• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Written by Doug Lea with assistance from members of JCP JSR-166
3  * Expert Group and released to the public domain, as explained at
4  * http://creativecommons.org/publicdomain/zero/1.0/
5  */
6 
7 package java.util.concurrent;
8 
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.Iterator;
12 import java.util.NoSuchElementException;
13 import java.util.Spliterator;
14 import java.util.Spliterators;
15 import java.util.concurrent.locks.Condition;
16 import java.util.concurrent.locks.ReentrantLock;
17 import java.util.function.Consumer;
18 
19 // BEGIN android-note
20 // removed link to collections framework docs
21 // END android-note
22 
23 /**
24  * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
25  * linked nodes.
26  *
27  * <p>The optional capacity bound constructor argument serves as a
28  * way to prevent excessive expansion. The capacity, if unspecified,
29  * is equal to {@link Integer#MAX_VALUE}.  Linked nodes are
30  * dynamically created upon each insertion unless this would bring the
31  * deque above capacity.
32  *
33  * <p>Most operations run in constant time (ignoring time spent
34  * blocking).  Exceptions include {@link #remove(Object) remove},
35  * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
36  * #removeLastOccurrence removeLastOccurrence}, {@link #contains
37  * contains}, {@link #iterator iterator.remove()}, and the bulk
38  * operations, all of which run in linear time.
39  *
40  * <p>This class and its iterator implement all of the
41  * <em>optional</em> methods of the {@link Collection} and {@link
42  * Iterator} interfaces.
43  *
44  * @since 1.6
45  * @author  Doug Lea
46  * @param <E> the type of elements held in this deque
47  */
48 public class LinkedBlockingDeque<E>
49     extends AbstractQueue<E>
50     implements BlockingDeque<E>, java.io.Serializable {
51 
52     /*
53      * Implemented as a simple doubly-linked list protected by a
54      * single lock and using conditions to manage blocking.
55      *
56      * To implement weakly consistent iterators, it appears we need to
57      * keep all Nodes GC-reachable from a predecessor dequeued Node.
58      * That would cause two problems:
59      * - allow a rogue Iterator to cause unbounded memory retention
60      * - cause cross-generational linking of old Nodes to new Nodes if
61      *   a Node was tenured while live, which generational GCs have a
62      *   hard time dealing with, causing repeated major collections.
63      * However, only non-deleted Nodes need to be reachable from
64      * dequeued Nodes, and reachability does not necessarily have to
65      * be of the kind understood by the GC.  We use the trick of
66      * linking a Node that has just been dequeued to itself.  Such a
67      * self-link implicitly means to jump to "first" (for next links)
68      * or "last" (for prev links).
69      */
70 
71     /*
72      * We have "diamond" multiple interface/abstract class inheritance
73      * here, and that introduces ambiguities. Often we want the
74      * BlockingDeque javadoc combined with the AbstractQueue
75      * implementation, so a lot of method specs are duplicated here.
76      */
77 
78     private static final long serialVersionUID = -387911632671998426L;
79 
80     /** Doubly-linked list node class */
81     static final class Node<E> {
82         /**
83          * The item, or null if this node has been removed.
84          */
85         E item;
86 
87         /**
88          * One of:
89          * - the real predecessor Node
90          * - this Node, meaning the predecessor is tail
91          * - null, meaning there is no predecessor
92          */
93         Node<E> prev;
94 
95         /**
96          * One of:
97          * - the real successor Node
98          * - this Node, meaning the successor is head
99          * - null, meaning there is no successor
100          */
101         Node<E> next;
102 
Node(E x)103         Node(E x) {
104             item = x;
105         }
106     }
107 
108     /**
109      * Pointer to first node.
110      * Invariant: (first == null && last == null) ||
111      *            (first.prev == null && first.item != null)
112      */
113     transient Node<E> first;
114 
115     /**
116      * Pointer to last node.
117      * Invariant: (first == null && last == null) ||
118      *            (last.next == null && last.item != null)
119      */
120     transient Node<E> last;
121 
122     /** Number of items in the deque */
123     private transient int count;
124 
125     /** Maximum number of items in the deque */
126     private final int capacity;
127 
128     /** Main lock guarding all access */
129     final ReentrantLock lock = new ReentrantLock();
130 
131     /** Condition for waiting takes */
132     private final Condition notEmpty = lock.newCondition();
133 
134     /** Condition for waiting puts */
135     private final Condition notFull = lock.newCondition();
136 
137     /**
138      * Creates a {@code LinkedBlockingDeque} with a capacity of
139      * {@link Integer#MAX_VALUE}.
