• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "vpx_dsp/fwd_txfm.h"
12 
vpx_fdct4x4_c(const int16_t * input,tran_low_t * output,int stride)13 void vpx_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
14   // The 2D transform is done with two passes which are actually pretty
15   // similar. In the first one, we transform the columns and transpose
16   // the results. In the second one, we transform the rows. To achieve that,
17   // as the first pass results are transposed, we transpose the columns (that
18   // is the transposed rows) and transpose the results (so that it goes back
19   // in normal/row positions).
20   int pass;
21   // We need an intermediate buffer between passes.
22   tran_low_t intermediate[4 * 4];
23   const int16_t *in_pass0 = input;
24   const tran_low_t *in = NULL;
25   tran_low_t *out = intermediate;
26   // Do the two transform/transpose passes
27   for (pass = 0; pass < 2; ++pass) {
28     tran_high_t input[4];      // canbe16
29     tran_high_t step[4];       // canbe16
30     tran_high_t temp1, temp2;  // needs32
31     int i;
32     for (i = 0; i < 4; ++i) {
33       // Load inputs.
34       if (0 == pass) {
35         input[0] = in_pass0[0 * stride] * 16;
36         input[1] = in_pass0[1 * stride] * 16;
37         input[2] = in_pass0[2 * stride] * 16;
38         input[3] = in_pass0[3 * stride] * 16;
39         if (i == 0 && input[0]) {
40           input[0] += 1;
41         }
42       } else {
43         input[0] = in[0 * 4];
44         input[1] = in[1 * 4];
45         input[2] = in[2 * 4];
46         input[3] = in[3 * 4];
47       }
48       // Transform.
49       step[0] = input[0] + input[3];
50       step[1] = input[1] + input[2];
51       step[2] = input[1] - input[2];
52       step[3] = input[0] - input[3];
53       temp1 = (step[0] + step[1]) * cospi_16_64;
54       temp2 = (step[0] - step[1]) * cospi_16_64;
55       out[0] = (tran_low_t)fdct_round_shift(temp1);
56       out[2] = (tran_low_t)fdct_round_shift(temp2);
57       temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
58       temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
59       out[1] = (tran_low_t)fdct_round_shift(temp1);
60       out[3] = (tran_low_t)fdct_round_shift(temp2);
61       // Do next column (which is a transposed row in second/horizontal pass)
62       in_pass0++;
63       in++;
64       out += 4;
65     }
66     // Setup in/out for next pass.
67     in = intermediate;
68     out = output;
69   }
70 
71   {
72     int i, j;
73     for (i = 0; i < 4; ++i) {
74       for (j = 0; j < 4; ++j)
75         output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
76     }
77   }
78 }
79 
vpx_fdct4x4_1_c(const int16_t * input,tran_low_t * output,int stride)80 void vpx_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) {
81   int r, c;
82   tran_low_t sum = 0;
83   for (r = 0; r < 4; ++r)
84     for (c = 0; c < 4; ++c)
85       sum += input[r * stride + c];
86 
87   output[0] = sum << 1;
88   output[1] = 0;
89 }
90 
vpx_fdct8x8_c(const int16_t * input,tran_low_t * final_output,int stride)91 void vpx_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) {
92   int i, j;
93   tran_low_t intermediate[64];
94   int pass;
95   tran_low_t *output = intermediate;
96   const tran_low_t *in = NULL;
97 
98   // Transform columns
99   for (pass = 0; pass < 2; ++pass) {
100     tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16
101     tran_high_t t0, t1, t2, t3;                  // needs32
102     tran_high_t x0, x1, x2, x3;                  // canbe16
103 
104     int i;
105     for (i = 0; i < 8; i++) {
106       // stage 1
107       if (pass == 0) {
108         s0 = (input[0 * stride] + input[7 * stride]) * 4;
109         s1 = (input[1 * stride] + input[6 * stride]) * 4;
110         s2 = (input[2 * stride] + input[5 * stride]) * 4;
