• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file was extracted from the TCG Published
2 // Trusted Platform Module Library
3 // Part 4: Supporting Routines
4 // Family "2.0"
5 // Level 00 Revision 01.16
6 // October 30, 2014
7 
8 #include <string.h>
9 
10 #include "OsslCryptoEngine.h"
11 #ifdef TPM_ALG_RSA
12 //
13 //
14 //      Local Functions
15 //
16 //      RsaPrivateExponent()
17 //
18 //     This function computes the private exponent de = 1 mod (p-1)*(q-1) The inputs are the public modulus
19 //     and one of the primes.
20 //     The results are returned in the key->private structure. The size of that structure is expanded to hold the
21 //     private exponent. If the computed value is smaller than the public modulus, the private exponent is de-
22 //     normalized.
23 //
24 //     Return Value                      Meaning
25 //
26 //     CRYPT_SUCCESS                     private exponent computed
27 //     CRYPT_PARAMETER                   prime is not half the size of the modulus, or the modulus is not evenly
28 //                                       divisible by the prime, or no private exponent could be computed
29 //                                       from the input parameters
30 //
31 CRYPT_RESULT
RsaPrivateExponent(RSA_KEY * key)32 RsaPrivateExponent(
33    RSA_KEY             *key                  // IN: the key to augment with the private
34                                              //     exponent
35    )
36 {
37    BN_CTX              *context;
38    BIGNUM              *bnD;
39    BIGNUM              *bnN;
40    BIGNUM              *bnP;
41    BIGNUM              *bnE;
42    BIGNUM              *bnPhi;
43    BIGNUM              *bnQ;
44    BIGNUM              *bnQr;
45    UINT32               fill;
46    CRYPT_RESULT         retVal = CRYPT_SUCCESS;                // Assume success
47    pAssert(key != NULL && key->privateKey != NULL && key->publicKey != NULL);
48    context = BN_CTX_new();
49    if(context == NULL)
50        FAIL(FATAL_ERROR_ALLOCATION);
51    BN_CTX_start(context);
52    bnE = BN_CTX_get(context);
53    bnD = BN_CTX_get(context);
54    bnN = BN_CTX_get(context);
55    bnP = BN_CTX_get(context);
56    bnPhi = BN_CTX_get(context);
57    bnQ = BN_CTX_get(context);
58    bnQr = BN_CTX_get(context);
59    if(bnQr == NULL)
60        FAIL(FATAL_ERROR_ALLOCATION);
61    // Assume the size of the public key value is within range
62    pAssert(key->publicKey->size <= MAX_RSA_KEY_BYTES);
63    if(   BN_bin2bn(key->publicKey->buffer, key->publicKey->size, bnN) == NULL
64       || BN_bin2bn(key->privateKey->buffer, key->privateKey->size, bnP) == NULL)
65         FAIL(FATAL_ERROR_INTERNAL);
66    // If P size is not 1/2 of n size, then this is not a valid value for this
67    // implementation. This will also catch the case were P is input as zero.
68    // This generates a return rather than an assert because the key being loaded
69    // might be SW generated and wrong.
70    if(BN_num_bits(bnP) < BN_num_bits(bnN)/2)
71    {
72        retVal = CRYPT_PARAMETER;
73        goto Cleanup;
74    }
75    // Get q = n/p;
76    if (BN_div(bnQ, bnQr, bnN, bnP, context) != 1)
77        FAIL(FATAL_ERROR_INTERNAL);
78    // If there is a remainder, then this is not a valid n
79    if(BN_num_bytes(bnQr) != 0 || BN_num_bits(bnQ) != BN_num_bits(bnP))
80    {
81        retVal = CRYPT_PARAMETER;      // problem may be recoverable
82        goto Cleanup;
83    }
84    // Get compute Phi = (p - 1)(q - 1) = pq - p - q + 1 = n - p - q + 1
85    if(   BN_copy(bnPhi, bnN) == NULL
86       || !BN_sub(bnPhi, bnPhi, bnP)
87       || !BN_sub(bnPhi, bnPhi, bnQ)
88       || !BN_add_word(bnPhi, 1))
89        FAIL(FATAL_ERROR_INTERNAL);
90    // Compute the multiplicative inverse
91    BN_set_word(bnE, key->exponent);
92    if(BN_mod_inverse(bnD, bnE, bnPhi, context) == NULL)
93    {
94        // Going to assume that the error is caused by a bad
95        // set of parameters. Specifically, an exponent that is
96        // not compatible with the primes. In an implementation that
97        // has better visibility to the error codes, this might be
98        // refined so that failures in the library would return
99        // a more informative value. Should not assume here that
100        // the error codes will remain unchanged.
101         retVal = CRYPT_PARAMETER;
102         goto Cleanup;
103    }
104    fill = key->publicKey->size - BN_num_bytes(bnD);
105    BN_bn2bin(bnD, &key->privateKey->buffer[fill]);
106    memset(key->privateKey->buffer, 0, fill);
107    // Change the size of the private key so that it is known to contain
108    // a private exponent rather than a prime.
109    key->privateKey->size = key->publicKey->size;
110 Cleanup:
111    BN_CTX_end(context);
112    BN_CTX_free(context);
113    return retVal;
114 }
115 //
116 //
117 //       _cpri__TestKeyRSA()
118 //
119 //      This function computes the private exponent de = 1 mod (p-1)*(q-1) The inputs are the public modulus
120 //      and one of the primes or two primes.
121 //      If both primes are provided, the public modulus is computed. If only one prime is provided, the second
122 //      prime is computed. In either case, a private exponent is produced and placed in d.
123 //      If no modular inverse exists, then CRYPT_PARAMETER is returned.
124 //
125 //      Return Value                      Meaning
126 //
127 //      CRYPT_SUCCESS                     private exponent (d) was generated
128 //      CRYPT_PARAMETER                   one or more parameters are invalid
129 //
130 LIB_EXPORT CRYPT_RESULT
_cpri__TestKeyRSA(TPM2B * d,UINT32 exponent,TPM2B * publicKey,TPM2B * prime1,TPM2B * prime2)131 _cpri__TestKeyRSA(
132    TPM2B              *d,                    //   OUT: the address to receive the private
133                                              //       exponent
134    UINT32              exponent,             //   IN: the public modulu
135    TPM2B              *publicKey,            //   IN/OUT: an input if only one prime is
136                                              //       provided. an output if both primes are
137                                              //       provided
138    TPM2B              *prime1,               //   IN: a first prime
139    TPM2B              *prime2                //   IN: an optional second prime
140    )
141 {
142    BN_CTX             *context;
143    BIGNUM             *bnD;
144    BIGNUM             *bnN;
145    BIGNUM             *bnP;
146    BIGNUM             *bnE;
147    BIGNUM             *bnPhi;
148    BIGNUM             *bnQ;
149    BIGNUM             *bnQr;
150    UINT32             fill;
151    CRYPT_RESULT       retVal = CRYPT_SUCCESS;               // Assume success
152    pAssert(publicKey != NULL && prime1 != NULL);
153    // Make sure that the sizes are within range
154    pAssert(   prime1->size <= MAX_RSA_KEY_BYTES/2
155            && publicKey->size <= MAX_RSA_KEY_BYTES);
156    pAssert( prime2 == NULL || prime2->size < MAX_RSA_KEY_BYTES/2);
157    if(publicKey->size/2 != prime1->size)
158        return CRYPT_PARAMETER;
159    context = BN_CTX_new();
160    if(context == NULL)
161        FAIL(FATAL_ERROR_ALLOCATION);
162    BN_CTX_start(context);
163    bnE = BN_CTX_get(context);       //   public exponent (e)
164    bnD = BN_CTX_get(context);       //   private exponent (d)
165    bnN = BN_CTX_get(context);       //   public modulus (n)
166    bnP = BN_CTX_get(context);       //   prime1 (p)
167    bnPhi = BN_CTX_get(context);     //   (p-1)(q-1)
168    bnQ = BN_CTX_get(context);       //   prime2 (q)
169    bnQr = BN_CTX_get(context);      //   n mod p
170    if(bnQr == NULL)
171        FAIL(FATAL_ERROR_ALLOCATION);
172    if(BN_bin2bn(prime1->buffer, prime1->size, bnP) == NULL)
173        FAIL(FATAL_ERROR_INTERNAL);
174    // If prime2 is provided, then compute n
175    if(prime2 != NULL)
176    {
177        // Two primes provided so use them to compute n
178        if(BN_bin2bn(prime2->buffer, prime2->size, bnQ) == NULL)
179            FAIL(FATAL_ERROR_INTERNAL);
180         // Make sure that the sizes of the primes are compatible
181         if(BN_num_bits(bnQ) != BN_num_bits(bnP))
182         {
183             retVal = CRYPT_PARAMETER;
184             goto Cleanup;
185         }
186         // Multiply the primes to get the public modulus
187         if(BN_mul(bnN, bnP, bnQ, context) != 1)
188             FAIL(FATAL_ERROR_INTERNAL);
189         // if the space provided for the public modulus is large enough,
190         // save the created value
191         if(BN_num_bits(bnN) != (publicKey->size * 8))
192         {
193             retVal = CRYPT_PARAMETER;
194             goto Cleanup;
195         }
196         BN_bn2bin(bnN, publicKey->buffer);
197    }
198    else
199    {
200        // One prime provided so find the second prime by division
201        BN_bin2bn(publicKey->buffer, publicKey->size, bnN);
202         // Get q = n/p;
203         if(BN_div(bnQ, bnQr, bnN, bnP, context) != 1)
204             FAIL(FATAL_ERROR_INTERNAL);
205         // If there is a remainder, then this is not a valid n
206         if(BN_num_bytes(bnQr) != 0 || BN_num_bits(bnQ) != BN_num_bits(bnP))
207         {
208             retVal = CRYPT_PARAMETER;      // problem may be recoverable
209             goto Cleanup;
210         }
211    }
212    // Get compute Phi = (p - 1)(q - 1) = pq - p - q + 1 = n - p - q + 1
213    BN_copy(bnPhi, bnN);
214    BN_sub(bnPhi, bnPhi, bnP);
215    BN_sub(bnPhi, bnPhi, bnQ);
216    BN_add_word(bnPhi, 1);
217    // Compute the multiplicative inverse
218    BN_set_word(bnE, exponent);
219    if(BN_mod_inverse(bnD, bnE, bnPhi, context) == NULL)
220    {
221         // Going to assume that the error is caused by a bad set of parameters.
