1diff --git a/lib/crypto/crypto_scrypt-neon-salsa208.h b/lib/crypto/crypto_scrypt-neon-salsa208.h 2new file mode 100644 3index 0000000..a3b1019 4--- /dev/null 5+++ b/lib/crypto/crypto_scrypt-neon-salsa208.h 6@@ -0,0 +1,120 @@ 7+/* 8+ * version 20110505 9+ * D. J. Bernstein 10+ * Public domain. 11+ * 12+ * Based on crypto_core/salsa208/armneon/core.c from SUPERCOP 20130419 13+ */ 14+ 15+#define ROUNDS 8 16+static void 17+salsa20_8_intrinsic(void * input) 18+{ 19+ int i; 20+ 21+ const uint32x4_t abab = {-1,0,-1,0}; 22+ 23+ /* 24+ * This is modified since we only have one argument. Usually you'd rearrange 25+ * the constant, key, and input bytes, but we just have one linear array to 26+ * rearrange which is a bit easier. 27+ */ 28+ 29+ /* 30+ * Change the input to be diagonals as if it's a 4x4 matrix of 32-bit values. 31+ */ 32+ uint32x4_t x0x5x10x15; 33+ uint32x4_t x12x1x6x11; 34+ uint32x4_t x8x13x2x7; 35+ uint32x4_t x4x9x14x3; 36+ 37+ uint32x4_t x0x1x10x11; 38+ uint32x4_t x12x13x6x7; 39+ uint32x4_t x8x9x2x3; 40+ uint32x4_t x4x5x14x15; 41+ 42+ uint32x4_t x0x1x2x3; 43+ uint32x4_t x4x5x6x7; 44+ uint32x4_t x8x9x10x11; 45+ uint32x4_t x12x13x14x15; 46+ 47+ x0x1x2x3 = vld1q_u8((uint8_t *) input); 48+ x4x5x6x7 = vld1q_u8(16 + (uint8_t *) input); 49+ x8x9x10x11 = vld1q_u8(32 + (uint8_t *) input); 50+ x12x13x14x15 = vld1q_u8(48 + (uint8_t *) input); 51+ 52+ x0x1x10x11 = vcombine_u32(vget_low_u32(x0x1x2x3), vget_high_u32(x8x9x10x11)); 53+ x4x5x14x15 = vcombine_u32(vget_low_u32(x4x5x6x7), vget_high_u32(x12x13x14x15)); 54+ x8x9x2x3 = vcombine_u32(vget_low_u32(x8x9x10x11), vget_high_u32(x0x1x2x3)); 55+ x12x13x6x7 = vcombine_u32(vget_low_u32(x12x13x14x15), vget_high_u32(x4x5x6x7)); 56+ 57+ x0x5x10x15 = vbslq_u32(abab,x0x1x10x11,x4x5x14x15); 58+ x8x13x2x7 = vbslq_u32(abab,x8x9x2x3,x12x13x6x7); 59+ x4x9x14x3 = vbslq_u32(abab,x4x5x14x15,x8x9x2x3); 60+ x12x1x6x11 = vbslq_u32(abab,x12x13x6x7,x0x1x10x11); 61+ 62+ uint32x4_t start0 = x0x5x10x15; 63+ uint32x4_t start1 = x12x1x6x11; 64+ uint32x4_t start3 = x4x9x14x3; 65+ uint32x4_t start2 = x8x13x2x7; 66+ 67+ /* From here on this should be the same as the SUPERCOP version. */ 68+ 69+ uint32x4_t diag0 = start0; 70+ uint32x4_t diag1 = start1; 71+ uint32x4_t diag2 = start2; 72+ uint32x4_t diag3 = start3; 73+ 74+ uint32x4_t a0; 75+ uint32x4_t a1; 76+ uint32x4_t a2; 77+ uint32x4_t a3; 78+ 79+ for (i = ROUNDS;i > 0;i -= 2) { 80+ a0 = diag1 + diag0; 81+ diag3 ^= vsriq_n_u32(vshlq_n_u32(a0,7),a0,25); 82+ a1 = diag0 + diag3; 83+ diag2 ^= vsriq_n_u32(vshlq_n_u32(a1,9),a1,23); 84+ a2 = diag3 + diag2; 85+ diag1 ^= vsriq_n_u32(vshlq_n_u32(a2,13),a2,19); 86+ a3 = diag2 + diag1; 87+ diag0 ^= vsriq_n_u32(vshlq_n_u32(a3,18),a3,14); 88+ 89+ diag3 = vextq_u32(diag3,diag3,3); 90+ diag2 = vextq_u32(diag2,diag2,2); 91+ diag1 = vextq_u32(diag1,diag1,1); 92+ 93+ a0 = diag3 + diag0; 94+ diag1 ^= vsriq_n_u32(vshlq_n_u32(a0,7),a0,25); 95+ a1 = diag0 + diag1; 96+ diag2 ^= vsriq_n_u32(vshlq_n_u32(a1,9),a1,23); 97+ a2 = diag1 + diag2; 98+ diag3 ^= vsriq_n_u32(vshlq_n_u32(a2,13),a2,19); 99+ a3 = diag2 + diag3; 100+ diag0 ^= vsriq_n_u32(vshlq_n_u32(a3,18),a3,14); 101+ 102+ diag1 = vextq_u32(diag1,diag1,3); 103+ diag2 = vextq_u32(diag2,diag2,2); 104+ diag3 = vextq_u32(diag3,diag3,1); 105+ } 106+ 107+ x0x5x10x15 = diag0 + start0; 108+ x12x1x6x11 = diag1 + start1; 109+ x8x13x2x7 = diag2 + start2; 110+ x4x9x14x3 = diag3 + start3; 111+ 112+ x0x1x10x11 = vbslq_u32(abab,x0x5x10x15,x12x1x6x11); 113+ x12x13x6x7 = vbslq_u32(abab,x12x1x6x11,x8x13x2x7); 114+ x8x9x2x3 = vbslq_u32(abab,x8x13x2x7,x4x9x14x3); 115+ x4x5x14x15 = vbslq_u32(abab,x4x9x14x3,x0x5x10x15); 116+ 117+ x0x1x2x3 = vcombine_u32(vget_low_u32(x0x1x10x11),vget_high_u32(x8x9x2x3)); 118+ x4x5x6x7 = vcombine_u32(vget_low_u32(x4x5x14x15),vget_high_u32(x12x13x6x7)); 119+ x8x9x10x11 = vcombine_u32(vget_low_u32(x8x9x2x3),vget_high_u32(x0x1x10x11)); 120+ x12x13x14x15 = vcombine_u32(vget_low_u32(x12x13x6x7),vget_high_u32(x4x5x14x15)); 121+ 122+ vst1q_u8((uint8_t *) input,(uint8x16_t) x0x1x2x3); 123+ vst1q_u8(16 + (uint8_t *) input,(uint8x16_t) x4x5x6x7); 124+ vst1q_u8(32 + (uint8_t *) input,(uint8x16_t) x8x9x10x11); 125+ vst1q_u8(48 + (uint8_t *) input,(uint8x16_t) x12x13x14x15); 126+} 127diff --git a/lib/crypto/crypto_scrypt-neon.c b/lib/crypto/crypto_scrypt-neon.c 128new file mode 100644 129index 0000000..a3bf052 130--- /dev/null 131+++ b/lib/crypto/crypto_scrypt-neon.c 132@@ -0,0 +1,305 @@ 133+/*- 134+ * Copyright 2009 Colin Percival 135+ * All rights reserved. 136+ * 137+ * Redistribution and use in source and binary forms, with or without 138+ * modification, are permitted provided that the following conditions 139+ * are met: 140+ * 1. Redistributions of source code must retain the above copyright 141+ * notice, this list of conditions and the following disclaimer. 142+ * 2. Redistributions in binary form must reproduce the above copyright 143+ * notice, this list of conditions and the following disclaimer in the 144+ * documentation and/or other materials provided with the distribution. 145+ * 146+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 147+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 148+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 149+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 150+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 151+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 152+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 153+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 154+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 155+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 156+ * SUCH DAMAGE. 157+ * 158+ * This file was originally written by Colin Percival as part of the Tarsnap 159+ * online backup system. 160+ */ 161+#include "scrypt_platform.h" 162+ 163+#include <machine/cpu-features.h> 164+#include <arm_neon.h> 165+ 166+#include <errno.h> 167+#include <stdint.h> 168+#include <limits.h> 169+#include <stdlib.h> 170+#include <string.h> 171+ 172+#ifdef USE_OPENSSL_PBKDF2 173+#include <openssl/evp.h> 174+#else 175+#include "sha256.h" 176+#endif 177+#include "sysendian.h" 178+ 179+#include "crypto_scrypt.h" 180+ 181+#include "crypto_scrypt-neon-salsa208.h" 182+ 183+static void blkcpy(void *, void *, size_t); 184+static void blkxor(void *, void *, size_t); 185+void crypto_core_salsa208_armneon2(void *); 186+static void blockmix_salsa8(uint8x16_t *, uint8x16_t *, uint8x16_t *, size_t); 187+static uint64_t integerify(void *, size_t); 188+static void smix(uint8_t *, size_t, uint64_t, void *, void *); 189+ 190+static void 