111         s3 = (input[3 * stride] + input[4 * stride]) * 4;
112         s4 = (input[3 * stride] - input[4 * stride]) * 4;
113         s5 = (input[2 * stride] - input[5 * stride]) * 4;
114         s6 = (input[1 * stride] - input[6 * stride]) * 4;
115         s7 = (input[0 * stride] - input[7 * stride]) * 4;
116         ++input;
117       } else {
118         s0 = in[0 * 8] + in[7 * 8];
119         s1 = in[1 * 8] + in[6 * 8];
120         s2 = in[2 * 8] + in[5 * 8];
121         s3 = in[3 * 8] + in[4 * 8];
122         s4 = in[3 * 8] - in[4 * 8];
123         s5 = in[2 * 8] - in[5 * 8];
124         s6 = in[1 * 8] - in[6 * 8];
125         s7 = in[0 * 8] - in[7 * 8];
126         ++in;
127       }
128 
129       // fdct4(step, step);
130       x0 = s0 + s3;
131       x1 = s1 + s2;
132       x2 = s1 - s2;
133       x3 = s0 - s3;
134       t0 = (x0 + x1) * cospi_16_64;
135       t1 = (x0 - x1) * cospi_16_64;
136       t2 =  x2 * cospi_24_64 + x3 *  cospi_8_64;
137       t3 = -x2 * cospi_8_64  + x3 * cospi_24_64;
138       output[0] = (tran_low_t)fdct_round_shift(t0);
139       output[2] = (tran_low_t)fdct_round_shift(t2);
140       output[4] = (tran_low_t)fdct_round_shift(t1);
141       output[6] = (tran_low_t)fdct_round_shift(t3);
142 
143       // Stage 2
144       t0 = (s6 - s5) * cospi_16_64;
145       t1 = (s6 + s5) * cospi_16_64;
146       t2 = fdct_round_shift(t0);
147       t3 = fdct_round_shift(t1);
148 
149       // Stage 3
150       x0 = s4 + t2;
151       x1 = s4 - t2;
152       x2 = s7 - t3;
153       x3 = s7 + t3;
154 
155       // Stage 4
156       t0 = x0 * cospi_28_64 + x3 *   cospi_4_64;
157       t1 = x1 * cospi_12_64 + x2 *  cospi_20_64;
158       t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
159       t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64;
160       output[1] = (tran_low_t)fdct_round_shift(t0);
161       output[3] = (tran_low_t)fdct_round_shift(t2);
162       output[5] = (tran_low_t)fdct_round_shift(t1);
163       output[7] = (tran_low_t)fdct_round_shift(t3);
164       output += 8;
165     }
166     in  = intermediate;
167     output = final_output;
168   }
169 
170   // Rows
171   for (i = 0; i < 8; ++i) {
172     for (j = 0; j < 8; ++j)
173       final_output[j + i * 8] /= 2;
174   }
175 }
176 
vpx_fdct8x8_1_c(const int16_t * input,tran_low_t * output,int stride)177 void vpx_fdct8x8_1_c(const int16_t *input, tran_low_t *output, int stride) {
178   int r, c;
179   tran_low_t sum = 0;
180   for (r = 0; r < 8; ++r)
181     for (c = 0; c < 8; ++c)
182       sum += input[r * stride + c];
183 
184   output[0] = sum;
185   output[1] = 0;
186 }
187 
vpx_fdct16x16_c(const int16_t * input,tran_low_t * output,int stride)188 void vpx_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) {
189   // The 2D transform is done with two passes which are actually pretty
190   // similar. In the first one, we transform the columns and transpose
191   // the results. In the second one, we transform the rows. To achieve that,
192   // as the first pass results are transposed, we transpose the columns (that
193   // is the transposed rows) and transpose the results (so that it goes back
194   // in normal/row positions).
195   int pass;
196   // We need an intermediate buffer between passes.
197   tran_low_t intermediate[256];
198   const int16_t *in_pass0 = input;
199   const tran_low_t *in = NULL;
200   tran_low_t *out = intermediate;
201   // Do the two transform/transpose passes
202   for (pass = 0; pass < 2; ++pass) {
203     tran_high_t step1[8];      // canbe16
204     tran_high_t step2[8];      // canbe16
205     tran_high_t step3[8];      // canbe16
206     tran_high_t input[8];      // canbe16
207     tran_high_t temp1, temp2;  // needs32
208     int i;
209     for (i = 0; i < 16; i++) {
210       if (0 == pass) {
211         // Calculate input for the first 8 results.
