1 /* 2 * Written by Doug Lea with assistance from members of JCP JSR-166 3 * Expert Group and released to the public domain, as explained at 4 * http://creativecommons.org/publicdomain/zero/1.0/ 5 */ 6 7 package java.util.concurrent; 8 9 import java.security.AccessControlContext; 10 import java.security.AccessControlException; 11 import java.security.AccessController; 12 import java.security.PrivilegedAction; 13 import java.security.PrivilegedActionException; 14 import java.security.PrivilegedExceptionAction; 15 import java.util.Collection; 16 import java.util.List; 17 import java.util.concurrent.atomic.AtomicInteger; 18 import sun.security.util.SecurityConstants; 19 20 // BEGIN android-note 21 // removed security manager docs 22 // END android-note 23 24 /** 25 * Factory and utility methods for {@link Executor}, {@link 26 * ExecutorService}, {@link ScheduledExecutorService}, {@link 27 * ThreadFactory}, and {@link Callable} classes defined in this 28 * package. This class supports the following kinds of methods: 29 * 30 * <ul> 31 * <li>Methods that create and return an {@link ExecutorService} 32 * set up with commonly useful configuration settings. 33 * <li>Methods that create and return a {@link ScheduledExecutorService} 34 * set up with commonly useful configuration settings. 35 * <li>Methods that create and return a "wrapped" ExecutorService, that 36 * disables reconfiguration by making implementation-specific methods 37 * inaccessible. 38 * <li>Methods that create and return a {@link ThreadFactory} 39 * that sets newly created threads to a known state. 40 * <li>Methods that create and return a {@link Callable} 41 * out of other closure-like forms, so they can be used 42 * in execution methods requiring {@code Callable}. 43 * </ul> 44 * 45 * @since 1.5 46 * @author Doug Lea 47 */ 48 public class Executors { 49 50 /** 51 * Creates a thread pool that reuses a fixed number of threads 52 * operating off a shared unbounded queue. At any point, at most 53 * {@code nThreads} threads will be active processing tasks. 54 * If additional tasks are submitted when all threads are active, 55 * they will wait in the queue until a thread is available. 56 * If any thread terminates due to a failure during execution 57 * prior to shutdown, a new one will take its place if needed to 58 * execute subsequent tasks. The threads in the pool will exist 59 * until it is explicitly {@link ExecutorService#shutdown shutdown}. 60 * 61 * @param nThreads the number of threads in the pool 62 * @return the newly created thread pool 63 * @throws IllegalArgumentException if {@code nThreads <= 0} 64 */ newFixedThreadPool(int nThreads)65 public static ExecutorService newFixedThreadPool(int nThreads) { 66 return new ThreadPoolExecutor(nThreads, nThreads, 67 0L, TimeUnit.MILLISECONDS, 68 new LinkedBlockingQueue<Runnable>()); 69 } 70 71 /** 72 * Creates a thread pool that maintains enough threads to support 73 * the given parallelism level, and may use multiple queues to 74 * reduce contention. The parallelism level corresponds to the 75 * maximum number of threads actively engaged in, or available to 76 * engage in, task processing. The actual number of threads may 77 * grow and shrink dynamically. A work-stealing pool makes no 78 * guarantees about the order in which submitted tasks are 79 * executed. 80 * 81 * @param parallelism the targeted parallelism level 82 * @return the newly created thread pool 83 * @throws IllegalArgumentException if {@code parallelism <= 0} 84 * @since 1.8 85 */ newWorkStealingPool(int parallelism)86 public static ExecutorService newWorkStealingPool(int parallelism) { 87 return new ForkJoinPool 88 (parallelism, 89 ForkJoinPool.defaultForkJoinWorkerThreadFactory, 90 null, true); 91 } 92 93 /** 94 * Creates a work-stealing thread pool using the number of 95 * {@linkplain Runtime#availableProcessors available processors} 96 * as its target parallelism level. 