffer, length, decimal_point);
363 } else if (exponent < -128) {
364 // This configuration (with at most 20 digits) means that all digits must be
365 // 0.
366 DCHECK(fractional_count <= 20);
367 buffer[0] = '\0';
368 *length = 0;
369 *decimal_point = -fractional_count;
370 } else {
371 *decimal_point = 0;
372 FillFractionals(significand, exponent, fractional_count,
373 buffer, length, decimal_point);
374 }
375 TrimZeros(buffer, length, decimal_point);
376 buffer[*length] = '\0';
377 if ((*length) == 0) {
378 // The string is empty and the decimal_point thus has no importance. Mimick
379 // Gay's dtoa and and set it to -fractional_count.
380 *decimal_point = -fractional_count;
381 }
382 return true;
383 }
384
385 } // namespace internal
386 } // namespace v8
387