212         input[0] = (in_pass0[0 * stride] + in_pass0[15 * stride]) * 4;
213         input[1] = (in_pass0[1 * stride] + in_pass0[14 * stride]) * 4;
214         input[2] = (in_pass0[2 * stride] + in_pass0[13 * stride]) * 4;
215         input[3] = (in_pass0[3 * stride] + in_pass0[12 * stride]) * 4;
216         input[4] = (in_pass0[4 * stride] + in_pass0[11 * stride]) * 4;
217         input[5] = (in_pass0[5 * stride] + in_pass0[10 * stride]) * 4;
218         input[6] = (in_pass0[6 * stride] + in_pass0[ 9 * stride]) * 4;
219         input[7] = (in_pass0[7 * stride] + in_pass0[ 8 * stride]) * 4;
220         // Calculate input for the next 8 results.
221         step1[0] = (in_pass0[7 * stride] - in_pass0[ 8 * stride]) * 4;
222         step1[1] = (in_pass0[6 * stride] - in_pass0[ 9 * stride]) * 4;
223         step1[2] = (in_pass0[5 * stride] - in_pass0[10 * stride]) * 4;
224         step1[3] = (in_pass0[4 * stride] - in_pass0[11 * stride]) * 4;
225         step1[4] = (in_pass0[3 * stride] - in_pass0[12 * stride]) * 4;
226         step1[5] = (in_pass0[2 * stride] - in_pass0[13 * stride]) * 4;
227         step1[6] = (in_pass0[1 * stride] - in_pass0[14 * stride]) * 4;
228         step1[7] = (in_pass0[0 * stride] - in_pass0[15 * stride]) * 4;
229       } else {
230         // Calculate input for the first 8 results.
231         input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2);
232         input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2);
233         input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2);
234         input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2);
235         input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2);
236         input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2);
237         input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2);
238         input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2);
239         // Calculate input for the next 8 results.
240         step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2);
241         step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2);
242         step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2);
243         step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2);
244         step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2);
245         step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2);
246         step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2);
247         step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2);
248       }
249       // Work on the first eight values; fdct8(input, even_results);
250       {
251         tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16
252         tran_high_t t0, t1, t2, t3;                  // needs32
253         tran_high_t x0, x1, x2, x3;                  // canbe16
254 
255         // stage 1
256         s0 = input[0] + input[7];
257         s1 = input[1] + input[6];
258         s2 = input[2] + input[5];
259         s3 = input[3] + input[4];
260         s4 = input[3] - input[4];
261         s5 = input[2] - input[5];
262         s6 = input[1] - input[6];
263         s7 = input[0] - input[7];
264 
265         // fdct4(step, step);
266         x0 = s0 + s3;
267         x1 = s1 + s2;
268         x2 = s1 - s2;
269         x3 = s0 - s3;
270         t0 = (x0 + x1) * cospi_16_64;
271         t1 = (x0 - x1) * cospi_16_64;
272         t2 = x3 * cospi_8_64  + x2 * cospi_24_64;
273         t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
274         out[0] = (tran_low_t)fdct_round_shift(t0);
275         out[4] = (tran_low_t)fdct_round_shift(t2);
276         out[8] = (tran_low_t)fdct_round_shift(t1);
277         out[12] = (tran_low_t)fdct_round_shift(t3);
278 
279         // Stage 2
280         t0 = (s6 - s5) * cospi_16_64;
281         t1 = (s6 + s5) * cospi_16_64;
282         t2 = fdct_round_shift(t0);
283         t3 = fdct_round_shift(t1);
284 
285         // Stage 3
286         x0 = s4 + t2;
287         x1 = s4 - t2;
288         x2 = s7 - t3;
289         x3 = s7 + t3;
290 
291         // Stage 4
292         t0 = x0 * cospi_28_64 + x3 *   cospi_4_64;