222         // Specifically, an exponent that is not compatible with the primes.
223         // In an implementation that has better visibility to the error codes,
224         // this might be refined so that failures in the library would return
225         // a more informative value.
226         // Do not assume that the error codes will remain unchanged.
227         retVal = CRYPT_PARAMETER;
228         goto Cleanup;
229    }
230    // Return the private exponent.
231    // Make sure it is normalized to have the correct size.
232    d->size = publicKey->size;
233    fill = d->size - BN_num_bytes(bnD);
234    BN_bn2bin(bnD, &d->buffer[fill]);
235    memset(d->buffer, 0, fill);
236 Cleanup:
237    BN_CTX_end(context);
238    BN_CTX_free(context);
239    return retVal;
240 }
241 //
242 //
243 //       RSAEP()
244 //
245 //      This function performs the RSAEP operation defined in PKCS#1v2.1. It is an exponentiation of a value
246 //      (m) with the public exponent (e), modulo the public (n).
247 //
248 //      Return Value                      Meaning
249 //
250 //      CRYPT_SUCCESS                     encryption complete
251 //      CRYPT_PARAMETER                   number to exponentiate is larger than the modulus
252 //
253 static CRYPT_RESULT
RSAEP(UINT32 dInOutSize,BYTE * dInOut,RSA_KEY * key)254 RSAEP (
255    UINT32              dInOutSize,           // OUT size of the encrypted block
256    BYTE               *dInOut,               // OUT: the encrypted data
257    RSA_KEY            *key                   // IN: the key to use
258    )
259 {
260    UINT32       e;
261    BYTE         exponent[4];
262    CRYPT_RESULT retVal;
263    e = key->exponent;
264    if(e == 0)
265        e = RSA_DEFAULT_PUBLIC_EXPONENT;
266    UINT32_TO_BYTE_ARRAY(e, exponent);
267    //!!! Can put check for test of RSA here
268    retVal = _math__ModExp(dInOutSize, dInOut, dInOutSize, dInOut, 4, exponent,
269                           key->publicKey->size, key->publicKey->buffer);
270    // Exponentiation result is stored in-place, thus no space shortage is possible.
271    pAssert(retVal != CRYPT_UNDERFLOW);
272    return retVal;
273 }
274 //
275 //
276 //       RSADP()
277 //
278 //      This function performs the RSADP operation defined in PKCS#1v2.1. It is an exponentiation of a value (c)
279 //      with the private exponent (d), modulo the public modulus (n). The decryption is in place.
280 //
281 //      This function also checks the size of the private key. If the size indicates that only a prime value is
282 //      present, the key is converted to being a private exponent.
283 //
284 //      Return Value                   Meaning
285 //
286 //      CRYPT_SUCCESS                  decryption succeeded
287 //      CRYPT_PARAMETER                the value to decrypt is larger than the modulus
288 //
289 static CRYPT_RESULT
RSADP(UINT32 dInOutSize,BYTE * dInOut,RSA_KEY * key)290 RSADP (
291    UINT32              dInOutSize,        // IN/OUT: size of decrypted data
292    BYTE               *dInOut,            // IN/OUT: the decrypted data
293    RSA_KEY            *key                // IN: the key
294    )
295 {
296    CRYPT_RESULT retVal;
297    //!!! Can put check for RSA tested here
298    // Make sure that the pointers are provided and that the private key is present
299    // If the private key is present it is assumed to have been created by
300    // so is presumed good _cpri__PrivateExponent
301    pAssert(key != NULL && dInOut != NULL &&
302            key->publicKey->size == key->publicKey->size);
303    // make sure that the value to be decrypted is smaller than the modulus
304    // note: this check is redundant as is also performed by _math__ModExp()
305    // which is optimized for use in RSA operations
306    if(_math__uComp(key->publicKey->size, key->publicKey->buffer,
307                    dInOutSize, dInOut) <= 0)
308        return CRYPT_PARAMETER;
309    // _math__ModExp can return CRYPT_PARAMTER or CRYPT_UNDERFLOW but actual
310    // underflow is not possible because everything is in the same buffer.
311    retVal = _math__ModExp(dInOutSize, dInOut, dInOutSize, dInOut,
312                           key->privateKey->size, key->privateKey->buffer,
313                           key->publicKey->size, key->publicKey->buffer);
314    // Exponentiation result is stored in-place, thus no space shortage is possible.
315    pAssert(retVal != CRYPT_UNDERFLOW);
316    return retVal;
317 }
318 //
319 //
320 //       OaepEncode()
321 //
322 //      This function performs OAEP padding. The size of the buffer to receive the OAEP padded data must
323 //      equal the size of the modulus
324 //
325 //      Return Value                   Meaning
326 //
327 //      CRYPT_SUCCESS                  encode successful
328 //      CRYPT_PARAMETER                hashAlg is not valid
329 //      CRYPT_FAIL                     message size is too large
330 //
331 static CRYPT_RESULT
OaepEncode(UINT32 paddedSize,BYTE * padded,TPM_ALG_ID hashAlg,const char * label,UINT32 messageSize,BYTE * message,BYTE * testSeed)332 OaepEncode(
333    UINT32          paddedSize,       //   IN: pad value size
334    BYTE           *padded,           //   OUT: the pad data
335    TPM_ALG_ID      hashAlg,          //   IN: algorithm to use for padding
336    const char     *label,            //   IN: null-terminated string (may be NULL)
337    UINT32       messageSize,   // IN: the message size
338    BYTE        *message        // IN: the message being padded
339 #ifdef TEST_RSA                 //
340    , BYTE          *testSeed   // IN: optional seed used for testing.
