1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 //
31 // Computation of the Jacobian matrix for vector-valued functions of multiple
32 // variables, using automatic differentiation based on the implementation of
33 // dual numbers in jet.h. Before reading the rest of this file, it is adivsable
34 // to read jet.h's header comment in detail.
35 //
36 // The helper wrapper AutoDiff::Differentiate() computes the jacobian of
37 // functors with templated operator() taking this form:
38 //
39 // struct F {
40 // template<typename T>
41 // bool operator()(const T *x, const T *y, ..., T *z) {
42 // // Compute z[] based on x[], y[], ...
43 // // return true if computation succeeded, false otherwise.
44 // }
45 // };
46 //
47 // All inputs and outputs may be vector-valued.
48 //
49 // To understand how jets are used to compute the jacobian, a
50 // picture may help. Consider a vector-valued function, F, returning 3
51 // dimensions and taking a vector-valued parameter of 4 dimensions:
52 //
53 // y x
54 // [ * ] F [ * ]
55 // [ * ] <--- [ * ]
56 // [ * ] [ * ]
57 // [ * ]
58 //
59 // Similar to the 2-parameter example for f described in jet.h, computing the
60 // jacobian dy/dx is done by substutiting a suitable jet object for x and all
61 // intermediate steps of the computation of F. Since x is has 4 dimensions, use
62 // a Jet<double, 4>.
63 //
64 // Before substituting a jet object for x, the dual components are set
65 // appropriately for each dimension of x:
66 //
67 // y x
68 // [ * | * * * * ] f [ * | 1 0 0 0 ] x0
69 // [ * | * * * * ] <--- [ * | 0 1 0 0 ] x1
70 // [ * | * * * * ] [ * | 0 0 1 0 ] x2
71 // ---+--- [ * | 0 0 0 1 ] x3
72 // | ^ ^ ^ ^
73 // dy/dx | | | +----- infinitesimal for x3
74 // | | +------- infinitesimal for x2
75 // | +--------- infinitesimal for x1
76 // +----------- infinitesimal for x0
77 //
78 // The reason to set the internal 4x4 submatrix to the identity is that we wish
79 // to take the derivative of y separately with respect to each dimension of x.
80 // Each column of the 4x4 identity is therefore for a single component of the
81 // independent variable x.
82 //
83 // Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the
84 // extended y vector, indicated in the above diagram.
85 //
86 // Functors with multiple parameters
87 // ---------------------------------
88 // In practice, it is often convenient to use a function f of two or more
89 // vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet
90 // framework is designed for a single-parameter vector-valued input. The wrapper
91 // in this file addresses this issue adding support for functions with one or
92 // more parameter vectors.
93 //
94 // To support multiple parameters, all the parameter vectors are concatenated
95 // into one and treated as a single parameter vector, except that since the
96 // functor expects different inputs, we need to construct the jets as if they
97 // were part of a single parameter vector. The extended jets are passed
98 // separately for each parameter.
99 //
100 // For example, consider a functor F taking two vector parameters, p[2] and
101 // q[3], and producing an output y[4]:
102 //
103 // struct F {
104 // template<typename T>
105 // bool operator()(const T *p, const T *q, T *z) {
106 // // ...
107 // }
108 // };
109 //
110 // In this case, the necessary jet type is Jet<double, 5>. Here is a
111 // visualization of the jet objects in this case:
112 //
113 // Dual components for p ----+
114 // |
115 // -+-
116 // y [ * | 1 0 | 0 0 0 ] --- p[0]
117 // [ * | 0 1 | 0 0 0 ] --- p[1]
118 // [ * | . . | + + + ] |
119 // [ * | . . | + + + ] v
120 // [ * | . . | + + + ] <--- F(p, q)
121 // [ * | . . | + + + ] ^
122 // ^^^ ^^^^^ |
123 // dy/dp dy/dq [ * | 0 0 | 1 0 0 ] --- q[0]
124 // [ * | 0 0 | 0 1 0 ] --- q[1]
125 // [ * | 0 0 | 0 0 1 ] --- q[2]
126 // --+--
127 // |
128 // Dual components for q --------------+
129 //
130 // where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+"
131 // of y in the above diagram are the derivatives of y with respect to p and q
132 // respectively. This is how autodiff works for functors taking multiple vector
133 // valued arguments (up to 6).