140      */
LinkedBlockingDeque()141     public LinkedBlockingDeque() {
142         this(Integer.MAX_VALUE);
143     }
144 
145     /**
146      * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
147      *
148      * @param capacity the capacity of this deque
149      * @throws IllegalArgumentException if {@code capacity} is less than 1
150      */
LinkedBlockingDeque(int capacity)151     public LinkedBlockingDeque(int capacity) {
152         if (capacity <= 0) throw new IllegalArgumentException();
153         this.capacity = capacity;
154     }
155 
156     /**
157      * Creates a {@code LinkedBlockingDeque} with a capacity of
158      * {@link Integer#MAX_VALUE}, initially containing the elements of
159      * the given collection, added in traversal order of the
160      * collection's iterator.
161      *
162      * @param c the collection of elements to initially contain
163      * @throws NullPointerException if the specified collection or any
164      *         of its elements are null
165      */
LinkedBlockingDeque(Collection<? extends E> c)166     public LinkedBlockingDeque(Collection<? extends E> c) {
167         this(Integer.MAX_VALUE);
168         final ReentrantLock lock = this.lock;
169         lock.lock(); // Never contended, but necessary for visibility
170         try {
171             for (E e : c) {
172                 if (e == null)
173                     throw new NullPointerException();
174                 if (!linkLast(new Node<E>(e)))
175                     throw new IllegalStateException("Deque full");
176             }
177         } finally {
178             lock.unlock();
179         }
180     }
181 
182 
183     // Basic linking and unlinking operations, called only while holding lock
184 
185     /**
186      * Links node as first element, or returns false if full.
187      */
linkFirst(Node<E> node)188     private boolean linkFirst(Node<E> node) {
189         // assert lock.isHeldByCurrentThread();
190         if (count >= capacity)
191             return false;
192         Node<E> f = first;
193         node.next = f;
194         first = node;
195         if (last == null)
196             last = node;
197         else
198             f.prev = node;
199         ++count;
200         notEmpty.signal();
201         return true;
202     }
203 
204     /**
205      * Links node as last element, or returns false if full.
206      */
linkLast(Node<E> node)207     private boolean linkLast(Node<E> node) {
208         // assert lock.isHeldByCurrentThread();
209         if (count >= capacity)
210             return false;
211         Node<E> l = last;
212         node.prev = l;
213         last = node;
214         if (first == null)
215             first = node;
216         else
217             l.next = node;
218         ++count;
219         notEmpty.signal();
220         return true;
221     }
222 
223     /**
224      * Removes and returns first element, or null if empty.
225      */
unlinkFirst()226     private E unlinkFirst() {
227         // assert lock.isHeldByCurrentThread();
228         Node<E> f = first;
229         if (f == null)
230             return null;
231         Node<E> n = f.next;
232         E item = f.item;
233         f.item = null;
234         f.next = f; // help GC
235         first = n;
236         if (n == null)
237             last = null;
238         else
239             n.prev = null;
240         --count;
241         notFull.signal();
242         return item;
243     }
244 
245     /**
246      * Removes and returns last element, or null if empty.
247      */
unlinkLast()248     private E unlinkLast() {
249         // assert lock.isHeldByCurrentThread();
250         Node<E> l = last;
251         if (l == null)
252             return null;
253         Node<E> p = l.prev;
254         E item = l.item;
255         l.item = null;
256         l.prev = l; // help GC
257         last = p;
258         if (p == null)
259             first = null;
260         else
261             p.next = null;
262         --count;
263         notFull.signal();
264         return item;
265     }
266 
267     /**
268      * Unlinks x.
269      */
unlink(Node<E> x)270     void unlink(Node<E> x) {
271         // assert lock.isHeldByCurrentThread();
272         Node<E> p = x.prev;
273         Node<E> n = x.next;
274         if (p == null) {
275             unlinkFirst();
276         } else if (n == null) {
277             unlinkLast();
278         } else {
279             p.next = n;
280             n.prev = p;
281             x.item = null;
282             // Don't mess with x's links.  They may still be in use by
283             // an iterator.