341 #endif // TEST_RSA              //
342 )
343 {
344    UINT32       padLen;
345    UINT32       dbSize;
346    UINT32       i;
347    BYTE         mySeed[MAX_DIGEST_SIZE];
348    BYTE        *seed = mySeed;
349    INT32        hLen = _cpri__GetDigestSize(hashAlg);
350    BYTE         mask[MAX_RSA_KEY_BYTES];
351    BYTE        *pp;
352    BYTE        *pm;
353    UINT32       lSize = 0;
354    CRYPT_RESULT retVal = CRYPT_SUCCESS;
355    pAssert(padded != NULL && message != NULL);
356    // A value of zero is not allowed because the KDF can't produce a result
357    // if the digest size is zero.
358    if(hLen <= 0)
359        return CRYPT_PARAMETER;
360    // If a label is provided, get the length of the string, including the
361    // terminator
362    if(label != NULL)
363        lSize = (UINT32)strlen(label) + 1;
364    // Basic size check
365    // messageSize <= k 2hLen 2
366    if(messageSize > paddedSize - 2 * hLen - 2)
367        return CRYPT_FAIL;
368    // Hash L even if it is null
369    // Offset into padded leaving room for masked seed and byte of zero
370    pp = &padded[hLen + 1];
371    retVal = _cpri__HashBlock(hashAlg, lSize, (BYTE *)label, hLen, pp);
372    // concatenate PS of k mLen 2hLen 2
373    padLen = paddedSize - messageSize - (2 * hLen) - 2;
374    memset(&pp[hLen], 0, padLen);
375    pp[hLen+padLen] = 0x01;
376    padLen += 1;
377    memcpy(&pp[hLen+padLen], message, messageSize);
378    // The total size of db = hLen + pad + mSize;
379    dbSize = hLen+padLen+messageSize;
380    // If testing, then use the provided seed. Otherwise, use values
381    // from the RNG
382 #ifdef TEST_RSA
383    if(testSeed != NULL)
384        seed = testSeed;
385    else
386 #endif // TEST_RSA
387        _cpri__GenerateRandom(hLen, mySeed);
388    // mask = MGF1 (seed, nSize hLen 1)
389    if((retVal = _cpri__MGF1(dbSize, mask, hashAlg, hLen, seed)) < 0)
390        return retVal; // Don't expect an error because hash size is not zero
391                       // was detected in the call to _cpri__HashBlock() above.
392    // Create the masked db
393     pm = mask;
394     for(i = dbSize; i > 0; i--)
395         *pp++ ^= *pm++;
396     pp = &padded[hLen + 1];
397     // Run the masked data through MGF1
398     if((retVal = _cpri__MGF1(hLen, &padded[1], hashAlg, dbSize, pp)) < 0)
399         return retVal; // Don't expect zero here as the only case for zero
400                        // was detected in the call to _cpri__HashBlock() above.
401     // Now XOR the seed to create masked seed
402     pp = &padded[1];
403     pm = seed;
404     for(i = hLen; i > 0; i--)
405         *pp++ ^= *pm++;
406     // Set the first byte to zero
407     *padded = 0x00;
408     return CRYPT_SUCCESS;
409 }
410 //
411 //
412 //       OaepDecode()
413 //
414 //      This function performs OAEP padding checking. The size of the buffer to receive the recovered data. If
415 //      the padding is not valid, the dSize size is set to zero and the function returns CRYPT_NO_RESULTS.
416 //      The dSize parameter is used as an input to indicate the size available in the buffer. If insufficient space is
417 //      available, the size is not changed and the return code is CRYPT_FAIL.
418 //
419 //      Return Value                     Meaning
420 //
421 //      CRYPT_SUCCESS                    decode complete
422 //      CRYPT_PARAMETER                  the value to decode was larger than the modulus
423 //      CRYPT_FAIL                       the padding is wrong or the buffer to receive the results is too small
424 //
425 static CRYPT_RESULT
OaepDecode(UINT32 * dataOutSize,BYTE * dataOut,TPM_ALG_ID hashAlg,const char * label,UINT32 paddedSize,BYTE * padded)426 OaepDecode(
427     UINT32              *dataOutSize,        //   IN/OUT: the recovered data size
428     BYTE                *dataOut,            //   OUT: the recovered data
429     TPM_ALG_ID           hashAlg,            //   IN: algorithm to use for padding
430     const char          *label,              //   IN: null-terminated string (may be NULL)
431     UINT32               paddedSize,         //   IN: the size of the padded data
432     BYTE                *padded              //   IN: the padded data
433     )
434 {
435     UINT32          dSizeSave;
436     UINT32          i;
437     BYTE            seedMask[MAX_DIGEST_SIZE];
438     INT32           hLen = _cpri__GetDigestSize(hashAlg);
439     BYTE         mask[MAX_RSA_KEY_BYTES];
440     BYTE        *pp;
441     BYTE        *pm;
442     UINT32       lSize = 0;
443     CRYPT_RESULT retVal = CRYPT_SUCCESS;
444     // Unknown hash
445     pAssert(hLen > 0 && dataOutSize != NULL && dataOut != NULL && padded != NULL);
446     // If there is a label, get its size including the terminating 0x00
447     if(label != NULL)
448         lSize = (UINT32)strlen(label) + 1;
449    // Set the return size to zero so that it doesn't have to be done on each
450    // failure
451    dSizeSave = *dataOutSize;
452    *dataOutSize = 0;
453    // Strange size (anything smaller can't be an OAEP padded block)
454    // Also check for no leading 0
455    if(paddedSize < (unsigned)((2 * hLen) + 2) || *padded != 0)
456        return CRYPT_FAIL;
457    // Use the hash size to determine what to put through MGF1 in order
458    // to recover the seedMask
459    if((retVal = _cpri__MGF1(hLen, seedMask, hashAlg,
460                             paddedSize-hLen-1, &padded[hLen+1])) < 0)
461        return retVal;
462    // Recover the seed into seedMask
463    pp = &padded[1];
464    pm = seedMask;
465    for(i = hLen; i > 0; i--)
466        *pm++ ^= *pp++;
467    // Use the seed to generate the data mask
468    if((retVal = _cpri__MGF1(paddedSize-hLen-1, mask,     hashAlg,
469                             hLen, seedMask)) < 0)
470        return retVal;
471    // Use the mask generated from seed to recover the padded data
472    pp = &padded[hLen+1];
473    pm = mask;
474    for(i = paddedSize-hLen-1; i > 0; i--)
475        *pm++ ^= *pp++;
476    // Make sure that the recovered data has the hash of the label
477    // Put trial value in the seed mask
478    if((retVal=_cpri__HashBlock(hashAlg, lSize,(BYTE *)label, hLen, seedMask)) < 0)
479        return retVal;
480    if(memcmp(seedMask, mask, hLen) != 0)
481        return CRYPT_FAIL;
482    // find the start of the data
483    pm = &mask[hLen];
484    for(i = paddedSize-(2*hLen)-1; i > 0; i--)
485    {
486        if(*pm++ != 0)
487            break;
488    }
489 
490    // Magic value in the end of the fill area must be 1, anything else must be
491    // rejected.
492    if (pm[-1] != 1)
493      return CRYPT_FAIL;
494 
495    if(i == 0)
496        return CRYPT_PARAMETER;
497    // pm should be pointing at the first part of the data
498    // and i is one greater than the number of bytes to move
499    i--;
500    if(i > dSizeSave)
501    {
502         // Restore dSize
503         *dataOutSize = dSizeSave;
504         return CRYPT_FAIL;
505    }
506    memcpy(dataOut, pm, i);
507    *dataOutSize = i;
508    return CRYPT_SUCCESS;
509 }
510 //
511 //
512 //       PKSC1v1_5Encode()
513 //
514 //      This function performs the encoding for RSAES-PKCS1-V1_5-ENCRYPT as defined in PKCS#1V2.1
515 //
516 //      Return Value                  Meaning
517 //
518 //      CRYPT_SUCCESS                 data encoded
519 //      CRYPT_PARAMETER               message size is too large
520 //
521 static CRYPT_RESULT
RSAES_PKSC1v1_5Encode(UINT32 paddedSize,BYTE * padded,UINT32 messageSize,BYTE * message)522 RSAES_PKSC1v1_5Encode(
523    UINT32              paddedSize,        //   IN: pad value size
524    BYTE               *padded,            //   OUT: the pad data
525    UINT32              messageSize,       //   IN: the message size
526    BYTE               *message            //   IN: the message being padded
527    )
528 {
529    UINT32      ps = paddedSize - messageSize - 3;
530    if(messageSize > paddedSize - 11)
531        return CRYPT_PARAMETER;
532    // move the message to the end of the buffer
533    memcpy(&padded[paddedSize - messageSize], message, messageSize);
534    // Set the first byte to 0x00 and the second to 0x02
535    *padded = 0;
536    padded[1] = 2;
537    // Fill with random bytes
538    _cpri__GenerateRandom(ps, &padded[2]);
539    // Set the delimiter for the random field to 0
540    padded[2+ps] = 0;
541    // Now, the only messy part. Make sure that all the ps bytes are non-zero
542    // In this implementation, use the value of the current index
543    for(ps++; ps > 1; ps--)
544    {
545        if(padded[ps] == 0)
546            padded[ps] = 0x55;    // In the < 0.5% of the cases that the random
547                                  // value is 0, just pick a value to put into
548                                  // the spot.
