• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
15 #define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
16 
17 #include "HexagonRegisterInfo.h"
18 #include "MCTargetDesc/HexagonBaseInfo.h"
19 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
20 #include "llvm/Target/TargetFrameLowering.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 
23 #define GET_INSTRINFO_HEADER
24 #include "HexagonGenInstrInfo.inc"
25 
26 namespace llvm {
27 
28 struct EVT;
29 class HexagonSubtarget;
30 
31 class HexagonInstrInfo : public HexagonGenInstrInfo {
32   virtual void anchor();
33   const HexagonRegisterInfo RI;
34 
35 public:
36   explicit HexagonInstrInfo(HexagonSubtarget &ST);
37 
38   /// TargetInstrInfo overrides.
39   ///
40 
41   /// If the specified machine instruction is a direct
42   /// load from a stack slot, return the virtual or physical register number of
43   /// the destination along with the FrameIndex of the loaded stack slot.  If
44   /// not, return 0.  This predicate must return 0 if the instruction has
45   /// any side effects other than loading from the stack slot.
46   unsigned isLoadFromStackSlot(const MachineInstr *MI,
47                                int &FrameIndex) const override;
48 
49   /// If the specified machine instruction is a direct
50   /// store to a stack slot, return the virtual or physical register number of
51   /// the source reg along with the FrameIndex of the loaded stack slot.  If
52   /// not, return 0.  This predicate must return 0 if the instruction has
53   /// any side effects other than storing to the stack slot.
54   unsigned isStoreToStackSlot(const MachineInstr *MI,
55                               int &FrameIndex) const override;
56 
57   /// Analyze the branching code at the end of MBB, returning
58   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
59   /// implemented for a target).  Upon success, this returns false and returns
60   /// with the following information in various cases:
61   ///
62   /// 1. If this block ends with no branches (it just falls through to its succ)
63   ///    just return false, leaving TBB/FBB null.
64   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
65   ///    the destination block.
66   /// 3. If this block ends with a conditional branch and it falls through to a
67   ///    successor block, it sets TBB to be the branch destination block and a
68   ///    list of operands that evaluate the condition. These operands can be
69   ///    passed to other TargetInstrInfo methods to create new branches.
70   /// 4. If this block ends with a conditional branch followed by an
71   ///    unconditional branch, it returns the 'true' destination in TBB, the
72   ///    'false' destination in FBB, and a list of operands that evaluate the
73   ///    condition.  These operands can be passed to other TargetInstrInfo
74   ///    methods to create new branches.
75   ///
76   /// Note that RemoveBranch and InsertBranch must be implemented to support
77   /// cases where this method returns success.
78   ///
79   /// If AllowModify is true, then this routine is allowed to modify the basic
80   /// block (e.g. delete instructions after the unconditional branch).
81   ///
82   bool AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
83                          MachineBasicBlock *&FBB,
84                          SmallVectorImpl<MachineOperand> &Cond,
85                          bool AllowModify) const override;
86 
87   /// Remove the branching code at the end of the specific MBB.
88   /// This is only invoked in cases where AnalyzeBranch returns success. It
89   /// returns the number of instructions that were removed.
90   unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
91 
92   /// Insert branch code into the end of the specified MachineBasicBlock.
93   /// The operands to this method are the same as those
94   /// returned by AnalyzeBranch.  This is only invoked in cases where
95   /// AnalyzeBranch returns success. It returns the number of instructions
96   /// inserted.
97   ///
98   /// It is also invoked by tail merging to add unconditional branches in
99   /// cases where AnalyzeBranch doesn't apply because there was no original
100   /// branch to analyze.  At least this much must be implemented, else tail
101   /// merging needs to be disabled.
102   unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
103                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
104                         DebugLoc DL) const override;
105 
106   /// Return true if it's profitable to predicate
107   /// instructions with accumulated instruction latency of "NumCycles"
108   /// of the specified basic block, where the probability of the instructions
109   /// being executed is given by Probability, and Confidence is a measure
110   /// of our confidence that it will be properly predicted.
111   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
112                            unsigned ExtraPredCycles,
113                            BranchProbability Probability) const override;
114 
115   /// Second variant of isProfitableToIfCvt. This one
116   /// checks for the case where two basic blocks from true and false path
117   /// of a if-then-else (diamond) are predicated on mutally exclusive
118   /// predicates, where the probability of the true path being taken is given
119   /// by Probability, and Confidence is a measure of our confidence that it
120   /// will be properly predicted.
121   bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
122                            unsigned NumTCycles, unsigned ExtraTCycles,
123                            MachineBasicBlock &FMBB,
124                            unsigned NumFCycles, unsigned ExtraFCycles,
125                            BranchProbability Probability) const override;
126 
127   /// Return true if it's profitable for if-converter to duplicate instructions
128   /// of specified accumulated instruction latencies in the specified MBB to
129   /// enable if-conversion.