97 * 98 * @return the newly created thread pool 99 * @see #newWorkStealingPool(int) 100 * @since 1.8 101 */ newWorkStealingPool()102 public static ExecutorService newWorkStealingPool() { 103 return new ForkJoinPool 104 (Runtime.getRuntime().availableProcessors(), 105 ForkJoinPool.defaultForkJoinWorkerThreadFactory, 106 null, true); 107 } 108 109 /** 110 * Creates a thread pool that reuses a fixed number of threads 111 * operating off a shared unbounded queue, using the provided 112 * ThreadFactory to create new threads when needed. At any point, 113 * at most {@code nThreads} threads will be active processing 114 * tasks. If additional tasks are submitted when all threads are 115 * active, they will wait in the queue until a thread is 116 * available. If any thread terminates due to a failure during 117 * execution prior to shutdown, a new one will take its place if 118 * needed to execute subsequent tasks. The threads in the pool will 119 * exist until it is explicitly {@link ExecutorService#shutdown 120 * shutdown}. 121 * 122 * @param nThreads the number of threads in the pool 123 * @param threadFactory the factory to use when creating new threads 124 * @return the newly created thread pool 125 * @throws NullPointerException if threadFactory is null 126 * @throws IllegalArgumentException if {@code nThreads <= 0} 127 */ newFixedThreadPool(int nThreads, ThreadFactory threadFactory)128 public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) { 129 return new ThreadPoolExecutor(nThreads, nThreads, 130 0L, TimeUnit.MILLISECONDS, 131 new LinkedBlockingQueue<Runnable>(), 132 threadFactory); 133 } 134 135 /** 136 * Creates an Executor that uses a single worker thread operating 137 * off an unbounded queue. (Note however that if this single 138 * thread terminates due to a failure during execution prior to 139 * shutdown, a new one will take its place if needed to execute 140 * subsequent tasks.) Tasks are guaranteed to execute 141 * sequentially, and no more than one task will be active at any 142 * given time. Unlike the otherwise equivalent 143 * {@code newFixedThreadPool(1)} the returned executor is 144 * guaranteed not to be reconfigurable to use additional threads. 145 * 146 * @return the newly created single-threaded Executor 147 */ newSingleThreadExecutor()148 public static ExecutorService newSingleThreadExecutor() { 149 return new FinalizableDelegatedExecutorService 150 (new ThreadPoolExecutor(1, 1, 151 0L, TimeUnit.MILLISECONDS, 152 new LinkedBlockingQueue<Runnable>())); 153 } 154 155 /** 156 * Creates an Executor that uses a single worker thread operating 157 * off an unbounded queue, and uses the provided ThreadFactory to 158 * create a new thread when needed. Unlike the otherwise 159 * equivalent {@code newFixedThreadPool(1, threadFactory)} the 160 * returned executor is guaranteed not to be reconfigurable to use 161 * additional threads. 162 * 163 * @param threadFactory the factory to use when creating new 164 * threads 165 * 166 * @return the newly created single-threaded Executor 167 * @throws NullPointerException if threadFactory is null 168 */ newSingleThreadExecutor(ThreadFactory threadFactory)169 public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) { 170 return new FinalizableDelegatedExecutorService 171 (new ThreadPoolExecutor(1, 1, 172 0L, TimeUnit.MILLISECONDS, 173 new LinkedBlockingQueue<Runnable>(), 174 threadFactory)); 175 } 176 177 /** 178 * Creates a thread pool that creates new threads as needed, but 179 * will reuse previously constructed threads when they are 180 * available. These pools will typically improve the performance 181 * of programs that execute many short-lived asynchronous tasks. 182 * Calls to {@code execute} will reuse previously constructed 183 * threads if available. If no existing thread is available, a new 184 * thread will be created and added to the pool. Threads that have 185 * not been used for sixty seconds are terminated and removed from 186 * the cache. Thus, a pool that remains idle for long enough will 187 * not consume any resources. Note that pools with similar 188 * properties but different details (for example, timeout parameters) 189 * may be created using {@link ThreadPoolExecutor} constructors. 190 * 191 * @return the newly created thread pool 192 */ newCachedThreadPool()193 public static ExecutorService newCachedThreadPool() { 194 return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 195 60L, TimeUnit.SECONDS, 196 new SynchronousQueue<Runnable>()); 197 } 198 199 /** 200 * Creates a thread pool that creates new threads as needed, but 201 * will reuse previously constructed threads when they are 202 * available, and uses the provided 203 * ThreadFactory to create new threads when needed. 