293         t1 = x1 * cospi_12_64 + x2 *  cospi_20_64;
294         t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
295         t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64;
296         out[2] = (tran_low_t)fdct_round_shift(t0);
297         out[6] = (tran_low_t)fdct_round_shift(t2);
298         out[10] = (tran_low_t)fdct_round_shift(t1);
299         out[14] = (tran_low_t)fdct_round_shift(t3);
300       }
301       // Work on the next eight values; step1 -> odd_results
302       {
303         // step 2
304         temp1 = (step1[5] - step1[2]) * cospi_16_64;
305         temp2 = (step1[4] - step1[3]) * cospi_16_64;
306         step2[2] = fdct_round_shift(temp1);
307         step2[3] = fdct_round_shift(temp2);
308         temp1 = (step1[4] + step1[3]) * cospi_16_64;
309         temp2 = (step1[5] + step1[2]) * cospi_16_64;
310         step2[4] = fdct_round_shift(temp1);
311         step2[5] = fdct_round_shift(temp2);
312         // step 3
313         step3[0] = step1[0] + step2[3];
314         step3[1] = step1[1] + step2[2];
315         step3[2] = step1[1] - step2[2];
316         step3[3] = step1[0] - step2[3];
317         step3[4] = step1[7] - step2[4];
318         step3[5] = step1[6] - step2[5];
319         step3[6] = step1[6] + step2[5];
320         step3[7] = step1[7] + step2[4];
321         // step 4
322         temp1 = step3[1] *  -cospi_8_64 + step3[6] * cospi_24_64;
323         temp2 = step3[2] * cospi_24_64 + step3[5] *  cospi_8_64;
324         step2[1] = fdct_round_shift(temp1);
325         step2[2] = fdct_round_shift(temp2);
326         temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
327         temp2 = step3[1] * cospi_24_64 + step3[6] *  cospi_8_64;
328         step2[5] = fdct_round_shift(temp1);
329         step2[6] = fdct_round_shift(temp2);
330         // step 5
331         step1[0] = step3[0] + step2[1];
332         step1[1] = step3[0] - step2[1];
333         step1[2] = step3[3] + step2[2];
334         step1[3] = step3[3] - step2[2];
335         step1[4] = step3[4] - step2[5];
336         step1[5] = step3[4] + step2[5];
337         step1[6] = step3[7] - step2[6];
338         step1[7] = step3[7] + step2[6];
339         // step 6
340         temp1 = step1[0] * cospi_30_64 + step1[7] *  cospi_2_64;
341         temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
342         out[1] = (tran_low_t)fdct_round_shift(temp1);
343         out[9] = (tran_low_t)fdct_round_shift(temp2);
344         temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
345         temp2 = step1[3] *  cospi_6_64 + step1[4] * cospi_26_64;
346         out[5] = (tran_low_t)fdct_round_shift(temp1);
347         out[13] = (tran_low_t)fdct_round_shift(temp2);
348         temp1 = step1[3] * -cospi_26_64 + step1[4] *  cospi_6_64;
349         temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
350         out[3] = (tran_low_t)fdct_round_shift(temp1);
351         out[11] = (tran_low_t)fdct_round_shift(temp2);
352         temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
353         temp2 = step1[0] *  -cospi_2_64 + step1[7] * cospi_30_64;
354         out[7] = (tran_low_t)fdct_round_shift(temp1);
355         out[15] = (tran_low_t)fdct_round_shift(temp2);
356       }
357       // Do next column (which is a transposed row in second/horizontal pass)
358       in++;
359       in_pass0++;
360       out += 16;
361     }
362     // Setup in/out for next pass.
363     in = intermediate;
364     out = output;
365   }
366 }
367 
vpx_fdct16x16_1_c(const int16_t * input,tran_low_t * output,int stride)368 void vpx_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) {
369   int r, c;
370   tran_low_t sum = 0;
371   for (r = 0; r < 16; ++r)
372     for (c = 0; c < 16; ++c)
373       sum += input[r * stride + c];
374 
375   output[0] = sum >> 1;
376   output[1] = 0;
377 }
378 
dct_32_round(tran_high_t input)379 static INLINE tran_high_t dct_32_round(tran_high_t input) {
380   tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
381   // TODO(debargha, peter.derivaz): Find new bounds for this assert,
382   // and make the bounds consts.