284             --count;
285             notFull.signal();
286         }
287     }
288 
289     // BlockingDeque methods
290 
291     /**
292      * @throws IllegalStateException if this deque is full
293      * @throws NullPointerException {@inheritDoc}
294      */
addFirst(E e)295     public void addFirst(E e) {
296         if (!offerFirst(e))
297             throw new IllegalStateException("Deque full");
298     }
299 
300     /**
301      * @throws IllegalStateException if this deque is full
302      * @throws NullPointerException  {@inheritDoc}
303      */
addLast(E e)304     public void addLast(E e) {
305         if (!offerLast(e))
306             throw new IllegalStateException("Deque full");
307     }
308 
309     /**
310      * @throws NullPointerException {@inheritDoc}
311      */
offerFirst(E e)312     public boolean offerFirst(E e) {
313         if (e == null) throw new NullPointerException();
314         Node<E> node = new Node<E>(e);
315         final ReentrantLock lock = this.lock;
316         lock.lock();
317         try {
318             return linkFirst(node);
319         } finally {
320             lock.unlock();
321         }
322     }
323 
324     /**
325      * @throws NullPointerException {@inheritDoc}
326      */
offerLast(E e)327     public boolean offerLast(E e) {
328         if (e == null) throw new NullPointerException();
329         Node<E> node = new Node<E>(e);
330         final ReentrantLock lock = this.lock;
331         lock.lock();
332         try {
333             return linkLast(node);
334         } finally {
335             lock.unlock();
336         }
337     }
338 
339     /**
340      * @throws NullPointerException {@inheritDoc}
341      * @throws InterruptedException {@inheritDoc}
342      */
putFirst(E e)343     public void putFirst(E e) throws InterruptedException {
344         if (e == null) throw new NullPointerException();
345         Node<E> node = new Node<E>(e);
346         final ReentrantLock lock = this.lock;
347         lock.lock();
348         try {
349             while (!linkFirst(node))
350                 notFull.await();
351         } finally {
352             lock.unlock();
353         }
354     }
355 
356     /**
357      * @throws NullPointerException {@inheritDoc}
358      * @throws InterruptedException {@inheritDoc}
359      */
putLast(E e)360     public void putLast(E e) throws InterruptedException {
361         if (e == null) throw new NullPointerException();
362         Node<E> node = new Node<E>(e);
363         final ReentrantLock lock = this.lock;
364         lock.lock();
365         try {
366             while (!linkLast(node))
367                 notFull.await();
368         } finally {
369             lock.unlock();
370         }
371     }
372 
373     /**
374      * @throws NullPointerException {@inheritDoc}
375      * @throws InterruptedException {@inheritDoc}
376      */
offerFirst(E e, long timeout, TimeUnit unit)377     public boolean offerFirst(E e, long timeout, TimeUnit unit)
378         throws InterruptedException {
379         if (e == null) throw new NullPointerException();
380         Node<E> node = new Node<E>(e);
381         long nanos = unit.toNanos(timeout);
382         final ReentrantLock lock = this.lock;
383         lock.lockInterruptibly();
384         try {
385             while (!linkFirst(node)) {
386                 if (nanos <= 0L)
387                     return false;
388                 nanos = notFull.awaitNanos(nanos);
389             }
390             return true;
391         } finally {
392             lock.unlock();
393         }
394     }
395 
396     /**
397      * @throws NullPointerException {@inheritDoc}
398      * @throws InterruptedException {@inheritDoc}
399      */
offerLast(E e, long timeout, TimeUnit unit)400     public boolean offerLast(E e, long timeout, TimeUnit unit)
401         throws InterruptedException {
402         if (e == null) throw new NullPointerException();
403         Node<E> node = new Node<E>(e);
404         long nanos = unit.toNanos(timeout);
405         final ReentrantLock lock = this.lock;
406         lock.lockInterruptibly();
407         try {
408             while (!linkLast(node)) {
409                 if (nanos <= 0L)
410                     return false;
411                 nanos = notFull.awaitNanos(nanos);
412             }
413             return true;
414         } finally {
415             lock.unlock();
416         }
417     }
418 
419     /**
420      * @throws NoSuchElementException {@inheritDoc}
421      */
removeFirst()422     public E removeFirst() {
423         E x = pollFirst();
424         if (x == null) throw new NoSuchElementException();
425         return x;
426     }
427 
428     /**
429      * @throws NoSuchElementException {@inheritDoc}
430      */
removeLast()431     public E removeLast() {
432         E x = pollLast();
433         if (x == null) throw new NoSuchElementException();
434         return x;
435     }
436 
pollFirst()437     public E pollFirst() {
