• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2013 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #ifndef CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_
32 #define CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_
33 
34 #include <vector>
35 #include "ceres/internal/port.h"
36 
37 namespace ceres {
38 namespace internal {
39 
40 // Extract the block sparsity pattern of the scalar compressed columns
41 // matrix and return it in compressed column form. The compressed
42 // column form is stored in two vectors block_rows, and block_cols,
43 // which correspond to the row and column arrays in a compressed
44 // column sparse matrix.
45 //
46 // If c_ij is the block in the matrix A corresponding to row block i
47 // and column block j, then it is expected that A contains at least
48 // one non-zero entry corresponding to the top left entry of c_ij,
49 // as that entry is used to detect the presence of a non-zero c_ij.
50 void CompressedColumnScalarMatrixToBlockMatrix(const int* scalar_rows,
51                                                const int* scalar_cols,
52                                                const vector<int>& row_blocks,
53                                                const vector<int>& col_blocks,
54                                                vector<int>* block_rows,
55                                                vector<int>* block_cols);
56 
57 // Given a set of blocks and a permutation of these blocks, compute
58 // the corresponding "scalar" ordering, where the scalar ordering of
59 // size sum(blocks).
60 void BlockOrderingToScalarOrdering(const vector<int>& blocks,
61                                    const vector<int>& block_ordering,
62                                    vector<int>* scalar_ordering);
63 
64 // Solve the linear system
65 //
66 //   R * solution = rhs
67 //
68 // Where R is an upper triangular compressed column sparse matrix.
69 template <typename IntegerType>
SolveUpperTriangularInPlace(IntegerType num_cols,const IntegerType * rows,const IntegerType * cols,const double * values,double * rhs_and_solution)70 void SolveUpperTriangularInPlace(IntegerType num_cols,
71                                  const IntegerType* rows,
72                                  const IntegerType* cols,
73                                  const double* values,
74                                  double* rhs_and_solution) {
75   for (IntegerType c = num_cols - 1; c >= 0; --c) {
76     rhs_and_solution[c] /= values[cols[c + 1] - 1];
77     for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) {
78       const IntegerType r = rows[idx];
79       const double v = values[idx];
80       rhs_and_solution[r] -= v * rhs_and_solution[c];
81     }
82   }
83 }
84 
85 // Solve the linear system
86 //
87 //   R' * solution = rhs
88 //
89 // Where R is an upper triangular compressed column sparse matrix.
90 template <typename IntegerType>
SolveUpperTriangularTransposeInPlace(IntegerType num_cols,const IntegerType * rows,const IntegerType * cols,const double * values,double * rhs_and_solution)91 void SolveUpperTriangularTransposeInPlace(IntegerType num_cols,
92                                           const IntegerType* rows,
93                                           const IntegerType* cols,
94                                           const double* values,
95                                           double* rhs_and_solution) {
96   for (IntegerType c = 0; c < num_cols; ++c) {
97     for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) {
98       const IntegerType r = rows[idx];
99       const double v = values[idx];
100       rhs_and_solution[c] -= v * rhs_and_solution[r];
101     }
102     rhs_and_solution[c] =  rhs_and_solution[c] / values[cols[c + 1] - 1];
103   }
104 }
105 
106 // Given a upper triangular matrix R in compressed column form, solve
107 // the linear system,
108 //
109 //  R'R x = b
110 //
111 // Where b is all zeros except for rhs_nonzero_index, where it is
112 // equal to one.
113 //
114 // The function exploits this knowledge to reduce the number of
115 // floating point operations.
116 template <typename IntegerType>
SolveRTRWithSparseRHS(IntegerType num_cols,const IntegerType * rows,const IntegerType * cols,const double * values,const int rhs_nonzero_index,double * solution)117 void SolveRTRWithSparseRHS(IntegerType num_cols,
118                            const IntegerType* rows,
119                            const IntegerType* cols,
120                            const double* values,
121                            const int rhs_nonzero_index,
122                            double* solution) {
123   fill(solution, solution + num_cols, 0.0);
124   solution[rhs_nonzero_index] = 1.0 / values[cols[rhs_nonzero_index + 1] - 1];
125 
126   for (IntegerType c = rhs_nonzero_index + 1; c < num_cols; ++c) {
127     for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) {
128       const IntegerType r = rows[idx];
129       if (r < rhs_nonzero_index) continue;
130       const double v = values[idx];
131       solution[c] -= v * solution[r];
132     }
133     solution[c] =  solution[c] / values[cols[c + 1] - 1];
134   }
135 
136   SolveUpperTriangularInPlace(num_cols, rows, cols, values, solution);
137 }
138 
139 }  // namespace internal
140 }  // namespace ceres
141 
142 #endif  // CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_
143