204 * @param threadFactory the factory to use when creating new threads 205 * @return the newly created thread pool 206 * @throws NullPointerException if threadFactory is null 207 */ newCachedThreadPool(ThreadFactory threadFactory)208 public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) { 209 return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 210 60L, TimeUnit.SECONDS, 211 new SynchronousQueue<Runnable>(), 212 threadFactory); 213 } 214 215 /** 216 * Creates a single-threaded executor that can schedule commands 217 * to run after a given delay, or to execute periodically. 218 * (Note however that if this single 219 * thread terminates due to a failure during execution prior to 220 * shutdown, a new one will take its place if needed to execute 221 * subsequent tasks.) Tasks are guaranteed to execute 222 * sequentially, and no more than one task will be active at any 223 * given time. Unlike the otherwise equivalent 224 * {@code newScheduledThreadPool(1)} the returned executor is 225 * guaranteed not to be reconfigurable to use additional threads. 226 * @return the newly created scheduled executor 227 */ newSingleThreadScheduledExecutor()228 public static ScheduledExecutorService newSingleThreadScheduledExecutor() { 229 return new DelegatedScheduledExecutorService 230 (new ScheduledThreadPoolExecutor(1)); 231 } 232 233 /** 234 * Creates a single-threaded executor that can schedule commands 235 * to run after a given delay, or to execute periodically. (Note 236 * however that if this single thread terminates due to a failure 237 * during execution prior to shutdown, a new one will take its 238 * place if needed to execute subsequent tasks.) Tasks are 239 * guaranteed to execute sequentially, and no more than one task 240 * will be active at any given time. Unlike the otherwise 241 * equivalent {@code newScheduledThreadPool(1, threadFactory)} 242 * the returned executor is guaranteed not to be reconfigurable to 243 * use additional threads. 244 * @param threadFactory the factory to use when creating new 245 * threads 246 * @return a newly created scheduled executor 247 * @throws NullPointerException if threadFactory is null 248 */ newSingleThreadScheduledExecutor(ThreadFactory threadFactory)249 public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) { 250 return new DelegatedScheduledExecutorService 251 (new ScheduledThreadPoolExecutor(1, threadFactory)); 252 } 253 254 /** 255 * Creates a thread pool that can schedule commands to run after a 256 * given delay, or to execute periodically. 257 * @param corePoolSize the number of threads to keep in the pool, 258 * even if they are idle 259 * @return a newly created scheduled thread pool 260 * @throws IllegalArgumentException if {@code corePoolSize < 0} 261 */ newScheduledThreadPool(int corePoolSize)262 public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) { 263 return new ScheduledThreadPoolExecutor(corePoolSize); 264 } 265 266 /** 267 * Creates a thread pool that can schedule commands to run after a 268 * given delay, or to execute periodically. 269 * @param corePoolSize the number of threads to keep in the pool, 270 * even if they are idle 271 * @param threadFactory the factory to use when the executor 272 * creates a new thread 273 * @return a newly created scheduled thread pool 274 * @throws IllegalArgumentException if {@code corePoolSize < 0} 275 * @throws NullPointerException if threadFactory is null 276 */ newScheduledThreadPool( int corePoolSize, ThreadFactory threadFactory)277 public static ScheduledExecutorService newScheduledThreadPool( 278 int corePoolSize, ThreadFactory threadFactory) { 279 return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory); 280 } 281 282 /** 283 * Returns an object that delegates all defined {@link 284 * ExecutorService} methods to the given executor, but not any 285 * other methods that might otherwise be accessible using 286 * casts. This provides a way to safely "freeze" configuration and 287 * disallow tuning of a given concrete implementation. 