549    }
550    return CRYPT_SUCCESS;
551 }
552 //
553 //
554 //       RSAES_Decode()
555 //
556 //      This function performs the decoding for RSAES-PKCS1-V1_5-ENCRYPT as defined in PKCS#1V2.1
557 //
558 //      Return Value                  Meaning
559 //
560 //      CRYPT_SUCCESS                 decode successful
561 //      CRYPT_FAIL                    decoding error or results would no fit into provided buffer
562 //
563 static CRYPT_RESULT
RSAES_Decode(UINT32 * messageSize,BYTE * message,UINT32 codedSize,BYTE * coded)564 RSAES_Decode(
565    UINT32             *messageSize,       //   IN/OUT: recovered message size
566    BYTE               *message,           //   OUT: the recovered message
567    UINT32              codedSize,         //   IN: the encoded message size
568    BYTE               *coded              //   IN: the encoded message
569    )
570 {
571    BOOL           fail = FALSE;
572    UINT32         ps;
573    fail = (codedSize < 11);
574    fail |= (coded[0] != 0x00) || (coded[1] != 0x02);
575    for(ps = 2; ps < codedSize; ps++)
576    {
577        if(coded[ps] == 0)
578            break;
579    }
580    ps++;
581    // Make sure that ps has not gone over the end and that there are at least 8
582    // bytes of pad data.
583    fail |= ((ps >= codedSize) || ((ps-2) < 8));
584    if((*messageSize < codedSize - ps) || fail)
585        return CRYPT_FAIL;
586    *messageSize = codedSize - ps;
587    memcpy(message, &coded[ps], codedSize - ps);
588    return CRYPT_SUCCESS;
589 }
590 //
591 //
592 //       PssEncode()
593 //
594 //      This function creates an encoded block of data that is the size of modulus. The function uses the
595 //      maximum salt size that will fit in the encoded block.
596 //
597 //      Return Value                      Meaning
598 //
599 //      CRYPT_SUCCESS                     encode successful
600 //      CRYPT_PARAMETER                   hashAlg is not a supported hash algorithm
601 //
602 static CRYPT_RESULT
PssEncode(UINT32 eOutSize,BYTE * eOut,TPM_ALG_ID hashAlg,UINT32 hashInSize,BYTE * hashIn,BYTE * saltIn)603 PssEncode   (
604    UINT32        eOutSize,        // IN: size of the encode data buffer
605    BYTE         *eOut,            // OUT: encoded data buffer
606    TPM_ALG_ID    hashAlg,         // IN: hash algorithm to use for the encoding
607    UINT32        hashInSize,      // IN: size of digest to encode
608    BYTE         *hashIn           // IN: the digest
609 #ifdef TEST_RSA                    //
610    , BYTE          *saltIn        // IN: optional parameter for testing
611 #endif // TEST_RSA                 //
612 )
613 {
614    INT32                  hLen = _cpri__GetDigestSize(hashAlg);
615    BYTE                   salt[MAX_RSA_KEY_BYTES - 1];
616    UINT16                 saltSize;
617    BYTE                 *ps = salt;
618    CRYPT_RESULT           retVal;
619    UINT16                 mLen;
620    CPRI_HASH_STATE        hashState;
621    // These are fatal errors indicating bad TPM firmware
622    pAssert(eOut != NULL && hLen > 0 && hashIn != NULL );
623    // Get the size of the mask
624    mLen = (UINT16)(eOutSize - hLen - 1);
625    // Maximum possible salt size is mask length - 1
626    saltSize = mLen - 1;
627    // Use the maximum salt size allowed by FIPS 186-4
628    if(saltSize > hLen)
629        saltSize = (UINT16)hLen;
630 //using eOut for scratch space
631    // Set the first 8 bytes to zero
632    memset(eOut, 0, 8);
633    // Get set the salt
634 #ifdef TEST_RSA
635    if(saltIn != NULL)
636    {
637        saltSize = hLen;
638        memcpy(salt, saltIn, hLen);
639    }
640    else
641 #endif // TEST_RSA
642        _cpri__GenerateRandom(saltSize, salt);
643    // Create the hash of the pad || input hash || salt
644    _cpri__StartHash(hashAlg, FALSE, &hashState);
645    _cpri__UpdateHash(&hashState, 8, eOut);
646    _cpri__UpdateHash(&hashState, hashInSize, hashIn);
647    _cpri__UpdateHash(&hashState, saltSize, salt);
648    _cpri__CompleteHash(&hashState, hLen, &eOut[eOutSize - hLen - 1]);
649    // Create a mask
650    if((retVal = _cpri__MGF1(mLen, eOut, hashAlg, hLen, &eOut[mLen])) < 0)
651    {
652        // Currently _cpri__MGF1 is not expected to return a CRYPT_RESULT error.
653        pAssert(0);
654    }
655    // Since this implementation uses key sizes that are all even multiples of
656    // 8, just need to make sure that the most significant bit is CLEAR
657    eOut[0] &= 0x7f;
658    // Before we mess up the eOut value, set the last byte to 0xbc
659    eOut[eOutSize - 1] = 0xbc;
660    // XOR a byte of 0x01 at the position just before where the salt will be XOR'ed
661    eOut = &eOut[mLen - saltSize - 1];
662    *eOut++ ^= 0x01;
663    // XOR the salt data into the buffer
664    for(; saltSize > 0; saltSize--)
665        *eOut++ ^= *ps++;
666    // and we are done
667    return CRYPT_SUCCESS;
668 }
669 //
670 //
671 //       PssDecode()
672 //
673 //      This function checks that the PSS encoded block was built from the provided digest. If the check is
674 //      successful, CRYPT_SUCCESS is returned. Any other value indicates an error.
675 //      This implementation of PSS decoding is intended for the reference TPM implementation and is not at all
676 //      generalized. It is used to check signatures over hashes and assumptions are made about the sizes of
677 //      values. Those assumptions are enforce by this implementation. This implementation does allow for a
678 //      variable size salt value to have been used by the creator of the signature.
679 //
680 //
681 //
682 //
683 //      Return Value                      Meaning
684 //
685 //      CRYPT_SUCCESS                     decode successful
686 //      CRYPT_SCHEME                      hashAlg is not a supported hash algorithm
687 //      CRYPT_FAIL                        decode operation failed
688 //
689 static CRYPT_RESULT
PssDecode(TPM_ALG_ID hashAlg,UINT32 dInSize,BYTE * dIn,UINT32 eInSize,BYTE * eIn,UINT32 saltSize)690 PssDecode(
691    TPM_ALG_ID          hashAlg,              //   IN:   hash algorithm to use for the encoding
692    UINT32              dInSize,              //   IN:   size of the digest to compare
693    BYTE               *dIn,                  //   In:   the digest to compare
694    UINT32              eInSize,              //   IN:   size of the encoded data
695    BYTE               *eIn,                  //   IN:   the encoded data
696    UINT32              saltSize              //   IN:   the expected size of the salt
697    )
698 {
699    INT32            hLen = _cpri__GetDigestSize(hashAlg);
700    BYTE             mask[MAX_RSA_KEY_BYTES];
701    BYTE            *pm = mask;
702    BYTE             pad[8] = {0};
703    UINT32           i;
704    UINT32           mLen;
705    BOOL             fail = FALSE;
706    CRYPT_RESULT     retVal;
707    CPRI_HASH_STATE hashState;
708    // These errors are indicative of failures due to programmer error
709    pAssert(dIn != NULL && eIn != NULL);
710    // check the hash scheme
711    if(hLen == 0)
712        return CRYPT_SCHEME;
713    // most significant bit must be zero
714    fail = ((eIn[0] & 0x80) != 0);
715    // last byte must be 0xbc
716    fail |= (eIn[eInSize - 1] != 0xbc);
717    // Use the hLen bytes at the end of the buffer to generate a mask
718    // Doesn't start at the end which is a flag byte
719    mLen = eInSize - hLen - 1;
720    if((retVal = _cpri__MGF1(mLen, mask, hashAlg, hLen, &eIn[mLen])) < 0)
721        return retVal;
722    if(retVal == 0)
723        return CRYPT_FAIL;
724    // Clear the MSO of the mask to make it consistent with the encoding.