438         final ReentrantLock lock = this.lock;
439         lock.lock();
440         try {
441             return unlinkFirst();
442         } finally {
443             lock.unlock();
444         }
445     }
446 
pollLast()447     public E pollLast() {
448         final ReentrantLock lock = this.lock;
449         lock.lock();
450         try {
451             return unlinkLast();
452         } finally {
453             lock.unlock();
454         }
455     }
456 
takeFirst()457     public E takeFirst() throws InterruptedException {
458         final ReentrantLock lock = this.lock;
459         lock.lock();
460         try {
461             E x;
462             while ( (x = unlinkFirst()) == null)
463                 notEmpty.await();
464             return x;
465         } finally {
466             lock.unlock();
467         }
468     }
469 
takeLast()470     public E takeLast() throws InterruptedException {
471         final ReentrantLock lock = this.lock;
472         lock.lock();
473         try {
474             E x;
475             while ( (x = unlinkLast()) == null)
476                 notEmpty.await();
477             return x;
478         } finally {
479             lock.unlock();
480         }
481     }
482 
pollFirst(long timeout, TimeUnit unit)483     public E pollFirst(long timeout, TimeUnit unit)
484         throws InterruptedException {
485         long nanos = unit.toNanos(timeout);
486         final ReentrantLock lock = this.lock;
487         lock.lockInterruptibly();
488         try {
489             E x;
490             while ( (x = unlinkFirst()) == null) {
491                 if (nanos <= 0L)
492                     return null;
493                 nanos = notEmpty.awaitNanos(nanos);
494             }
495             return x;
496         } finally {
497             lock.unlock();
498         }
499     }
500 
pollLast(long timeout, TimeUnit unit)501     public E pollLast(long timeout, TimeUnit unit)
502         throws InterruptedException {
503         long nanos = unit.toNanos(timeout);
504         final ReentrantLock lock = this.lock;
505         lock.lockInterruptibly();
506         try {
507             E x;
508             while ( (x = unlinkLast()) == null) {
509                 if (nanos <= 0L)
510                     return null;
511                 nanos = notEmpty.awaitNanos(nanos);
512             }
513             return x;
514         } finally {
515             lock.unlock();
516         }
517     }
518 
519     /**
520      * @throws NoSuchElementException {@inheritDoc}
521      */
getFirst()522     public E getFirst() {
523         E x = peekFirst();
524         if (x == null) throw new NoSuchElementException();
525         return x;
526     }
527 
528     /**
529      * @throws NoSuchElementException {@inheritDoc}
530      */
getLast()531     public E getLast() {
532         E x = peekLast();
533         if (x == null) throw new NoSuchElementException();
534         return x;
535     }
536 
peekFirst()537     public E peekFirst() {
538         final ReentrantLock lock = this.lock;
539         lock.lock();
540         try {
541             return (first == null) ? null : first.item;
542         } finally {
543             lock.unlock();
544         }
545     }
546 
peekLast()547     public E peekLast() {
548         final ReentrantLock lock = this.lock;
549         lock.lock();
550         try {
551             return (last == null) ? null : last.item;
552         } finally {
553             lock.unlock();
554         }
555     }
556 
removeFirstOccurrence(Object o)557     public boolean removeFirstOccurrence(Object o) {
558         if (o == null) return false;
559         final ReentrantLock lock = this.lock;
560         lock.lock();
561         try {
562             for (Node<E> p = first; p != null; p = p.next) {
563                 if (o.equals(p.item)) {
564                     unlink(p);
565                     return true;
566                 }
567             }
568             return false;
569         } finally {
570             lock.unlock();
571         }
572     }
573 
removeLastOccurrence(Object o)574     public boolean removeLastOccurrence(Object o) {
575         if (o == null) return false;
576         final ReentrantLock lock = this.lock;
577         lock.lock();
578         try {
579             for (Node<E> p = last; p != null; p = p.prev) {
580                 if (o.equals(p.item)) {
581                     unlink(p);
582                     return true;
583                 }
584             }
585             return false;
586         } finally {
587             lock.unlock();
588         }
589     }
590 
591     // BlockingQueue methods
592 
593     /**
594      * Inserts the specified element at the end of this deque unless it would
595      * violate capacity restrictions.  When using a capacity-restricted deque,
596      * it is generally preferable to use method {@link #offer(Object) offer}.
597      *
598      * <p>This method is equivalent to {@link #addLast}.