288 * @param executor the underlying implementation 289 * @return an {@code ExecutorService} instance 290 * @throws NullPointerException if executor null 291 */ unconfigurableExecutorService(ExecutorService executor)292 public static ExecutorService unconfigurableExecutorService(ExecutorService executor) { 293 if (executor == null) 294 throw new NullPointerException(); 295 return new DelegatedExecutorService(executor); 296 } 297 298 /** 299 * Returns an object that delegates all defined {@link 300 * ScheduledExecutorService} methods to the given executor, but 301 * not any other methods that might otherwise be accessible using 302 * casts. This provides a way to safely "freeze" configuration and 303 * disallow tuning of a given concrete implementation. 304 * @param executor the underlying implementation 305 * @return a {@code ScheduledExecutorService} instance 306 * @throws NullPointerException if executor null 307 */ unconfigurableScheduledExecutorService(ScheduledExecutorService executor)308 public static ScheduledExecutorService unconfigurableScheduledExecutorService(ScheduledExecutorService executor) { 309 if (executor == null) 310 throw new NullPointerException(); 311 return new DelegatedScheduledExecutorService(executor); 312 } 313 314 /** 315 * Returns a default thread factory used to create new threads. 316 * This factory creates all new threads used by an Executor in the 317 * same {@link ThreadGroup}. Each new 318 * thread is created as a non-daemon thread with priority set to 319 * the smaller of {@code Thread.NORM_PRIORITY} and the maximum 320 * priority permitted in the thread group. New threads have names 321 * accessible via {@link Thread#getName} of 322 * <em>pool-N-thread-M</em>, where <em>N</em> is the sequence 323 * number of this factory, and <em>M</em> is the sequence number 324 * of the thread created by this factory. 325 * @return a thread factory 326 */ defaultThreadFactory()327 public static ThreadFactory defaultThreadFactory() { 328 return new DefaultThreadFactory(); 329 } 330 331 /** 332 * Legacy security code; do not use. 333 */ privilegedThreadFactory()334 public static ThreadFactory privilegedThreadFactory() { 335 return new PrivilegedThreadFactory(); 336 } 337 338 /** 339 * Returns a {@link Callable} object that, when 340 * called, runs the given task and returns the given result. This 341 * can be useful when applying methods requiring a 342 * {@code Callable} to an otherwise resultless action. 343 * @param task the task to run 344 * @param result the result to return 345 * @param <T> the type of the result 346 * @return a callable object 347 * @throws NullPointerException if task null 348 */ callable(Runnable task, T result)349 public static <T> Callable<T> callable(Runnable task, T result) { 350 if (task == null) 351 throw new NullPointerException(); 352 return new RunnableAdapter<T>(task, result); 353 } 354 355 /** 356 * Returns a {@link Callable} object that, when 357 * called, runs the given task and returns {@code null}. 358 * @param task the task to run 359 * @return a callable object 360 * @throws NullPointerException if task null 361 */ callable(Runnable task)362 public static Callable<Object> callable(Runnable task) { 363 if (task == null) 364 throw new NullPointerException(); 365 return new RunnableAdapter<Object>(task, null); 366 } 367 368 /** 369 * Returns a {@link Callable} object that, when 370 * called, runs the given privileged action and returns its result. 371 * @param action the privileged action to run 372 * @return a callable object 373 * @throws NullPointerException if action null 374 */ callable(final PrivilegedAction<?> action)375 public static Callable<Object> callable(final PrivilegedAction<?> action) { 376 if (action == null) 377 throw new NullPointerException(); 378 return new Callable<Object>() { 379 public Object call() { return action.run(); }}; 380 } 381 382 /** 383 * Returns a {@link Callable} object that, when 384 * called, runs the given privileged exception action and returns 385 * its result. 386 * @param action the privileged exception action to run 387 * @return a callable object 388 * @throws NullPointerException if action null 389 */ 390 public static Callable<Object> callable(final PrivilegedExceptionAction<?