191+blkcpy(void * dest, void * src, size_t len) 192+{ 193+ uint8x16_t * D = dest; 194+ uint8x16_t * S = src; 195+ size_t L = len / 16; 196+ size_t i; 197+ 198+ for (i = 0; i < L; i++) 199+ D[i] = S[i]; 200+} 201+ 202+static void 203+blkxor(void * dest, void * src, size_t len) 204+{ 205+ uint8x16_t * D = dest; 206+ uint8x16_t * S = src; 207+ size_t L = len / 16; 208+ size_t i; 209+ 210+ for (i = 0; i < L; i++) 211+ D[i] = veorq_u8(D[i], S[i]); 212+} 213+ 214+/** 215+ * blockmix_salsa8(B, Y, r): 216+ * Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in 217+ * length; the temporary space Y must also be the same size. 218+ */ 219+static void 220+blockmix_salsa8(uint8x16_t * Bin, uint8x16_t * Bout, uint8x16_t * X, size_t r) 221+{ 222+ size_t i; 223+ 224+ /* 1: X <-- B_{2r - 1} */ 225+ blkcpy(X, &Bin[8 * r - 4], 64); 226+ 227+ /* 2: for i = 0 to 2r - 1 do */ 228+ for (i = 0; i < r; i++) { 229+ /* 3: X <-- H(X \xor B_i) */ 230+ blkxor(X, &Bin[i * 8], 64); 231+ salsa20_8_intrinsic((void *) X); 232+ 233+ /* 4: Y_i <-- X */ 234+ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ 235+ blkcpy(&Bout[i * 4], X, 64); 236+ 237+ /* 3: X <-- H(X \xor B_i) */ 238+ blkxor(X, &Bin[i * 8 + 4], 64); 239+ salsa20_8_intrinsic((void *) X); 240+ 241+ /* 4: Y_i <-- X */ 242+ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ 243+ blkcpy(&Bout[(r + i) * 4], X, 64); 244+ } 245+} 246+ 247+/** 248+ * integerify(B, r): 249+ * Return the result of parsing B_{2r-1} as a little-endian integer. 250+ */ 251+static uint64_t 252+integerify(void * B, size_t r) 253+{ 254+ uint8_t * X = (void*)((uintptr_t)(B) + (2 * r - 1) * 64); 255+ 256+ return (le64dec(X)); 257+} 258+ 259+/** 260+ * smix(B, r, N, V, XY): 261+ * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the 262+ * temporary storage V must be 128rN bytes in length; the temporary storage 263+ * XY must be 256r bytes in length. The value N must be a power of 2. 264+ */ 265+static void 266+smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY) 267+{ 268+ uint8x16_t * X = XY; 269+ uint8x16_t * Y = (void *)((uintptr_t)(XY) + 128 * r); 270+ uint8x16_t * Z = (void *)((uintptr_t)(XY) + 256 * r); 271+ uint32_t * X32 = (void *)X; 272+ uint64_t i, j; 273+ size_t k; 274+ 275+ /* 1: X <-- B */ 276+ blkcpy(X, B, 128 * r); 277+ 278+ /* 2: for i = 0 to N - 1 do */ 279+ for (i = 0; i < N; i += 2) { 280+ /* 3: V_i <-- X */ 281+ blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r); 282+ 283+ /* 4: X <-- H(X) */ 284+ blockmix_salsa8(X, Y, Z, r); 285+ 286+ /* 3: V_i <-- X */ 287+ blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r), 288+ Y, 128 * r); 289+ 290+ /* 4: X <-- H(X) */ 291+ blockmix_salsa8(Y, X, Z, r); 292+ } 293+ 294+ /* 6: for i = 0 to N - 1 do */ 295+ for (i = 0; i < N; i += 2) { 296+ /* 7: j <-- Integerify(X) mod N */ 297+ j = integerify(X, r) & (N - 1); 298+ 299+ /* 8: X <-- H(X \xor V_j) */ 300+ blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); 301+ blockmix_salsa8(X, Y, Z, r); 302+ 303+ /* 7: j <-- Integerify(X) mod N */ 304+ j = integerify(Y, r) & (N - 1); 305+ 306+ /* 8: X <-- H(X \xor V_j) */ 307+ blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); 308+ blockmix_salsa8(Y, X, Z, r); 309+ } 310+ 311+ /* 10: B' <-- X */ 312+ blkcpy(B, X, 128 * r); 313+} 314+ 315+/** 316+ * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): 317+ * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, 318+ * p, buflen) and write the result into buf. The parameters r, p, and buflen 319+ * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N 320+ * must be a power of 2. 