383   // assert(-131072 <= rv && rv <= 131071);
384   return rv;
385 }
386 
half_round_shift(tran_high_t input)387 static INLINE tran_high_t half_round_shift(tran_high_t input) {
388   tran_high_t rv = (input + 1 + (input < 0)) >> 2;
389   return rv;
390 }
391 
vpx_fdct32(const tran_high_t * input,tran_high_t * output,int round)392 void vpx_fdct32(const tran_high_t *input, tran_high_t *output, int round) {
393   tran_high_t step[32];
394   // Stage 1
395   step[0] = input[0] + input[(32 - 1)];
396   step[1] = input[1] + input[(32 - 2)];
397   step[2] = input[2] + input[(32 - 3)];
398   step[3] = input[3] + input[(32 - 4)];
399   step[4] = input[4] + input[(32 - 5)];
400   step[5] = input[5] + input[(32 - 6)];
401   step[6] = input[6] + input[(32 - 7)];
402   step[7] = input[7] + input[(32 - 8)];
403   step[8] = input[8] + input[(32 - 9)];
404   step[9] = input[9] + input[(32 - 10)];
405   step[10] = input[10] + input[(32 - 11)];
406   step[11] = input[11] + input[(32 - 12)];
407   step[12] = input[12] + input[(32 - 13)];
408   step[13] = input[13] + input[(32 - 14)];
409   step[14] = input[14] + input[(32 - 15)];
410   step[15] = input[15] + input[(32 - 16)];
411   step[16] = -input[16] + input[(32 - 17)];
412   step[17] = -input[17] + input[(32 - 18)];
413   step[18] = -input[18] + input[(32 - 19)];
414   step[19] = -input[19] + input[(32 - 20)];
415   step[20] = -input[20] + input[(32 - 21)];
416   step[21] = -input[21] + input[(32 - 22)];
417   step[22] = -input[22] + input[(32 - 23)];
418   step[23] = -input[23] + input[(32 - 24)];
419   step[24] = -input[24] + input[(32 - 25)];
420   step[25] = -input[25] + input[(32 - 26)];
421   step[26] = -input[26] + input[(32 - 27)];
422   step[27] = -input[27] + input[(32 - 28)];
423   step[28] = -input[28] + input[(32 - 29)];
424   step[29] = -input[29] + input[(32 - 30)];
425   step[30] = -input[30] + input[(32 - 31)];
426   step[31] = -input[31] + input[(32 - 32)];
427 
428   // Stage 2
429   output[0] = step[0] + step[16 - 1];
430   output[1] = step[1] + step[16 - 2];
431   output[2] = step[2] + step[16 - 3];
432   output[3] = step[3] + step[16 - 4];
433   output[4] = step[4] + step[16 - 5];
434   output[5] = step[5] + step[16 - 6];
435   output[6] = step[6] + step[16 - 7];
436   output[7] = step[7] + step[16 - 8];
437   output[8] = -step[8] + step[16 - 9];
438   output[9] = -step[9] + step[16 - 10];
439   output[10] = -step[10] + step[16 - 11];
440   output[11] = -step[11] + step[16 - 12];
441   output[12] = -step[12] + step[16 - 13];
442   output[13] = -step[13] + step[16 - 14];
443   output[14] = -step[14] + step[16 - 15];
444   output[15] = -step[15] + step[16 - 16];
445 
446   output[16] = step[16];
447   output[17] = step[17];
448   output[18] = step[18];
449   output[19] = step[19];
450 
451   output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64);
452   output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64);
453   output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64);
454   output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64);
455 
456   output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64);
457   output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64);
458   output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64);
459   output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64);
460 
461   output[28] = step[28];
462   output[29] = step[29];
463   output[30] = step[30];
464   output[31] = step[31];
465 
466   // dump the magnitude by 4, hence the intermediate values are within
467   // the range of 16 bits.