130   /// The probability of the instructions being executed is given by
131   /// Probability, and Confidence is a measure of our confidence that it
132   /// will be properly predicted.
133   bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
134                                  BranchProbability Probability) const override;
135 
136   /// Emit instructions to copy a pair of physical registers.
137   ///
138   /// This function should support copies within any legal register class as
139   /// well as any cross-class copies created during instruction selection.
140   ///
141   /// The source and destination registers may overlap, which may require a
142   /// careful implementation when multiple copy instructions are required for
143   /// large registers. See for example the ARM target.
144   void copyPhysReg(MachineBasicBlock &MBB,
145                    MachineBasicBlock::iterator I, DebugLoc DL,
146                    unsigned DestReg, unsigned SrcReg,
147                    bool KillSrc) const override;
148 
149   /// Store the specified register of the given register class to the specified
150   /// stack frame index. The store instruction is to be added to the given
151   /// machine basic block before the specified machine instruction. If isKill
152   /// is true, the register operand is the last use and must be marked kill.
153   void storeRegToStackSlot(MachineBasicBlock &MBB,
154                            MachineBasicBlock::iterator MBBI,
155                            unsigned SrcReg, bool isKill, int FrameIndex,
156                            const TargetRegisterClass *RC,
157                            const TargetRegisterInfo *TRI) const override;
158 
159   /// Load the specified register of the given register class from the specified
160   /// stack frame index. The load instruction is to be added to the given
161   /// machine basic block before the specified machine instruction.
162   void loadRegFromStackSlot(MachineBasicBlock &MBB,
163                             MachineBasicBlock::iterator MBBI,
164                             unsigned DestReg, int FrameIndex,
165                             const TargetRegisterClass *RC,
166                             const TargetRegisterInfo *TRI) const override;
167 
168   /// This function is called for all pseudo instructions
169   /// that remain after register allocation. Many pseudo instructions are
170   /// created to help register allocation. This is the place to convert them
171   /// into real instructions. The target can edit MI in place, or it can insert
172   /// new instructions and erase MI. The function should return true if
173   /// anything was changed.
174   bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
175 
176   /// Reverses the branch condition of the specified condition list,
177   /// returning false on success and true if it cannot be reversed.
178   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
179         const override;
180 
181   /// Insert a noop into the instruction stream at the specified point.
182   void insertNoop(MachineBasicBlock &MBB,
183                   MachineBasicBlock::iterator MI) const override;
184 
185   /// Returns true if the instruction is already predicated.
186   bool isPredicated(const MachineInstr *MI) const override;
187 
188   /// Convert the instruction into a predicated instruction.
189   /// It returns true if the operation was successful.
190   bool PredicateInstruction(MachineInstr *MI,
191                             ArrayRef<MachineOperand> Cond) const override;
192 
193   /// Returns true if the first specified predicate
194   /// subsumes the second, e.g. GE subsumes GT.
195   bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
196                          ArrayRef<MachineOperand> Pred2) const override;
197 
198   /// If the specified instruction defines any predicate
199   /// or condition code register(s) used for predication, returns true as well
200   /// as the definition predicate(s) by reference.
201   bool DefinesPredicate(MachineInstr *MI,
202                         std::vector<MachineOperand> &Pred) const override;
203 
204   /// Return true if the specified instruction can be predicated.
205   /// By default, this returns true for every instruction with a
206   /// PredicateOperand.
207   bool isPredicable(MachineInstr *MI) const override;
208 
209   /// Test if the given instruction should be considered a scheduling boundary.
210   /// This primarily includes labels and terminators.
211   bool isSchedulingBoundary(const MachineInstr *MI,
212                             const MachineBasicBlock *MBB,
213                             const MachineFunction &MF) const override;
214 
215   /// Measure the specified inline asm to determine an approximation of its
216   /// length.
217   unsigned getInlineAsmLength(const char *Str,
218                               const MCAsmInfo &MAI) const override;
219 
220   /// Allocate and return a hazard recognizer to use for this target when
221   /// scheduling the machine instructions after register allocation.
222   ScheduleHazardRecognizer*
223   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
224                                      const ScheduleDAG *DAG) const override;
225 
226   /// For a comparison instruction, return the source registers
227   /// in SrcReg and SrcReg2 if having two register operands, and the value it
228   /// compares against in CmpValue. Return true if the comparison instruction
229   /// can be analyzed.
230   bool analyzeCompare(const MachineInstr *MI,
231                       unsigned &SrcReg, unsigned &SrcReg2,
232                       int &Mask, int &Value) const override;
233 
234   /// Compute the instruction latency of a given instruction.