321+ * 322+ * Return 0 on success; or -1 on error. 323+ */ 324+int 325+crypto_scrypt(const uint8_t * passwd, size_t passwdlen, 326+ const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, 327+ uint8_t * buf, size_t buflen) 328+{ 329+ void * B0, * V0, * XY0; 330+ uint8_t * B; 331+ uint32_t * V; 332+ uint32_t * XY; 333+ uint32_t i; 334+ 335+ /* Sanity-check parameters. */ 336+#if SIZE_MAX > UINT32_MAX 337+ if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { 338+ errno = EFBIG; 339+ goto err0; 340+ } 341+#endif 342+ if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { 343+ errno = EFBIG; 344+ goto err0; 345+ } 346+ if (((N & (N - 1)) != 0) || (N == 0)) { 347+ errno = EINVAL; 348+ goto err0; 349+ } 350+ if ((r > SIZE_MAX / 128 / p) || 351+#if SIZE_MAX / 256 <= UINT32_MAX 352+ (r > SIZE_MAX / 256) || 353+#endif 354+ (N > SIZE_MAX / 128 / r)) { 355+ errno = ENOMEM; 356+ goto err0; 357+ } 358+ 359+ /* Allocate memory. */ 360+#ifdef HAVE_POSIX_MEMALIGN 361+ if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0) 362+ goto err0; 363+ B = (uint8_t *)(B0); 364+ if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0) 365+ goto err1; 366+ XY = (uint32_t *)(XY0); 367+#ifndef MAP_ANON 368+ if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0) 369+ goto err2; 370+ V = (uint32_t *)(V0); 371+#endif 372+#else 373+ if ((B0 = malloc(128 * r * p + 63)) == NULL) 374+ goto err0; 375+ B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63)); 376+ if ((XY0 = malloc(256 * r + 64 + 63)) == NULL) 377+ goto err1; 378+ XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63)); 379+#ifndef MAP_ANON 380+ if ((V0 = malloc(128 * r * N + 63)) == NULL) 381+ goto err2; 382+ V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63)); 383+#endif 384+#endif 385+#ifdef MAP_ANON 386+ if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE, 387+#ifdef MAP_NOCORE 388+ MAP_ANON | MAP_PRIVATE | MAP_NOCORE, 389+#else 390+ MAP_ANON | MAP_PRIVATE, 391+#endif 392+ -1, 0)) == MAP_FAILED) 393+ goto err2; 394+ V = (uint32_t *)(V0); 395+#endif 396+ 397+ /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ 398+#ifdef USE_OPENSSL_PBKDF2 399+ PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B); 400+#else 401+ PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); 402+#endif 403+ 404+ /* 2: for i = 0 to p - 1 do */ 405+ for (i = 0; i < p; i++) { 406+ /* 3: B_i <-- MF(B_i, N) */ 407+ smix(&B[i * 128 * r], r, N, V, XY); 408+ } 409+ 410+ /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ 411+#ifdef USE_OPENSSL_PBKDF2 412+ PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf); 413+#else 414+ PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); 415+#endif 416+ 417+ /* Free memory. */ 418+#ifdef MAP_ANON 419+ if (munmap(V0, 128 * r * N)) 420+ goto err2; 421+#else 422+ free(V0); 423+#endif 424+ free(XY0); 425+ free(B0); 426+ 427+ /* Success! */ 428+ return (0); 429+ 430+err2: 431+ free(XY0); 432+err1: 433+ free(B0); 434+err0: 435+ /* Failure! */ 436+ return (-1); 437+} 438