468   if (round) {
469     output[0] = half_round_shift(output[0]);
470     output[1] = half_round_shift(output[1]);
471     output[2] = half_round_shift(output[2]);
472     output[3] = half_round_shift(output[3]);
473     output[4] = half_round_shift(output[4]);
474     output[5] = half_round_shift(output[5]);
475     output[6] = half_round_shift(output[6]);
476     output[7] = half_round_shift(output[7]);
477     output[8] = half_round_shift(output[8]);
478     output[9] = half_round_shift(output[9]);
479     output[10] = half_round_shift(output[10]);
480     output[11] = half_round_shift(output[11]);
481     output[12] = half_round_shift(output[12]);
482     output[13] = half_round_shift(output[13]);
483     output[14] = half_round_shift(output[14]);
484     output[15] = half_round_shift(output[15]);
485 
486     output[16] = half_round_shift(output[16]);
487     output[17] = half_round_shift(output[17]);
488     output[18] = half_round_shift(output[18]);
489     output[19] = half_round_shift(output[19]);
490     output[20] = half_round_shift(output[20]);
491     output[21] = half_round_shift(output[21]);
492     output[22] = half_round_shift(output[22]);
493     output[23] = half_round_shift(output[23]);
494     output[24] = half_round_shift(output[24]);
495     output[25] = half_round_shift(output[25]);
496     output[26] = half_round_shift(output[26]);
497     output[27] = half_round_shift(output[27]);
498     output[28] = half_round_shift(output[28]);
499     output[29] = half_round_shift(output[29]);
500     output[30] = half_round_shift(output[30]);
501     output[31] = half_round_shift(output[31]);
502   }
503 
504   // Stage 3
505   step[0] = output[0] + output[(8 - 1)];
506   step[1] = output[1] + output[(8 - 2)];
507   step[2] = output[2] + output[(8 - 3)];
508   step[3] = output[3] + output[(8 - 4)];
509   step[4] = -output[4] + output[(8 - 5)];
510   step[5] = -output[5] + output[(8 - 6)];
511   step[6] = -output[6] + output[(8 - 7)];
512   step[7] = -output[7] + output[(8 - 8)];
513   step[8] = output[8];
514   step[9] = output[9];
515   step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64);
516   step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64);
517   step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64);
518   step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64);
519   step[14] = output[14];
520   step[15] = output[15];
521 
522   step[16] = output[16] + output[23];
523   step[17] = output[17] + output[22];
524   step[18] = output[18] + output[21];
525   step[19] = output[19] + output[20];
526   step[20] = -output[20] + output[19];
527   step[21] = -output[21] + output[18];
528   step[22] = -output[22] + output[17];
529   step[23] = -output[23] + output[16];
530   step[24] = -output[24] + output[31];
531   step[25] = -output[25] + output[30];
532   step[26] = -output[26] + output[29];
533   step[27] = -output[27] + output[28];
534   step[28] = output[28] + output[27];
535   step[29] = output[29] + output[26];
536   step[30] = output[30] + output[25];
537   step[31] = output[31] + output[24];
538 
539   // Stage 4
540   output[0] = step[0] + step[3];
541   output[1] = step[1] + step[2];
542   output[2] = -step[2] + step[1];
543   output[3] = -step[3] + step[0];
544   output[4] = step[4];
545   output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64);
546   output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64);
547   output[7] = step[7];
548   output[8] = step[8] + step[11];
549   output[9] = step[9] + step[10];
550   output[10] = -step[10] + step[9];
551   output[11] = -step[11] + step[8];
552   output[12] = -step[12] + step[15];
553   output[13] = -step[13] + step[14];
554   output[14] = step[14] + step[13];
555   output[15] = step[15] + step[12];
556 
557   output[16] = step[16];
558   output[17] = step[17];
559   output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64);
560   output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64);
561   output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64);
562   output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64);
563   output[22] = step[22];
564   output[23] = step[23];
565   output[24] = step[24];
566   output[25] = step[25];
567   output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64);
568   output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64);
569   output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64);
570   output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64);
571   output[30] = step[30];
572   output[31] = step[31];
573 
574   // Stage 5
575   step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64);
576   step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64);
577   step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64);
578   step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64);
579   step[4] = output[4] + output[5];
580   step[5] = -output[5] + output[4];
581   step[6] = -output[6] + output[7];
582   step[7] = output[7] + output[6];
583   step[8] = output[8];
584   step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64);
585   step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64);
586   step[11] = output[11];
587   step[12] = output[12];
588   step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64);
589   step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64);
590   step[15] = output[15];
591 
592   step[16] = output[16] + output[19];
593   step[17] = output[17] + output[18];
594   step[18] = -output[18] + output[17];
595   step[19] = -output[19] + output[16];
596   step[20] = -output[20] + output[23];
597   step[21] = -output[21] + output[22];
598   step[22] = output[22] + output[21];
599   step[23] = output[23] + output[20];
600   step[24] = output[24] + output[27];
601   step[25] = output[25] + output[26];
602   step[26] = -output[26] + output[25];
603   step[27] = -output[27] + output[24];