599      *
600      * @throws IllegalStateException if this deque is full
601      * @throws NullPointerException if the specified element is null
602      */
add(E e)603     public boolean add(E e) {
604         addLast(e);
605         return true;
606     }
607 
608     /**
609      * @throws NullPointerException if the specified element is null
610      */
offer(E e)611     public boolean offer(E e) {
612         return offerLast(e);
613     }
614 
615     /**
616      * @throws NullPointerException {@inheritDoc}
617      * @throws InterruptedException {@inheritDoc}
618      */
put(E e)619     public void put(E e) throws InterruptedException {
620         putLast(e);
621     }
622 
623     /**
624      * @throws NullPointerException {@inheritDoc}
625      * @throws InterruptedException {@inheritDoc}
626      */
offer(E e, long timeout, TimeUnit unit)627     public boolean offer(E e, long timeout, TimeUnit unit)
628         throws InterruptedException {
629         return offerLast(e, timeout, unit);
630     }
631 
632     /**
633      * Retrieves and removes the head of the queue represented by this deque.
634      * This method differs from {@link #poll poll} only in that it throws an
635      * exception if this deque is empty.
636      *
637      * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
638      *
639      * @return the head of the queue represented by this deque
640      * @throws NoSuchElementException if this deque is empty
641      */
remove()642     public E remove() {
643         return removeFirst();
644     }
645 
poll()646     public E poll() {
647         return pollFirst();
648     }
649 
take()650     public E take() throws InterruptedException {
651         return takeFirst();
652     }
653 
poll(long timeout, TimeUnit unit)654     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
655         return pollFirst(timeout, unit);
656     }
657 
658     /**
659      * Retrieves, but does not remove, the head of the queue represented by
660      * this deque.  This method differs from {@link #peek peek} only in that
661      * it throws an exception if this deque is empty.
662      *
663      * <p>This method is equivalent to {@link #getFirst() getFirst}.
664      *
665      * @return the head of the queue represented by this deque
666      * @throws NoSuchElementException if this deque is empty
667      */
element()668     public E element() {
669         return getFirst();
670     }
671 
peek()672     public E peek() {
673         return peekFirst();
674     }
675 
676     /**
677      * Returns the number of additional elements that this deque can ideally
678      * (in the absence of memory or resource constraints) accept without
679      * blocking. This is always equal to the initial capacity of this deque
680      * less the current {@code size} of this deque.
681      *
682      * <p>Note that you <em>cannot</em> always tell if an attempt to insert
683      * an element will succeed by inspecting {@code remainingCapacity}
684      * because it may be the case that another thread is about to
685      * insert or remove an element.
686      */
remainingCapacity()687     public int remainingCapacity() {
688         final ReentrantLock lock = this.lock;
689         lock.lock();
690         try {
691             return capacity - count;
692         } finally {
693             lock.unlock();
694         }
695     }
696 
697     /**
698      * @throws UnsupportedOperationException {@inheritDoc}
699      * @throws ClassCastException            {@inheritDoc}
700      * @throws NullPointerException          {@inheritDoc}
701      * @throws IllegalArgumentException      {@inheritDoc}
702      */
drainTo(Collection<? super E> c)703     public int drainTo(Collection<? super E> c) {
704         return drainTo(c, Integer.MAX_VALUE);
705     }
706 
707     /**
708      * @throws UnsupportedOperationException {@inheritDoc}
709      * @throws ClassCastException            {@inheritDoc}
710      * @throws NullPointerException          {@inheritDoc}
711      * @throws IllegalArgumentException      {@inheritDoc}
712      */
drainTo(Collection<? super E> c, int maxElements)713     public int drainTo(Collection<? super E> c, int maxElements) {
714         if (c == null)
715             throw new NullPointerException();
716         if (c == this)
717             throw new IllegalArgumentException();
718         if (maxElements <= 0)
719             return 0;
720         final ReentrantLock lock = this.lock;
721         lock.lock();
722         try {
723             int n = Math.min(maxElements, count);
724             for (int i = 0; i < n; i++) {
725                 c.add(first.item);   // In this order, in case add() throws.
726                 unlinkFirst();
727             }
728             return n;
729         } finally {
730             lock.unlock();
731         }
732     }
733 
734     // Stack methods
735 
736     /**
737      * @throws IllegalStateException if this deque is full
738      * @throws NullPointerException {@inheritDoc}
739      */
push(E e)740     public void push(E e) {
741         addFirst(e);
742     }
743 
744     /**
745      * @throws NoSuchElementException {@inheritDoc}
746      */
pop()747     public E pop() {
748         return removeFirst();
749     }
750 
751     // Collection methods
752 
753     /**
754      * Removes the first occurrence of the specified element from this deque.