134 //
135 // Jacobian NULL pointers
136 // ----------------------
137 // In general, the functions below will accept NULL pointers for all or some of
138 // the Jacobian parameters, meaning that those Jacobians will not be computed.
139
140 #ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_
141 #define CERES_PUBLIC_INTERNAL_AUTODIFF_H_
142
143 #include <stddef.h>
144
145 #include "ceres/jet.h"
146 #include "ceres/internal/eigen.h"
147 #include "ceres/internal/fixed_array.h"
148 #include "ceres/internal/variadic_evaluate.h"
149 #include "glog/logging.h"
150
151 namespace ceres {
152 namespace internal {
153
154 // Extends src by a 1st order pertubation for every dimension and puts it in
155 // dst. The size of src is N. Since this is also used for perturbations in
156 // blocked arrays, offset is used to shift which part of the jet the
157 // perturbation occurs. This is used to set up the extended x augmented by an
158 // identity matrix. The JetT type should be a Jet type, and T should be a
159 // numeric type (e.g. double). For example,
160 //
161 // 0 1 2 3 4 5 6 7 8
162 // dst[0] [ * | . . | 1 0 0 | . . . ]
163 // dst[1] [ * | . . | 0 1 0 | . . . ]
164 // dst[2] [ * | . . | 0 0 1 | . . . ]
165 //
166 // is what would get put in dst if N was 3, offset was 3, and the jet type JetT
167 // was 8-dimensional.
168 template <typename JetT, typename T, int N>
Make1stOrderPerturbation(int offset,const T * src,JetT * dst)169 inline void Make1stOrderPerturbation(int offset, const T* src, JetT* dst) {
170 DCHECK(src);
171 DCHECK(dst);
172 for (int j = 0; j < N; ++j) {
173 dst[j].a = src[j];
174 dst[j].v.setZero();
175 dst[j].v[offset + j] = T(1.0);
176 }
177 }
178
179 // Takes the 0th order part of src, assumed to be a Jet type, and puts it in
180 // dst. This is used to pick out the "vector" part of the extended y.
181 template <typename JetT, typename T>
Take0thOrderPart(int M,const JetT * src,T dst)182 inline void Take0thOrderPart(int M, const JetT *src, T dst) {
183 DCHECK(src);
184 for (int i = 0; i < M; ++i) {
185 dst[i] = src[i].a;
186 }
187 }
188
189 // Takes N 1st order parts, starting at index N0, and puts them in the M x N
190 // matrix 'dst'. This is used to pick out the "matrix" parts of the extended y.
191 template <typename JetT, typename T, int N0, int N>
Take1stOrderPart(const int M,const JetT * src,T * dst)192 inline void Take1stOrderPart(const int M, const JetT *src, T *dst) {
193 DCHECK(src);
194 DCHECK(dst);
195 for (int i = 0; i < M; ++i) {
196 Eigen::Map<Eigen::Matrix<T, N, 1> >(dst + N * i, N) =
197 src[i].v.template segment<N>(N0);
198 }
199 }
200
201 // This is in a struct because default template parameters on a
202 // function are not supported in C++03 (though it is available in
203 // C++0x). N0 through N5 are the dimension of the input arguments to
204 // the user supplied functor.
205 template <typename Functor, typename T,
206 int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
207 int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
208 struct AutoDiff {
DifferentiateAutoDiff209 static bool Differentiate(const Functor& functor,
210 T const *const *parameters,
211 int num_outputs,
212 T *function_value,
213 T **jacobians) {
214 // This block breaks the 80 column rule to keep it somewhat readable.
215 DCHECK_GT(num_outputs, 0);
216 DCHECK((!N1 && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
217 ((N1 > 0) && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
218 ((N1 > 0) && (N2 > 0) && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
219 ((N1 > 0) && (N2 > 0) && (N3 > 0) && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
220 ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && !N5 && !N6 && !N7 && !N8 && !N9) ||
221 ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && !N6 && !N7 && !N8 && !N9) ||
222 ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && !N7 && !N8 && !N9) ||
223 ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && !N8 && !N9) ||
224 ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && !N9) ||
225 ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && (N9 > 0)))
226 << "Zero block cannot precede a non-zero block. Block sizes are "
227 << "(ignore trailing 0s): " << N0 << ", " << N1 << ", " << N2 << ", "
228 << N3 << ", " << N4 << ", " << N5 << ", " << N6 << ", " << N7 << ", "
229 << N8 << ", " << N9;
230
231 typedef Jet<T, N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9> JetT;
232 FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(
233 N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + num_outputs);
234
235 // These are the positions of the respective jets in the fixed array x.