604   step[28] = -output[28] + output[31];
605   step[29] = -output[29] + output[30];
606   step[30] = output[30] + output[29];
607   step[31] = output[31] + output[28];
608 
609   // Stage 6
610   output[0] = step[0];
611   output[1] = step[1];
612   output[2] = step[2];
613   output[3] = step[3];
614   output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64);
615   output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64);
616   output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64);
617   output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64);
618   output[8] = step[8] + step[9];
619   output[9] = -step[9] + step[8];
620   output[10] = -step[10] + step[11];
621   output[11] = step[11] + step[10];
622   output[12] = step[12] + step[13];
623   output[13] = -step[13] + step[12];
624   output[14] = -step[14] + step[15];
625   output[15] = step[15] + step[14];
626 
627   output[16] = step[16];
628   output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64);
629   output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64);
630   output[19] = step[19];
631   output[20] = step[20];
632   output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64);
633   output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64);
634   output[23] = step[23];
635   output[24] = step[24];
636   output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64);
637   output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64);
638   output[27] = step[27];
639   output[28] = step[28];
640   output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64);
641   output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64);
642   output[31] = step[31];
643 
644   // Stage 7
645   step[0] = output[0];
646   step[1] = output[1];
647   step[2] = output[2];
648   step[3] = output[3];
649   step[4] = output[4];
650   step[5] = output[5];
651   step[6] = output[6];
652   step[7] = output[7];
653   step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64);
654   step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64);
655   step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64);
656   step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64);
657   step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64);
658   step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64);
659   step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64);
660   step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64);
661 
662   step[16] = output[16] + output[17];
663   step[17] = -output[17] + output[16];
664   step[18] = -output[18] + output[19];
665   step[19] = output[19] + output[18];
666   step[20] = output[20] + output[21];
667   step[21] = -output[21] + output[20];
668   step[22] = -output[22] + output[23];
669   step[23] = output[23] + output[22];
670   step[24] = output[24] + output[25];
671   step[25] = -output[25] + output[24];
672   step[26] = -output[26] + output[27];
673   step[27] = output[27] + output[26];
674   step[28] = output[28] + output[29];
675   step[29] = -output[29] + output[28];
676   step[30] = -output[30] + output[31];
677   step[31] = output[31] + output[30];
678 
679   // Final stage --- outputs indices are bit-reversed.
680   output[0]  = step[0];
681   output[16] = step[1];
682   output[8]  = step[2];
683   output[24] = step[3];
684   output[4]  = step[4];
685   output[20] = step[5];
686   output[12] = step[6];
687   output[28] = step[7];
688   output[2]  = step[8];
689   output[18] = step[9];
690   output[10] = step[10];
691   output[26] = step[11];
692   output[6]  = step[12];
693   output[22] = step[13];
694   output[14] = step[14];
695   output[30] = step[15];
696 
697   output[1]  = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64);
698   output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64);
699   output[9]  = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64);
700   output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64);
701   output[5]  = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64);
702   output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64);
703   output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64);
704   output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64);
705   output[3]  = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64);
706   output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64);
707   output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64);
708   output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64);
709   output[7]  = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64);
710   output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64);
711   output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64);
712   output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
713 }
714 
vpx_fdct32x32_c(const int16_t * input,tran_low_t * out,int stride)715 void vpx_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
716   int i, j;
717   tran_high_t output[32 * 32];
718 
719   // Columns
720   for (i = 0; i < 32; ++i) {
721     tran_high_t temp_in[32], temp_out[32];
722     for (j = 0; j < 32; ++j)
723       temp_in[j] = input[j * stride + i] * 4;
724     vpx_fdct32(temp_in, temp_out, 0);
725     for (j = 0; j < 32; ++j)
726       output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
727   }
728 
729   // Rows
730   for (i = 0; i < 32; ++i) {
731     tran_high_t temp_in[32], temp_out[32];
732     for (j = 0; j < 32; ++j)
733       temp_in[j] = output[j + i * 32];
734     vpx_fdct32(temp_in, temp_out, 0);
735     for (j = 0; j < 32; ++j)
736       out[j + i * 32] =
737           (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2);
738   }
739 }
740 
741 // Note that although we use dct_32_round in dct32 computation flow,
742 // this 2d fdct32x32 for rate-distortion optimization loop is operating
743 // within 16 bits precision.