235   /// If the instruction has higher cost when predicated, it's returned via
236   /// PredCost.
237   unsigned getInstrLatency(const InstrItineraryData *ItinData,
238                            const MachineInstr *MI,
239                            unsigned *PredCost = 0) const override;
240 
241   /// Create machine specific model for scheduling.
242   DFAPacketizer *
243   CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override;
244 
245   // Sometimes, it is possible for the target
246   // to tell, even without aliasing information, that two MIs access different
247   // memory addresses. This function returns true if two MIs access different
248   // memory addresses and false otherwise.
249   bool areMemAccessesTriviallyDisjoint(MachineInstr *MIa, MachineInstr *MIb,
250                                        AliasAnalysis *AA = nullptr)
251                                        const override;
252 
253 
254   /// HexagonInstrInfo specifics.
255   ///
256 
getRegisterInfo()257   const HexagonRegisterInfo &getRegisterInfo() const { return RI; }
258 
259   unsigned createVR(MachineFunction* MF, MVT VT) const;
260 
261   bool isAbsoluteSet(const MachineInstr* MI) const;
262   bool isAccumulator(const MachineInstr *MI) const;
263   bool isComplex(const MachineInstr *MI) const;
264   bool isCompoundBranchInstr(const MachineInstr *MI) const;
265   bool isCondInst(const MachineInstr *MI) const;
266   bool isConditionalALU32 (const MachineInstr* MI) const;
267   bool isConditionalLoad(const MachineInstr* MI) const;
268   bool isConditionalStore(const MachineInstr* MI) const;
269   bool isConditionalTransfer(const MachineInstr* MI) const;
270   bool isConstExtended(const MachineInstr *MI) const;
271   bool isDeallocRet(const MachineInstr *MI) const;
272   bool isDependent(const MachineInstr *ProdMI,
273                    const MachineInstr *ConsMI) const;
274   bool isDotCurInst(const MachineInstr* MI) const;
275   bool isDotNewInst(const MachineInstr* MI) const;
276   bool isDuplexPair(const MachineInstr *MIa, const MachineInstr *MIb) const;
277   bool isEarlySourceInstr(const MachineInstr *MI) const;
278   bool isEndLoopN(unsigned Opcode) const;
279   bool isExpr(unsigned OpType) const;
280   bool isExtendable(const MachineInstr* MI) const;
281   bool isExtended(const MachineInstr* MI) const;
282   bool isFloat(const MachineInstr *MI) const;
283   bool isHVXMemWithAIndirect(const MachineInstr *I,
284                              const MachineInstr *J) const;
285   bool isIndirectCall(const MachineInstr *MI) const;
286   bool isIndirectL4Return(const MachineInstr *MI) const;
287   bool isJumpR(const MachineInstr *MI) const;
288   bool isJumpWithinBranchRange(const MachineInstr *MI, unsigned offset) const;
289   bool isLateInstrFeedsEarlyInstr(const MachineInstr *LRMI,
290                                   const MachineInstr *ESMI) const;
291   bool isLateResultInstr(const MachineInstr *MI) const;
292   bool isLateSourceInstr(const MachineInstr *MI) const;
293   bool isLoopN(const MachineInstr *MI) const;
294   bool isMemOp(const MachineInstr *MI) const;
295   bool isNewValue(const MachineInstr* MI) const;
296   bool isNewValue(unsigned Opcode) const;
297   bool isNewValueInst(const MachineInstr* MI) const;
298   bool isNewValueJump(const MachineInstr* MI) const;
299   bool isNewValueJump(unsigned Opcode) const;
300   bool isNewValueStore(const MachineInstr* MI) const;
301   bool isNewValueStore(unsigned Opcode) const;
302   bool isOperandExtended(const MachineInstr *MI, unsigned OperandNum) const;
303   bool isPostIncrement(const MachineInstr* MI) const;
304   bool isPredicatedNew(const MachineInstr *MI) const;
305   bool isPredicatedNew(unsigned Opcode) const;
306   bool isPredicatedTrue(const MachineInstr *MI) const;
307   bool isPredicatedTrue(unsigned Opcode) const;
308   bool isPredicated(unsigned Opcode) const;
309   bool isPredicateLate(unsigned Opcode) const;
310   bool isPredictedTaken(unsigned Opcode) const;
311   bool isSaveCalleeSavedRegsCall(const MachineInstr *MI) const;
312   bool isSolo(const MachineInstr* MI) const;
313   bool isSpillPredRegOp(const MachineInstr *MI) const;
314   bool isTC1(const MachineInstr *MI) const;
315   bool isTC2(const MachineInstr *MI) const;
316   bool isTC2Early(const MachineInstr *MI) const;
317   bool isTC4x(const MachineInstr *MI) const;
318   bool isV60VectorInstruction(const MachineInstr *MI) const;