725    mask[0] &= 0x7F;
726    // XOR the data into the mask to recover the salt. This sequence
727    // advances eIn so that it will end up pointing to the seed data
728    // which is the hash of the signature data
729    for(i = mLen; i > 0; i--)
730        *pm++ ^= *eIn++;
731    // Find the first byte of 0x01 after a string of all 0x00
732    for(pm = mask, i = mLen; i > 0; i--)
733    {
734        if(*pm == 0x01)
735             break;
736        else
737             fail |= (*pm++ != 0);
738    }
739    fail |= (i == 0);
740    // if we have failed, will continue using the entire mask as the salt value so
741    // that the timing attacks will not disclose anything (I don't think that this
742    // is a problem for TPM applications but, usually, we don't fail so this
743    // doesn't cost anything).
744    if(fail)
745    {
746        i = mLen;
747        pm = mask;
748    }
749    else
750    {
751        pm++;
752        i--;
753    }
754    // If the salt size was provided, then the recovered size must match
755    fail |= (saltSize != 0 && i != saltSize);
756    // i contains the salt size and pm points to the salt. Going to use the input
757    // hash and the seed to recreate the hash in the lower portion of eIn.
758    _cpri__StartHash(hashAlg, FALSE, &hashState);
759    // add the pad of 8 zeros
760    _cpri__UpdateHash(&hashState, 8, pad);
761    // add the provided digest value
762    _cpri__UpdateHash(&hashState, dInSize, dIn);
763    // and the salt
764    _cpri__UpdateHash(&hashState, i, pm);
765    // get the result
766    retVal = _cpri__CompleteHash(&hashState, MAX_DIGEST_SIZE, mask);
767    // retVal will be the size of the digest or zero. If not equal to the indicated
768    // digest size, then the signature doesn't match
769    fail |= (retVal != hLen);
770    fail |= (memcmp(mask, eIn, hLen) != 0);
771    if(fail)
772        return CRYPT_FAIL;
773    else
774        return CRYPT_SUCCESS;
775 }
776 //
777 //
778 //       PKSC1v1_5SignEncode()
779 //
780 //      Encode a message using PKCS1v1().5 method.
781 //
782 //      Return Value                  Meaning
783 //
784 //      CRYPT_SUCCESS                 encode complete
785 //      CRYPT_SCHEME                  hashAlg is not a supported hash algorithm
786 //      CRYPT_PARAMETER               eOutSize is not large enough or hInSize does not match the digest
787 //                                    size of hashAlg
788 //
789 static CRYPT_RESULT
RSASSA_Encode(UINT32 eOutSize,BYTE * eOut,TPM_ALG_ID hashAlg,UINT32 hInSize,BYTE * hIn)790 RSASSA_Encode(
791    UINT32              eOutSize,         //   IN: the size of the resulting block
792    BYTE               *eOut,             //   OUT: the encoded block
793    TPM_ALG_ID          hashAlg,          //   IN: hash algorithm for PKSC1v1_5
794    UINT32              hInSize,          //   IN: size of hash to be signed
795    BYTE               *hIn               //   IN: hash buffer
796    )
797 {
798    const BYTE         *der;
799    INT32               derSize = _cpri__GetHashDER(hashAlg, &der);
800    INT32               fillSize;
801    pAssert(eOut != NULL && hIn != NULL);
802    // Can't use this scheme if the algorithm doesn't have a DER string defined.
803    if(derSize == 0 )
804        return CRYPT_SCHEME;
805    // If the digest size of 'hashAl' doesn't match the input digest size, then
806    // the DER will misidentify the digest so return an error
807    if((unsigned)_cpri__GetDigestSize(hashAlg) != hInSize)
808        return CRYPT_PARAMETER;
809    fillSize = eOutSize - derSize - hInSize - 3;
810    // Make sure that this combination will fit in the provided space
811    if(fillSize < 8)
812        return CRYPT_PARAMETER;
813    // Start filling
814    *eOut++ = 0; // initial byte of zero
815    *eOut++ = 1; // byte of 0x01
816    for(; fillSize > 0; fillSize--)
817        *eOut++ = 0xff; // bunch of 0xff
818    *eOut++ = 0; // another 0
819    for(; derSize > 0; derSize--)
820        *eOut++ = *der++;   // copy the DER
821    for(; hInSize > 0; hInSize--)
822        *eOut++ = *hIn++;   // copy the hash
823    return CRYPT_SUCCESS;
824 }
825 //
826 //
827 //       RSASSA_Decode()
828 //
829 //      This function performs the RSASSA decoding of a signature.
830 //
831 //      Return Value                      Meaning
832 //
833 //      CRYPT_SUCCESS                     decode successful
834 //      CRYPT_FAIL                        decode unsuccessful
835 //      CRYPT_SCHEME                      haslAlg is not supported
836 //
837 static CRYPT_RESULT
RSASSA_Decode(TPM_ALG_ID hashAlg,UINT32 hInSize,BYTE * hIn,UINT32 eInSize,BYTE * eIn)838 RSASSA_Decode(
839    TPM_ALG_ID          hashAlg,              //   IN:   hash algorithm to use for the encoding
840    UINT32              hInSize,              //   IN:   size of the digest to compare
841    BYTE               *hIn,                  //   In:   the digest to compare
842    UINT32              eInSize,              //   IN:   size of the encoded data
843    BYTE               *eIn                   //   IN:   the encoded data
844    )
845 {
846    BOOL                fail = FALSE;
847    const BYTE         *der;
848    INT32               derSize = _cpri__GetHashDER(hashAlg, &der);
849    INT32               hashSize = _cpri__GetDigestSize(hashAlg);
850    INT32               fillSize;
851    pAssert(hIn != NULL && eIn != NULL);
852    // Can't use this scheme if the algorithm doesn't have a DER string
853     // defined or if the provided hash isn't the right size
854     if(derSize == 0 || (unsigned)hashSize != hInSize)
855         return CRYPT_SCHEME;
856     // Make sure that this combination will fit in the provided space
857     // Since no data movement takes place, can just walk though this
858     // and accept nearly random values. This can only be called from
859     // _cpri__ValidateSignature() so eInSize is known to be in range.
860     fillSize = eInSize - derSize - hashSize - 3;
861     // Start checking
862     fail |= (*eIn++ != 0); // initial byte of zero
863     fail |= (*eIn++ != 1); // byte of 0x01
864     for(; fillSize > 0; fillSize--)
865         fail |= (*eIn++ != 0xff); // bunch of 0xff
866     fail |= (*eIn++ != 0); // another 0
867     for(; derSize > 0; derSize--)
868         fail |= (*eIn++ != *der++); // match the DER
869     for(; hInSize > 0; hInSize--)
870         fail |= (*eIn++ != *hIn++); // match the hash
871     if(fail)
872         return CRYPT_FAIL;
873     return CRYPT_SUCCESS;
874 }
875 //
876 //
877 //       Externally Accessible Functions
878 //
879 //       _cpri__RsaStartup()
880 //
881 //      Function that is called to initialize the hash service. In this implementation, this function does nothing but
882 //      it is called by the CryptUtilStartup() function and must be present.