vpx_fdct32x32_rd_c(const int16_t * input,tran_low_t * out,int stride)744 void vpx_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) {
745   int i, j;
746   tran_high_t output[32 * 32];
747 
748   // Columns
749   for (i = 0; i < 32; ++i) {
750     tran_high_t temp_in[32], temp_out[32];
751     for (j = 0; j < 32; ++j)
752       temp_in[j] = input[j * stride + i] * 4;
753     vpx_fdct32(temp_in, temp_out, 0);
754     for (j = 0; j < 32; ++j)
755       // TODO(cd): see quality impact of only doing
756       //           output[j * 32 + i] = (temp_out[j] + 1) >> 2;
757       //           PS: also change code in vpx_dsp/x86/vpx_dct_sse2.c
758       output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
759   }
760 
761   // Rows
762   for (i = 0; i < 32; ++i) {
763     tran_high_t temp_in[32], temp_out[32];
764     for (j = 0; j < 32; ++j)
765       temp_in[j] = output[j + i * 32];
766     vpx_fdct32(temp_in, temp_out, 1);
767     for (j = 0; j < 32; ++j)
768       out[j + i * 32] = (tran_low_t)temp_out[j];
769   }
770 }
771 
vpx_fdct32x32_1_c(const int16_t * input,tran_low_t * output,int stride)772 void vpx_fdct32x32_1_c(const int16_t *input, tran_low_t *output, int stride) {
773   int r, c;
774   tran_low_t sum = 0;
775   for (r = 0; r < 32; ++r)
776     for (c = 0; c < 32; ++c)
777       sum += input[r * stride + c];
778 
779   output[0] = sum >> 3;
780   output[1] = 0;
781 }
782 
783 #if CONFIG_VP9_HIGHBITDEPTH
vpx_highbd_fdct4x4_c(const int16_t * input,tran_low_t * output,int stride)784 void vpx_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output,
785                           int stride) {
786   vpx_fdct4x4_c(input, output, stride);
787 }
788 
vpx_highbd_fdct8x8_c(const int16_t * input,tran_low_t * final_output,int stride)789 void vpx_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
790                           int stride) {
791   vpx_fdct8x8_c(input, final_output, stride);
792 }
793 
vpx_highbd_fdct8x8_1_c(const int16_t * input,tran_low_t * final_output,int stride)794 void vpx_highbd_fdct8x8_1_c(const int16_t *input, tran_low_t *final_output,
795                             int stride) {
796   vpx_fdct8x8_1_c(input, final_output, stride);
797 }
798 
vpx_highbd_fdct16x16_c(const int16_t * input,tran_low_t * output,int stride)799 void vpx_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
800                             int stride) {
801   vpx_fdct16x16_c(input, output, stride);
802 }
803 
vpx_highbd_fdct16x16_1_c(const int16_t * input,tran_low_t * output,int stride)804 void vpx_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output,
805                               int stride) {
806   vpx_fdct16x16_1_c(input, output, stride);
807 }
808 
vpx_highbd_fdct32x32_c(const int16_t * input,tran_low_t * out,int stride)809 void vpx_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
810   vpx_fdct32x32_c(input, out, stride);
811 }
812 
vpx_highbd_fdct32x32_rd_c(const int16_t * input,tran_low_t * out,int stride)813 void vpx_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out,
814                                int stride) {
815   vpx_fdct32x32_rd_c(input, out, stride);
816 }
817 
vpx_highbd_fdct32x32_1_c(const int16_t * input,tran_low_t * out,int stride)818 void vpx_highbd_fdct32x32_1_c(const int16_t *input, tran_low_t *out,
819                               int stride) {
820   vpx_fdct32x32_1_c(input, out, stride);
821 }
822 #endif  // CONFIG_VP9_HIGHBITDEPTH
823