• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define __STDC_LIMIT_MACROS
18 
19 #include <assert.h>
20 #include <stdint.h>
21 
22 #include <utils/LinearTransform.h>
23 
24 // disable sanitize as these functions may intentionally overflow (see comments below).
25 // the ifdef can be removed when host builds use clang.
26 #if defined(__clang__)
27 #define ATTRIBUTE_NO_SANITIZE_INTEGER __attribute__((no_sanitize("integer")))
28 #else
29 #define ATTRIBUTE_NO_SANITIZE_INTEGER
30 #endif
31 
32 namespace android {
33 
34 // sanitize failure with T = int32_t and x = 0x80000000
35 template<class T>
36 ATTRIBUTE_NO_SANITIZE_INTEGER
ABS(T x)37 static inline T ABS(T x) { return (x < 0) ? -x : x; }
38 
39 // Static math methods involving linear transformations
40 // remote sanitize failure on overflow case.
41 ATTRIBUTE_NO_SANITIZE_INTEGER
scale_u64_to_u64(uint64_t val,uint32_t N,uint32_t D,uint64_t * res,bool round_up_not_down)42 static bool scale_u64_to_u64(
43         uint64_t val,
44         uint32_t N,
45         uint32_t D,
46         uint64_t* res,
47         bool round_up_not_down) {
48     uint64_t tmp1, tmp2;
49     uint32_t r;
50 
51     assert(res);
52     assert(D);
53 
54     // Let U32(X) denote a uint32_t containing the upper 32 bits of a 64 bit
55     // integer X.
56     // Let L32(X) denote a uint32_t containing the lower 32 bits of a 64 bit
57     // integer X.
58     // Let X[A, B] with A <= B denote bits A through B of the integer X.
59     // Let (A | B) denote the concatination of two 32 bit ints, A and B.
60     // IOW X = (A | B) => U32(X) == A && L32(X) == B
61     //
62     // compute M = val * N (a 96 bit int)
63     // ---------------------------------
64     // tmp2 = U32(val) * N (a 64 bit int)
65     // tmp1 = L32(val) * N (a 64 bit int)
66     // which means
67     // M = val * N = (tmp2 << 32) + tmp1
68     tmp2 = (val >> 32) * N;
69     tmp1 = (val & UINT32_MAX) * N;
70 
71     // compute M[32, 95]
72     // tmp2 = tmp2 + U32(tmp1)
73     //      = (U32(val) * N) + U32(L32(val) * N)
74     //      = M[32, 95]
75     tmp2 += tmp1 >> 32;
76 
77     // if M[64, 95] >= D, then M/D has bits > 63 set and we have
78     // an overflow.
79     if ((tmp2 >> 32) >= D) {
80         *res = UINT64_MAX;
81         return false;
82     }
83 
84     // Divide.  Going in we know
85     // tmp2 = M[32, 95]
86     // U32(tmp2) < D
87     r = tmp2 % D;
88     tmp2 /= D;
89 
90     // At this point
91     // tmp1      = L32(val) * N
92     // tmp2      = M[32, 95] / D
93     //           = (M / D)[32, 95]
94     // r         = M[32, 95] % D
95     // U32(tmp2) = 0
96     //
97     // compute tmp1 = (r | M[0, 31])
98     tmp1 = (tmp1 & UINT32_MAX) | ((uint64_t)r << 32);
99 
100     // Divide again.  Keep the remainder around in order to round properly.
101     r = tmp1 % D;
102     tmp1 /= D;
103 
104     // At this point
105     // tmp2      = (M / D)[32, 95]
106     // tmp1      = (M / D)[ 0, 31]
107     // r         =  M % D
108     // U32(tmp1) = 0
109     // U32(tmp2) = 0
110 
111     // Pack the result and deal with the round-up case (As well as the
112     // remote possiblility over overflow in such a case).
113     *res = (tmp2 << 32) | tmp1;
114     if (r && round_up_not_down) {
115         ++(*res);
116         if (!(*res)) {
117             *res = UINT64_MAX;
118             return false;
119         }
120     }
121 
122     return true;
123 }
124 
125 // at least one known sanitize failure (see comment below)
126 ATTRIBUTE_NO_SANITIZE_INTEGER
linear_transform_s64_to_s64(int64_t val,int64_t basis1,int32_t N,uint32_t D,bool invert_frac,int64_t basis2,int64_t * out)127 static bool linear_transform_s64_to_s64(
128         int64_t  val,
129         int64_t  basis1,
130         int32_t  N,
131         uint32_t D,
132         bool     invert_frac,
133         int64_t  basis2,
134         int64_t* out) {
135     uint64_t scaled, res;
136     uint64_t abs_val;
137     bool is_neg;
138 
139     if (!out)
140         return false;
141 
142     // Compute abs(val - basis_64). Keep track of whether or not this delta
143     // will be negative after the scale opertaion.