236 const int jet0 = 0;
237 const int jet1 = N0;
238 const int jet2 = N0 + N1;
239 const int jet3 = N0 + N1 + N2;
240 const int jet4 = N0 + N1 + N2 + N3;
241 const int jet5 = N0 + N1 + N2 + N3 + N4;
242 const int jet6 = N0 + N1 + N2 + N3 + N4 + N5;
243 const int jet7 = N0 + N1 + N2 + N3 + N4 + N5 + N6;
244 const int jet8 = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7;
245 const int jet9 = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8;
246
247 const JetT *unpacked_parameters[10] = {
248 x.get() + jet0,
249 x.get() + jet1,
250 x.get() + jet2,
251 x.get() + jet3,
252 x.get() + jet4,
253 x.get() + jet5,
254 x.get() + jet6,
255 x.get() + jet7,
256 x.get() + jet8,
257 x.get() + jet9,
258 };
259
260 JetT* output = x.get() + N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9;
261
262 #define CERES_MAKE_1ST_ORDER_PERTURBATION(i) \
263 if (N ## i) { \
264 internal::Make1stOrderPerturbation<JetT, T, N ## i>( \
265 jet ## i, \
266 parameters[i], \
267 x.get() + jet ## i); \
268 }
269 CERES_MAKE_1ST_ORDER_PERTURBATION(0);
270 CERES_MAKE_1ST_ORDER_PERTURBATION(1);
271 CERES_MAKE_1ST_ORDER_PERTURBATION(2);
272 CERES_MAKE_1ST_ORDER_PERTURBATION(3);
273 CERES_MAKE_1ST_ORDER_PERTURBATION(4);
274 CERES_MAKE_1ST_ORDER_PERTURBATION(5);
275 CERES_MAKE_1ST_ORDER_PERTURBATION(6);
276 CERES_MAKE_1ST_ORDER_PERTURBATION(7);
277 CERES_MAKE_1ST_ORDER_PERTURBATION(8);
278 CERES_MAKE_1ST_ORDER_PERTURBATION(9);
279 #undef CERES_MAKE_1ST_ORDER_PERTURBATION
280
281 if (!VariadicEvaluate<Functor, JetT,
282 N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call(
283 functor, unpacked_parameters, output)) {
284 return false;
285 }
286
287 internal::Take0thOrderPart(num_outputs, output, function_value);
288
289 #define CERES_TAKE_1ST_ORDER_PERTURBATION(i) \
290 if (N ## i) { \
291 if (jacobians[i]) { \
292 internal::Take1stOrderPart<JetT, T, \
293 jet ## i, \
294 N ## i>(num_outputs, \
295 output, \
296 jacobians[i]); \
297 } \
298 }
299 CERES_TAKE_1ST_ORDER_PERTURBATION(0);
300 CERES_TAKE_1ST_ORDER_PERTURBATION(1);
301 CERES_TAKE_1ST_ORDER_PERTURBATION(2);
302 CERES_TAKE_1ST_ORDER_PERTURBATION(3);
303 CERES_TAKE_1ST_ORDER_PERTURBATION(4);
304 CERES_TAKE_1ST_ORDER_PERTURBATION(5);
305 CERES_TAKE_1ST_ORDER_PERTURBATION(6);
306 CERES_TAKE_1ST_ORDER_PERTURBATION(7);
307 CERES_TAKE_1ST_ORDER_PERTURBATION(8);
308 CERES_TAKE_1ST_ORDER_PERTURBATION(9);
309 #undef CERES_TAKE_1ST_ORDER_PERTURBATION
310 return true;
311 }
312 };
313
314 } // namespace internal
315 } // namespace ceres
316
317 #endif // CERES_PUBLIC_INTERNAL_AUTODIFF_H_
318