883 //
884 LIB_EXPORT BOOL
_cpri__RsaStartup(void)885 _cpri__RsaStartup(
886     void
887     )
888 {
889     return TRUE;
890 }
891 //
892 //
893 //       _cpri__EncryptRSA()
894 //
895 //      This is the entry point for encryption using RSA. Encryption is use of the public exponent. The padding
896 //      parameter determines what padding will be used.
897 //      The cOutSize parameter must be at least as large as the size of the key.
898 //      If the padding is RSA_PAD_NONE, dIn is treaded as a number. It must be lower in value than the key
899 //      modulus.
900 //
901 //
902 //
903 //      NOTE:           If dIn has fewer bytes than cOut, then we don't add low-order zeros to dIn to make it the size of the RSA key for
904 //                      the call to RSAEP. This is because the high order bytes of dIn might have a numeric value that is greater than
905 //                      the value of the key modulus. If this had low-order zeros added, it would have a numeric value larger than the
906 //                      modulus even though it started out with a lower numeric value.
907 //
908 //
909 //      Return Value                        Meaning
910 //
911 //      CRYPT_SUCCESS                       encryption complete
912 //      CRYPT_PARAMETER                     cOutSize is too small (must be the size of the modulus)
913 //      CRYPT_SCHEME                        padType is not a supported scheme
914 //
915 LIB_EXPORT CRYPT_RESULT
_cpri__EncryptRSA(UINT32 * cOutSize,BYTE * cOut,RSA_KEY * key,TPM_ALG_ID padType,UINT32 dInSize,BYTE * dIn,TPM_ALG_ID hashAlg,const char * label)916 _cpri__EncryptRSA(
917    UINT32                *cOutSize,              //   OUT: the size of the encrypted data
918    BYTE                  *cOut,                  //   OUT: the encrypted data
919    RSA_KEY               *key,                   //   IN: the key to use for encryption
920    TPM_ALG_ID             padType,               //   IN: the type of padding
921    UINT32                 dInSize,               //   IN: the amount of data to encrypt
922    BYTE                  *dIn,                   //   IN: the data to encrypt
923    TPM_ALG_ID             hashAlg,               //   IN: in case this is needed
924    const char            *label                  //   IN: in case it is needed
925    )
926 {
927    CRYPT_RESULT          retVal = CRYPT_SUCCESS;
928    pAssert(cOutSize != NULL);
929    // All encryption schemes return the same size of data
930    if(*cOutSize < key->publicKey->size)
931        return CRYPT_PARAMETER;
932    *cOutSize = key->publicKey->size;
933    switch (padType)
934    {
935    case TPM_ALG_NULL: // 'raw' encryption
936        {
937            // dIn can have more bytes than cOut as long as the extra bytes
938            // are zero
939            for(; dInSize > *cOutSize; dInSize--)
940            {
941                if(*dIn++ != 0)
942                    return CRYPT_PARAMETER;
943               }
944               // If dIn is smaller than cOut, fill cOut with zeros
945               if(dInSize < *cOutSize)
946                   memset(cOut, 0, *cOutSize - dInSize);
947               // Copy the rest of the value
948               memcpy(&cOut[*cOutSize-dInSize], dIn, dInSize);
949               // If the size of dIn is the same as cOut dIn could be larger than
950               // the modulus. If it is, then RSAEP() will catch it.
951        }
952        break;
953    case TPM_ALG_RSAES:
954        retVal = RSAES_PKSC1v1_5Encode(*cOutSize, cOut, dInSize, dIn);
955        break;
956    case TPM_ALG_OAEP:
957        retVal = OaepEncode(*cOutSize, cOut, hashAlg, label, dInSize, dIn
958 #ifdef TEST_RSA
959                            ,NULL
960 #endif
961                           );
962        break;
963    default:
964        return CRYPT_SCHEME;
965    }
966    // All the schemes that do padding will come here for the encryption step
967    // Check that the Encoding worked
968    if(retVal != CRYPT_SUCCESS)
969        return retVal;
970    // Padding OK so do the encryption
971    return RSAEP(*cOutSize, cOut, key);
972 }
973 //
974 //
975 //       _cpri__DecryptRSA()
976 //
977 //      This is the entry point for decryption using RSA. Decryption is use of the private exponent. The padType
978 //      parameter determines what padding was used.
979 //
980 //      Return Value                    Meaning
981 //
982 //      CRYPT_SUCCESS                   successful completion
983 //      CRYPT_PARAMETER                 cInSize is not the same as the size of the public modulus of key; or
984 //                                      numeric value of the encrypted data is greater than the modulus
985 //      CRYPT_FAIL                      dOutSize is not large enough for the result
986 //      CRYPT_SCHEME                    padType is not supported
987 //
988 LIB_EXPORT CRYPT_RESULT
_cpri__DecryptRSA(UINT32 * dOutSize,BYTE * dOut,RSA_KEY * key,TPM_ALG_ID padType,UINT32 cInSize,BYTE * cIn,TPM_ALG_ID hashAlg,const char * label)989 _cpri__DecryptRSA(
990    UINT32              *dOutSize,          //   OUT: the size of the decrypted data
991    BYTE                *dOut,              //   OUT: the decrypted data
992    RSA_KEY             *key,               //   IN: the key to use for decryption
993    TPM_ALG_ID           padType,           //   IN: the type of padding
994    UINT32               cInSize,           //   IN: the amount of data to decrypt
995    BYTE                *cIn,               //   IN: the data to decrypt
996    TPM_ALG_ID           hashAlg,           //   IN: in case this is needed for the scheme
997    const char          *label              //   IN: in case it is needed for the scheme
998    )
999 {
1000    CRYPT_RESULT        retVal;
1001    // Make sure that the necessary parameters are provided
1002    pAssert(cIn != NULL && dOut != NULL && dOutSize != NULL && key != NULL);
1003    // Size is checked to make sure that the decryption works properly
1004    if(cInSize != key->publicKey->size)
1005        return CRYPT_PARAMETER;
1006    // For others that do padding, do the decryption in place and then
1007    // go handle the decoding.
1008    if((retVal = RSADP(cInSize, cIn, key)) != CRYPT_SUCCESS)
1009        return retVal;      // Decryption failed
1010    // Remove padding
1011    switch (padType)
1012    {
1013    case TPM_ALG_NULL:
1014        if(*dOutSize < key->publicKey->size)
1015            return CRYPT_FAIL;
1016        *dOutSize = key->publicKey->size;
1017        memcpy(dOut, cIn, *dOutSize);
1018        return CRYPT_SUCCESS;
1019    case TPM_ALG_RSAES:
1020        return RSAES_Decode(dOutSize, dOut, cInSize, cIn);
1021        break;
1022    case TPM_ALG_OAEP:
1023        return OaepDecode(dOutSize, dOut, hashAlg, label, cInSize, cIn);
1024        break;
1025    default:
1026        return CRYPT_SCHEME;
1027        break;
1028    }
1029 }
1030 //
1031 //
1032 //       _cpri__SignRSA()
1033 //
1034 //      This function is used to generate an RSA signature of the type indicated in scheme.