> action) { 391 if (action == null) 392 throw new NullPointerException(); 393 return new Callable<Object>() { 394 public Object call() throws Exception { return action.run(); }}; 395 } 396 397 /** 398 * Legacy security code; do not use. 399 */ 400 public static <T> Callable<T> privilegedCallable(Callable<T> callable) { 401 if (callable == null) 402 throw new NullPointerException(); 403 return new PrivilegedCallable<T>(callable); 404 } 405 406 /** 407 * Legacy security code; do not use. 408 */ 409 public static <T> Callable<T> privilegedCallableUsingCurrentClassLoader(Callable<T> callable) { 410 if (callable == null) 411 throw new NullPointerException(); 412 return new PrivilegedCallableUsingCurrentClassLoader<T>(callable); 413 } 414 415 // Non-public classes supporting the public methods 416 417 /** 418 * A callable that runs given task and returns given result. 419 */ 420 private static final class RunnableAdapter<T> implements Callable<T> { 421 private final Runnable task; 422 private final T result; 423 RunnableAdapter(Runnable task, T result) { 424 this.task = task; 425 this.result = result; 426 } 427 public T call() { 428 task.run(); 429 return result; 430 } 431 } 432 433 /** 434 * A callable that runs under established access control settings. 435 */ 436 private static final class PrivilegedCallable<T> implements Callable<T> { 437 final Callable<T> task; 438 final AccessControlContext acc; 439 440 PrivilegedCallable(Callable<T> task) { 441 this.task = task; 442 this.acc = AccessController.getContext(); 443 } 444 445 public T call() throws Exception { 446 try { 447 return AccessController.doPrivileged( 448 new PrivilegedExceptionAction<T>() { 449 public T run() throws Exception { 450 return task.call(); 451 } 452 }, acc); 453 } catch (PrivilegedActionException e) { 454 throw e.getException(); 455 } 456 } 457 } 458 459 /** 460 * A callable that runs under established access control settings and 461 * current ClassLoader. 462 */ 463 private static final class PrivilegedCallableUsingCurrentClassLoader<T> 464 implements Callable<T> { 465 final Callable<T> task; 466 final AccessControlContext acc; 467 final ClassLoader ccl; 468 469 PrivilegedCallableUsingCurrentClassLoader(Callable<T> task) { 470 // BEGIN android-removed 471 // SecurityManager sm = System.getSecurityManager(); 472 // if (sm != null) { 473 // // Calls to getContextClassLoader from this class 474 // // never trigger a security check, but we check 475 // // whether our callers have this permission anyways. 476 // sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION); 477 478 // // Whether setContextClassLoader turns out to be necessary 479 // // or not, we fail fast if permission is not available. 480 // sm.checkPermission(new RuntimePermission("setContextClassLoader")); 481 // } 482 // END android-removed 483 this.task = task; 484 this.acc = AccessController.getContext(); 485 this.ccl = Thread.currentThread().getContextClassLoader(); 486 } 487 488 public T call() throws Exception { 489 try { 490 return AccessController.doPrivileged( 491 new PrivilegedExceptionAction<T>() { 492 public T run() throws Exception { 493 Thread t = Thread.currentThread(); 494 ClassLoader cl = t.getContextClassLoader(); 495 if (ccl == cl) { 496 return task.call(); 497 } else { 498 t.setContextClassLoader(ccl); 499 try { 500 return task.call(); 501 } finally { 502 t.setContextClassLoader(cl); 503 } 504 } 505 } 506 }, acc); 507 } catch (PrivilegedActionException e) { 508 throw e.getException(); 509 } 510 } 511 } 512 513 /** 514 * The default thread factory. 515 */ 516 private static class DefaultThreadFactory implements ThreadFactory { 517 private static final AtomicInteger poolNumber = new AtomicInteger(1); 518 private final ThreadGroup group; 519 private final AtomicInteger threadNumber = new AtomicInteger(1); 520 private final String namePrefix; 521 522 DefaultThreadFactory() { 523 SecurityManager s = System.getSecurityManager(); 524 group = (s != null) ? s.getThreadGroup() : 525 Thread.currentThread().getThreadGroup(); 526 namePrefix = "pool-" + 527 poolNumber.getAndIncrement() + 528 "-thread-"; 529 } 530 531 public Thread newThread(Runnable r) { 532 Thread t = new Thread(group, r, 533 namePrefix + threadNumber.getAndIncrement(), 534 0); 535 if (t.isDaemon()) 536 t.setDaemon(false); 537 if (t.getPriority() != Thread.NORM_PRIORITY) 538 t.setPriority(Thread.NORM_PRIORITY); 539 return t; 540 } 541 } 542 543 /** 544 * Thread factory capturing access control context and class loader. 