144     if (val < basis1) {
145         is_neg = true;
146         abs_val = basis1 - val;
147     } else {
148         is_neg = false;
149         abs_val = val - basis1;
150     }
151 
152     if (N < 0)
153         is_neg = !is_neg;
154 
155     if (!scale_u64_to_u64(abs_val,
156                           invert_frac ? D : ABS(N),
157                           invert_frac ? ABS(N) : D,
158                           &scaled,
159                           is_neg))
160         return false; // overflow/undeflow
161 
162     // if scaled is >= 0x8000<etc>, then we are going to overflow or
163     // underflow unless ABS(basis2) is large enough to pull us back into the
164     // non-overflow/underflow region.
165     if (scaled & INT64_MIN) {
166         if (is_neg && (basis2 < 0))
167             return false; // certain underflow
168 
169         if (!is_neg && (basis2 >= 0))
170             return false; // certain overflow
171 
172         if (ABS(basis2) <= static_cast<int64_t>(scaled & INT64_MAX))
173             return false; // not enough
174 
175         // Looks like we are OK
176         *out = (is_neg ? (-scaled) : scaled) + basis2;
177     } else {
178         // Scaled fits within signed bounds, so we just need to check for
179         // over/underflow for two signed integers.  Basically, if both scaled
180         // and basis2 have the same sign bit, and the result has a different
181         // sign bit, then we have under/overflow.  An easy way to compute this
182         // is
183         // (scaled_signbit XNOR basis_signbit) &&
184         // (scaled_signbit XOR res_signbit)
185         // ==
186         // (scaled_signbit XOR basis_signbit XOR 1) &&
187         // (scaled_signbit XOR res_signbit)
188 
189         if (is_neg)
190             scaled = -scaled; // known sanitize failure
191         res = scaled + basis2;
192 
193         if ((scaled ^ basis2 ^ INT64_MIN) & (scaled ^ res) & INT64_MIN)
194             return false;
195 
196         *out = res;
197     }
198 
199     return true;
200 }
201 
doForwardTransform(int64_t a_in,int64_t * b_out) const202 bool LinearTransform::doForwardTransform(int64_t a_in, int64_t* b_out) const {
203     if (0 == a_to_b_denom)
204         return false;
205 
206     return linear_transform_s64_to_s64(a_in,
207                                        a_zero,
208                                        a_to_b_numer,
209                                        a_to_b_denom,
210                                        false,
211                                        b_zero,
212                                        b_out);
213 }
214 
doReverseTransform(int64_t b_in,int64_t * a_out) const215 bool LinearTransform::doReverseTransform(int64_t b_in, int64_t* a_out) const {
216     if (0 == a_to_b_numer)
217         return false;
218 
219     return linear_transform_s64_to_s64(b_in,
220                                        b_zero,
221                                        a_to_b_numer,
222                                        a_to_b_denom,
223                                        true,
224                                        a_zero,
225                                        a_out);
226 }
227 
reduce(T * N,T * D)228 template <class T> void LinearTransform::reduce(T* N, T* D) {
229     T a, b;
230     if (!N || !D || !(*D)) {
231         assert(false);
232         return;
233     }
234 
235     a = *N;
236     b = *D;
237 
238     if (a == 0) {
239         *D = 1;
240         return;
241     }
242 
243     // This implements Euclid's method to find GCD.
244     if (a < b) {
245         T tmp = a;
246         a = b;
247         b = tmp;
248     }
249 
250     while (1) {
251         // a is now the greater of the two.
252         const T remainder = a % b;
253         if (remainder == 0) {
254             *N /= b;
255             *D /= b;
256             return;
257         }
258         // by swapping remainder and b, we are guaranteeing that a is
259         // still the greater of the two upon entrance to the loop.
260         a = b;
261         b = remainder;
262     }
263 };
264 
265 template void LinearTransform::reduce<uint64_t>(uint64_t* N, uint64_t* D);
266 template void LinearTransform::reduce<uint32_t>(uint32_t* N, uint32_t* D);
267 
268 // sanitize failure if *N = 0x80000000
269 ATTRIBUTE_NO_SANITIZE_INTEGER
reduce(int32_t * N,uint32_t * D)270 void LinearTransform::reduce(int32_t* N, uint32_t* D) {
271     if (N && D && *D) {
272         if (*N < 0) {
273             *N = -(*N);
274             reduce(reinterpret_cast<uint32_t*>(N), D);
275             *N = -(*N);
276         } else {
277             reduce(reinterpret_cast<uint32_t*>(N), D);
278         }
279     }
280 }
281 
282 }  // namespace android
283