1035 //
1036 //      Return Value                      Meaning
1037 //
1038 //      CRYPT_SUCCESS                     sign operation completed normally
1039 //      CRYPT_SCHEME                      scheme or hashAlg are not supported
1040 //      CRYPT_PARAMETER                   hInSize does not match hashAlg (for RSASSA)
1041 //
1042 LIB_EXPORT CRYPT_RESULT
_cpri__SignRSA(UINT32 * sigOutSize,BYTE * sigOut,RSA_KEY * key,TPM_ALG_ID scheme,TPM_ALG_ID hashAlg,UINT32 hInSize,BYTE * hIn)1043 _cpri__SignRSA(
1044    UINT32              *sigOutSize,          //   OUT: size of signature
1045    BYTE                *sigOut,              //   OUT: signature
1046    RSA_KEY             *key,                 //   IN: key to use
1047    TPM_ALG_ID           scheme,              //   IN: the scheme to use
1048    TPM_ALG_ID           hashAlg,             //   IN: hash algorithm for PKSC1v1_5
1049    UINT32               hInSize,             //   IN: size of digest to be signed
1050    BYTE                *hIn                  //   IN: digest buffer
1051    )
1052 {
1053    CRYPT_RESULT        retVal;
1054    // Parameter checks
1055    pAssert(sigOutSize != NULL && sigOut != NULL && key != NULL && hIn != NULL);
1056    // For all signatures the size is the size of the key modulus
1057    *sigOutSize = key->publicKey->size;
1058    switch (scheme)
1059    {
1060    case TPM_ALG_NULL:
1061        *sigOutSize = 0;
1062        return CRYPT_SUCCESS;
1063    case TPM_ALG_RSAPSS:
1064        // PssEncode can return CRYPT_PARAMETER
1065        retVal = PssEncode(*sigOutSize, sigOut, hashAlg, hInSize, hIn
1066 #ifdef TEST_RSA
1067                           , NULL
1068 #endif
1069                          );
1070        break;
1071    case TPM_ALG_RSASSA:
1072        // RSASSA_Encode can return CRYPT_PARAMETER or CRYPT_SCHEME
1073        retVal = RSASSA_Encode(*sigOutSize, sigOut, hashAlg, hInSize, hIn);
1074        break;
1075    default:
1076        return CRYPT_SCHEME;
1077    }
1078    if(retVal != CRYPT_SUCCESS)
1079        return retVal;
1080    // Do the encryption using the private key
1081    // RSADP can return CRYPT_PARAMETR
1082    return RSADP(*sigOutSize,sigOut, key);
1083 }
1084 //
1085 //
1086 //       _cpri__ValidateSignatureRSA()
1087 //
1088 //      This function is used to validate an RSA signature. If the signature is valid CRYPT_SUCCESS is
1089 //      returned. If the signature is not valid, CRYPT_FAIL is returned. Other return codes indicate either
1090 //      parameter problems or fatal errors.
1091 //
1092 //      Return Value                  Meaning
1093 //
1094 //      CRYPT_SUCCESS                 the signature checks
1095 //      CRYPT_FAIL                    the signature does not check
1096 //      CRYPT_SCHEME                  unsupported scheme or hash algorithm
1097 //
1098 LIB_EXPORT CRYPT_RESULT
_cpri__ValidateSignatureRSA(RSA_KEY * key,TPM_ALG_ID scheme,TPM_ALG_ID hashAlg,UINT32 hInSize,BYTE * hIn,UINT32 sigInSize,BYTE * sigIn,UINT16 saltSize)1099 _cpri__ValidateSignatureRSA(
1100    RSA_KEY            *key,               //   IN:   key to use
1101    TPM_ALG_ID          scheme,            //   IN:   the scheme to use
1102    TPM_ALG_ID          hashAlg,           //   IN:   hash algorithm
1103    UINT32              hInSize,           //   IN:   size of digest to be checked
1104    BYTE               *hIn,               //   IN:   digest buffer
1105    UINT32              sigInSize,         //   IN:   size of signature
1106    BYTE               *sigIn,             //   IN:   signature
1107    UINT16              saltSize           //   IN:   salt size for PSS
1108    )
1109 {
1110    CRYPT_RESULT        retVal;
1111    // Fatal programming errors
1112    pAssert(key != NULL && sigIn != NULL && hIn != NULL);
1113    // Errors that might be caused by calling parameters
1114    if(sigInSize != key->publicKey->size)
1115        return CRYPT_FAIL;
1116    // Decrypt the block
1117    if((retVal = RSAEP(sigInSize, sigIn, key)) != CRYPT_SUCCESS)
1118        return CRYPT_FAIL;
1119    switch (scheme)
1120    {
1121    case TPM_ALG_NULL:
1122        return CRYPT_SCHEME;
1123        break;
1124    case TPM_ALG_RSAPSS:
1125        return PssDecode(hashAlg, hInSize, hIn, sigInSize, sigIn, saltSize);
1126        break;
1127    case TPM_ALG_RSASSA:
1128        return RSASSA_Decode(hashAlg, hInSize, hIn, sigInSize, sigIn);
1129        break;
1130    default:
1131        break;
1132    }
1133    return CRYPT_SCHEME;
1134 }
1135 #ifndef RSA_KEY_SIEVE
1136 //
1137 //
1138 //       _cpri__GenerateKeyRSA()
1139 //
1140 //      Generate an RSA key from a provided seed
1141 //
1142 //
1143 //
1144 //
1145 //       Return Value                      Meaning
1146 //
1147 //       CRYPT_FAIL                        exponent is not prime or is less than 3; or could not find a prime using
1148 //                                         the provided parameters
1149 //       CRYPT_CANCEL                      operation was canceled
1150 //
1151 LIB_EXPORT CRYPT_RESULT
_cpri__GenerateKeyRSA(TPM2B * n,TPM2B * p,UINT16 keySizeInBits,UINT32 e,TPM_ALG_ID hashAlg,TPM2B * seed,const char * label,TPM2B * extra,UINT32 * counter)1152 _cpri__GenerateKeyRSA(
1153    TPM2B              *n,                     //   OUT: The public modulu
1154    TPM2B              *p,                     //   OUT: One of the prime factors of n
1155    UINT16              keySizeInBits,         //   IN: Size of the public modulus in bit
1156    UINT32              e,                     //   IN: The public exponent
1157    TPM_ALG_ID          hashAlg,               //   IN: hash algorithm to use in the key
1158                                               //       generation proce
1159    TPM2B              *seed,                  //   IN: the seed to use
1160    const char         *label,                 //   IN: A label for the generation process.
1161    TPM2B              *extra,                 //   IN: Party 1 data for the KDF
1162    UINT32             *counter                //   IN/OUT: Counter value to allow KFD iteration
1163                                               //       to be propagated across multiple routine
1164    )
1165 {
1166    UINT32              lLen;          // length of the label
1167                                       // (counting the terminating 0);
1168    UINT16              digestSize = _cpri__GetDigestSize(hashAlg);
1169    TPM2B_HASH_BLOCK         oPadKey;
1170    UINT32             outer;
1171    UINT32             inner;
1172    BYTE               swapped[4];
1173    CRYPT_RESULT    retVal;
1174    int             i, fill;
1175    const static char     defaultLabel[] = "RSA key";
1176    BYTE            *pb;
1177    CPRI_HASH_STATE     h1;                    // contains the hash of the
1178                                               //   HMAC key w/ iPad
1179    CPRI_HASH_STATE     h2;                    // contains the hash of the
1180                                               //   HMAC key w/ oPad
1181    CPRI_HASH_STATE     h;                     // the working hash context
1182    BIGNUM             *bnP;
1183    BIGNUM             *bnQ;
1184    BIGNUM             *bnT;
1185    BIGNUM             *bnE;
1186    BIGNUM             *bnN;
1187    BN_CTX             *context;
1188    UINT32              rem;
1189    // Make sure that hashAlg is valid hash
1190    pAssert(digestSize != 0);
1191    // if present, use externally provided counter
1192    if(counter != NULL)
1193        outer = *counter;
1194    else
1195        outer = 1;
1196    // Validate exponent
1197    UINT32_TO_BYTE_ARRAY(e, swapped);
1198    // Need to check that the exponent is prime and not less than 3
1199    if( e != 0 && (e < 3 || !_math__IsPrime(e)))
1200         return CRYPT_FAIL;
1201    // Get structures for the big number representations
1202    context = BN_CTX_new();
1203    if(context == NULL)
1204        FAIL(FATAL_ERROR_ALLOCATION);
1205    BN_CTX_start(context);
1206    bnP = BN_CTX_get(context);
1207    bnQ = BN_CTX_get(context);
1208    bnT = BN_CTX_get(context);
1209    bnE = BN_CTX_get(context);
1210    bnN = BN_CTX_get(context);
1211    if(bnN == NULL)
1212        FAIL(FATAL_ERROR_INTERNAL);
1213    // Set Q to zero. This is used as a flag. The prime is computed in P. When a
1214    // new prime is found, Q is checked to see if it is zero. If so, P is copied
1215    // to Q and a new P is found. When both P and Q are non-zero, the modulus and
1216    // private exponent are computed and a trial encryption/decryption is
1217    // performed. If the encrypt/decrypt fails, assume that at least one of the
1218    // primes is composite. Since we don't know which one, set Q to zero and start
1219    // over and find a new pair of primes.