545 */ 546 private static class PrivilegedThreadFactory extends DefaultThreadFactory { 547 final AccessControlContext acc; 548 final ClassLoader ccl; 549 550 PrivilegedThreadFactory() { 551 super(); 552 // BEGIN android-removed 553 // SecurityManager sm = System.getSecurityManager(); 554 // if (sm != null) { 555 // // Calls to getContextClassLoader from this class 556 // // never trigger a security check, but we check 557 // // whether our callers have this permission anyways. 558 // sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION); 559 560 // // Fail fast 561 // sm.checkPermission(new RuntimePermission("setContextClassLoader")); 562 // } 563 // END android-removed 564 this.acc = AccessController.getContext(); 565 this.ccl = Thread.currentThread().getContextClassLoader(); 566 } 567 568 public Thread newThread(final Runnable r) { 569 return super.newThread(new Runnable() { 570 public void run() { 571 AccessController.doPrivileged(new PrivilegedAction<Void>() { 572 public Void run() { 573 Thread.currentThread().setContextClassLoader(ccl); 574 r.run(); 575 return null; 576 } 577 }, acc); 578 } 579 }); 580 } 581 } 582 583 /** 584 * A wrapper class that exposes only the ExecutorService methods 585 * of an ExecutorService implementation. 586 */ 587 private static class DelegatedExecutorService 588 extends AbstractExecutorService { 589 private final ExecutorService e; 590 DelegatedExecutorService(ExecutorService executor) { e = executor; } 591 public void execute(Runnable command) { e.execute(command); } 592 public void shutdown() { e.shutdown(); } 593 public List<Runnable> shutdownNow() { return e.shutdownNow(); } 594 public boolean isShutdown() { return e.isShutdown(); } 595 public boolean isTerminated() { return e.isTerminated(); } 596 public boolean awaitTermination(long timeout, TimeUnit unit) 597 throws InterruptedException { 598 return e.awaitTermination(timeout, unit); 599 } 600 public Future<?> submit(Runnable task) { 601 return e.submit(task); 602 } 603 public <T> Future<T> submit(Callable<T> task) { 604 return e.submit(task); 605 } 606 public <T> Future<T> submit(Runnable task, T result) { 607 return e.submit(task, result); 608 } 609 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) 610 throws InterruptedException { 611 return e.invokeAll(tasks); 612 } 613 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, 614 long timeout, TimeUnit unit) 615 throws InterruptedException { 616 return e.invokeAll(tasks, timeout, unit); 617 } 618 public <T> T invokeAny(Collection<? extends Callable<T>> tasks) 619 throws InterruptedException, ExecutionException { 620 return e.invokeAny(tasks); 621 } 622 public <T> T invokeAny(Collection<? extends Callable<T>> tasks, 623 long timeout, TimeUnit unit) 624 throws InterruptedException, ExecutionException, TimeoutException { 625 return e.invokeAny(tasks, timeout, unit); 626 } 627 } 628 629 private static class FinalizableDelegatedExecutorService 630 extends DelegatedExecutorService { 631 FinalizableDelegatedExecutorService(ExecutorService executor) { 632 super(executor); 633 } 634 protected void finalize() { 635 super.shutdown(); 636 } 637 } 638 639 /** 640 * A wrapper class that exposes only the ScheduledExecutorService 641 * methods of a ScheduledExecutorService implementation. 642 */ 643 private static class DelegatedScheduledExecutorService 644 extends DelegatedExecutorService 645 implements ScheduledExecutorService { 646 private final ScheduledExecutorService e; 647 DelegatedScheduledExecutorService(ScheduledExecutorService executor) { 648 super(executor); 649 e = executor; 650 } 651 public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit) { 652 return e.schedule(command, delay, unit); 653 } 654 public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit) { 655 return e.schedule(callable, delay, unit); 656 } 657 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit) { 658 return e.scheduleAtFixedRate(command, initialDelay, period, unit); 659 } 660 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit) { 661 return e.scheduleWithFixedDelay(command, initialDelay, delay, unit); 662 } 663 } 664 665 /** Cannot instantiate. */ 666 private Executors() {} 667 } 668