319   bool isValidAutoIncImm(const EVT VT, const int Offset) const;
320   bool isValidOffset(unsigned Opcode, int Offset, bool Extend = true) const;
321   bool isVecAcc(const MachineInstr *MI) const;
322   bool isVecALU(const MachineInstr *MI) const;
323   bool isVecUsableNextPacket(const MachineInstr *ProdMI,
324                              const MachineInstr *ConsMI) const;
325 
326 
327   bool canExecuteInBundle(const MachineInstr *First,
328                           const MachineInstr *Second) const;
329   bool hasEHLabel(const MachineBasicBlock *B) const;
330   bool hasNonExtEquivalent(const MachineInstr *MI) const;
331   bool hasPseudoInstrPair(const MachineInstr *MI) const;
332   bool hasUncondBranch(const MachineBasicBlock *B) const;
333   bool mayBeCurLoad(const MachineInstr* MI) const;
334   bool mayBeNewStore(const MachineInstr* MI) const;
335   bool producesStall(const MachineInstr *ProdMI,
336                      const MachineInstr *ConsMI) const;
337   bool producesStall(const MachineInstr *MI,
338                      MachineBasicBlock::const_instr_iterator MII) const;
339   bool predCanBeUsedAsDotNew(const MachineInstr *MI, unsigned PredReg) const;
340   bool PredOpcodeHasJMP_c(unsigned Opcode) const;
341   bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const;
342 
343 
344   unsigned getAddrMode(const MachineInstr* MI) const;
345   unsigned getBaseAndOffset(const MachineInstr *MI, int &Offset,
346                             unsigned &AccessSize) const;
347   bool getBaseAndOffsetPosition(const MachineInstr *MI, unsigned &BasePos,
348                                 unsigned &OffsetPos) const;
349   SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const;
350   unsigned getCExtOpNum(const MachineInstr *MI) const;
351   HexagonII::CompoundGroup
352   getCompoundCandidateGroup(const MachineInstr *MI) const;
353   unsigned getCompoundOpcode(const MachineInstr *GA,
354                              const MachineInstr *GB) const;
355   int getCondOpcode(int Opc, bool sense) const;
356   int getDotCurOp(const MachineInstr* MI) const;
357   int getDotNewOp(const MachineInstr* MI) const;
358   int getDotNewPredJumpOp(const MachineInstr *MI,
359                           const MachineBranchProbabilityInfo *MBPI) const;
360   int getDotNewPredOp(const MachineInstr *MI,
361                       const MachineBranchProbabilityInfo *MBPI) const;
362   int getDotOldOp(const int opc) const;
363   HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr *MI)
364                                                          const;
365   short getEquivalentHWInstr(const MachineInstr *MI) const;
366   MachineInstr *getFirstNonDbgInst(MachineBasicBlock *BB) const;
367   unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData,
368                                       const MachineInstr *MI) const;
369   bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const;
370   unsigned getInvertedPredicatedOpcode(const int Opc) const;
371   int getMaxValue(const MachineInstr *MI) const;
372   unsigned getMemAccessSize(const MachineInstr* MI) const;
373   int getMinValue(const MachineInstr *MI) const;
374   short getNonExtOpcode(const MachineInstr *MI) const;
375   bool getPredReg(ArrayRef<MachineOperand> Cond, unsigned &PredReg,
376                   unsigned &PredRegPos, unsigned &PredRegFlags) const;
377   short getPseudoInstrPair(const MachineInstr *MI) const;
378   short getRegForm(const MachineInstr *MI) const;
379   unsigned getSize(const MachineInstr *MI) const;
380   uint64_t getType(const MachineInstr* MI) const;
381   unsigned getUnits(const MachineInstr* MI) const;
382   unsigned getValidSubTargets(const unsigned Opcode) const;
383 
384 
385   /// getInstrTimingClassLatency - Compute the instruction latency of a given
386   /// instruction using Timing Class information, if available.
387   unsigned nonDbgBBSize(const MachineBasicBlock *BB) const;
388   unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const;
389 
390 
391   void immediateExtend(MachineInstr *MI) const;
392   bool invertAndChangeJumpTarget(MachineInstr* MI,
393                                  MachineBasicBlock* NewTarget) const;
394   void genAllInsnTimingClasses(MachineFunction &MF) const;
395   bool reversePredSense(MachineInstr* MI) const;
396   unsigned reversePrediction(unsigned Opcode) const;
397   bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const;
398 };
399 
400 }
401 
402 #endif
403