1220    BN_zero(bnQ);
1221    // Need to have some label
1222    if(label == NULL)
1223        label = (const char *)&defaultLabel;
1224    // Get the label size
1225    for(lLen = 0; label[lLen++] != 0;);
1226    // Start the hash using the seed and get the intermediate hash value
1227    _cpri__StartHMAC(hashAlg, FALSE, &h1, seed->size, seed->buffer, &oPadKey.b);
1228    _cpri__StartHash(hashAlg, FALSE, &h2);
1229    _cpri__UpdateHash(&h2, oPadKey.b.size, oPadKey.b.buffer);
1230    n->size = (keySizeInBits +7)/8;
1231    pAssert(n->size <= MAX_RSA_KEY_BYTES);
1232    p->size = n->size / 2;
1233    if(e == 0)
1234        e = RSA_DEFAULT_PUBLIC_EXPONENT;
1235    BN_set_word(bnE, e);
1236    // The first test will increment the counter from zero.
1237    for(outer += 1; outer != 0; outer++)
1238    {
1239        if(_plat__IsCanceled())
1240        {
1241            retVal = CRYPT_CANCEL;
1242            goto Cleanup;
1243        }
1244         // Need to fill in the candidate with the hash
1245         fill = digestSize;
1246         pb = p->buffer;
1247         // Reset the inner counter
1248         inner = 0;
1249         for(i = p->size; i > 0; i -= digestSize)
1250         {
1251             inner++;
1252             // Initialize the HMAC with saved state
1253             _cpri__CopyHashState(&h, &h1);
1254               // Hash the inner counter (the one that changes on each HMAC iteration)
1255               UINT32_TO_BYTE_ARRAY(inner, swapped);
1256              _cpri__UpdateHash(&h, 4, swapped);
1257              _cpri__UpdateHash(&h, lLen, (BYTE *)label);
1258              // Is there any party 1 data
1259              if(extra != NULL)
1260                  _cpri__UpdateHash(&h, extra->size, extra->buffer);
1261              // Include the outer counter (the one that changes on each prime
1262              // prime candidate generation
1263              UINT32_TO_BYTE_ARRAY(outer, swapped);
1264              _cpri__UpdateHash(&h, 4, swapped);
1265              _cpri__UpdateHash(&h, 2, (BYTE *)&keySizeInBits);
1266              if(i < fill)
1267                  fill = i;
1268              _cpri__CompleteHash(&h, fill, pb);
1269              // Restart the oPad hash
1270              _cpri__CopyHashState(&h, &h2);
1271              // Add the last hashed data
1272              _cpri__UpdateHash(&h, fill, pb);
1273              // gives a completed HMAC
1274              _cpri__CompleteHash(&h, fill, pb);
1275              pb += fill;
1276         }
1277         // Set the Most significant 2 bits and the low bit of the candidate
1278         p->buffer[0] |= 0xC0;
1279         p->buffer[p->size - 1] |= 1;
1280         // Convert the candidate to a BN
1281         BN_bin2bn(p->buffer, p->size, bnP);
1282         // If this is the second prime, make sure that it differs from the
1283         // first prime by at least 2^100
1284         if(!BN_is_zero(bnQ))
1285         {
1286             // bnQ is non-zero if we already found it
1287             if(BN_ucmp(bnP, bnQ) < 0)
1288                 BN_sub(bnT, bnQ, bnP);
1289             else
1290                 BN_sub(bnT, bnP, bnQ);
1291             if(BN_num_bits(bnT) < 100) // Difference has to be at least 100 bits
1292                 continue;
1293         }
1294         // Make sure that the prime candidate (p) is not divisible by the exponent
1295         // and that (p-1) is not divisible by the exponent
1296         // Get the remainder after dividing by the modulus
1297         rem = BN_mod_word(bnP, e);
1298         if(rem == 0) // evenly divisible so add two keeping the number odd and
1299             // making sure that 1 != p mod e
1300             BN_add_word(bnP, 2);
1301         else if(rem == 1) // leaves a remainder of 1 so subtract two keeping the
1302             // number odd and making (e-1) = p mod e
1303             BN_sub_word(bnP, 2);
1304         // Have a candidate, check for primality
1305         if((retVal = (CRYPT_RESULT)BN_is_prime_ex(bnP,
1306                      BN_prime_checks, NULL, NULL)) < 0)
1307             FAIL(FATAL_ERROR_INTERNAL);
1308         if(retVal != 1)
1309             continue;
1310         // Found a prime, is this the first or second.
1311         if(BN_is_zero(bnQ))
1312         {
1313               // copy p to q and compute another prime in p
1314               BN_copy(bnQ, bnP);
1315               continue;
1316         }
1317         //Form the public modulus
1318         BN_mul(bnN, bnP, bnQ, context);
1319         if(BN_num_bits(bnN) != keySizeInBits)
1320             FAIL(FATAL_ERROR_INTERNAL);
1321         // Save the public modulus
1322         BnTo2B(n, bnN, n->size); // Will pad the buffer to the correct size
1323         pAssert((n->buffer[0] & 0x80) != 0);
1324         // And one prime
1325         BnTo2B(p, bnP, p->size);
1326         pAssert((p->buffer[0] & 0x80) != 0);
1327         // Finish by making sure that we can form the modular inverse of PHI
1328         // with respect to the public exponent
1329         // Compute PHI = (p - 1)(q - 1) = n - p - q + 1
1330         // Make sure that we can form the modular inverse
1331         BN_sub(bnT, bnN, bnP);
1332         BN_sub(bnT, bnT, bnQ);
1333         BN_add_word(bnT, 1);
1334         // find d such that (Phi * d) mod e ==1
1335         // If there isn't then we are broken because we took the step
1336         // of making sure that the prime != 1 mod e so the modular inverse
1337         // must exist
1338         if(BN_mod_inverse(bnT, bnE, bnT, context) == NULL || BN_is_zero(bnT))
1339             FAIL(FATAL_ERROR_INTERNAL);
1340         // And, finally, do a trial encryption decryption
1341         {
1342             TPM2B_TYPE(RSA_KEY, MAX_RSA_KEY_BYTES);
1343             TPM2B_RSA_KEY        r;
1344             r.t.size = sizeof(n->size);
1345               // If we are using a seed, then results must be reproducible on each
1346               // call. Otherwise, just get a random number
1347               if(seed == NULL)
1348                   _cpri__GenerateRandom(n->size, r.t.buffer);
1349               else
1350               {
1351                   // this this version does not have a deterministic RNG, XOR the
1352                   // public key and private exponent to get a deterministic value
1353                   // for testing.
1354                   int          i;
1355                   // Generate a random-ish number starting with the public modulus
1356                   // XORed with the MSO of the seed
1357                   for(i = 0; i < n->size; i++)
1358                       r.t.buffer[i] = n->buffer[i] ^ seed->buffer[0];
1359               }
1360               // Make sure that the number is smaller than the public modulus
1361               r.t.buffer[0] &= 0x7F;
1362                      // Convert
1363               if(    BN_bin2bn(r.t.buffer, r.t.size, bnP) == NULL
1364                      // Encrypt with the public exponent
1365                   || BN_mod_exp(bnQ, bnP, bnE, bnN, context) != 1
1366                      // Decrypt with the private exponent
1367                   || BN_mod_exp(bnQ, bnQ, bnT, bnN, context) != 1)
1368                    FAIL(FATAL_ERROR_INTERNAL);
1369               // If the starting and ending values are not the same, start over )-;
1370               if(BN_ucmp(bnP, bnQ) != 0)
1371               {
1372                    BN_zero(bnQ);
1373                    continue;
1374              }
1375          }
1376          retVal = CRYPT_SUCCESS;
1377          goto Cleanup;
1378     }
1379     retVal = CRYPT_FAIL;
1380 Cleanup:
1381    // Close out the hash sessions
1382    _cpri__CompleteHash(&h2, 0, NULL);
1383    _cpri__CompleteHash(&h1, 0, NULL);
1384     // Free up allocated BN values
1385     BN_CTX_end(context);
1386     BN_CTX_free(context);
1387     if(counter != NULL)
1388         *counter = outer;
1389     return retVal;
1390 }
1391 #endif      // RSA_KEY_SIEVE
1392 #endif // TPM_ALG_RSA
1393