755      * If the deque does not contain the element, it is unchanged.
756      * More formally, removes the first element {@code e} such that
757      * {@code o.equals(e)} (if such an element exists).
758      * Returns {@code true} if this deque contained the specified element
759      * (or equivalently, if this deque changed as a result of the call).
760      *
761      * <p>This method is equivalent to
762      * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
763      *
764      * @param o element to be removed from this deque, if present
765      * @return {@code true} if this deque changed as a result of the call
766      */
remove(Object o)767     public boolean remove(Object o) {
768         return removeFirstOccurrence(o);
769     }
770 
771     /**
772      * Returns the number of elements in this deque.
773      *
774      * @return the number of elements in this deque
775      */
size()776     public int size() {
777         final ReentrantLock lock = this.lock;
778         lock.lock();
779         try {
780             return count;
781         } finally {
782             lock.unlock();
783         }
784     }
785 
786     /**
787      * Returns {@code true} if this deque contains the specified element.
788      * More formally, returns {@code true} if and only if this deque contains
789      * at least one element {@code e} such that {@code o.equals(e)}.
790      *
791      * @param o object to be checked for containment in this deque
792      * @return {@code true} if this deque contains the specified element
793      */
contains(Object o)794     public boolean contains(Object o) {
795         if (o == null) return false;
796         final ReentrantLock lock = this.lock;
797         lock.lock();
798         try {
799             for (Node<E> p = first; p != null; p = p.next)
800                 if (o.equals(p.item))
801                     return true;
802             return false;
803         } finally {
804             lock.unlock();
805         }
806     }
807 
808     /*
809      * TODO: Add support for more efficient bulk operations.
810      *
811      * We don't want to acquire the lock for every iteration, but we
812      * also want other threads a chance to interact with the
813      * collection, especially when count is close to capacity.
814      */
815 
816 //     /**
817 //      * Adds all of the elements in the specified collection to this
818 //      * queue.  Attempts to addAll of a queue to itself result in
819 //      * {@code IllegalArgumentException}. Further, the behavior of
820 //      * this operation is undefined if the specified collection is
821 //      * modified while the operation is in progress.
822 //      *
823 //      * @param c collection containing elements to be added to this queue
824 //      * @return {@code true} if this queue changed as a result of the call
825 //      * @throws ClassCastException            {@inheritDoc}
826 //      * @throws NullPointerException          {@inheritDoc}
827 //      * @throws IllegalArgumentException      {@inheritDoc}
828 //      * @throws IllegalStateException if this deque is full
829 //      * @see #add(Object)
830 //      */
831 //     public boolean addAll(Collection<? extends E> c) {
832 //         if (c == null)
833 //             throw new NullPointerException();
834 //         if (c == this)
835 //             throw new IllegalArgumentException();
836 //         final ReentrantLock lock = this.lock;
837 //         lock.lock();
838 //         try {
839 //             boolean modified = false;
840 //             for (E e : c)
841 //                 if (linkLast(e))
842 //                     modified = true;
843 //             return modified;
844 //         } finally {
845 //             lock.unlock();
846 //         }
847 //     }
848 
849     /**
850      * Returns an array containing all of the elements in this deque, in
851      * proper sequence (from first to last element).
852      *
853      * <p>The returned array will be "safe" in that no references to it are
854      * maintained by this deque.  (In other words, this method must allocate
855      * a new array).  The caller is thus free to modify the returned array.
856      *
857      * <p>This method acts as bridge between array-based and collection-based
858      * APIs.
859      *
860      * @return an array containing all of the elements in this deque
861      */
862     @SuppressWarnings("unchecked")
toArray()863     public Object[] toArray() {
864         final ReentrantLock lock = this.lock;
865         lock.lock();
866         try {
867             Object[] a = new Object[count];
868             int k = 0;
869             for (Node<E> p = first; p != null; p = p.next)
870                 a[k++] = p.item;
871             return a;
872         } finally {
873             lock.unlock();
874         }
875     }
876 
877     /**
878      * Returns an array containing all of the elements in this deque, in
879      * proper sequence; the runtime type of the returned array is that of
880      * the specified array.  If the deque fits in the specified array, it
881      * is returned therein.  Otherwise, a new array is allocated with the
882      * runtime type of the specified array and the size of this deque.
883      *
884      * <p>If this deque fits in the specified array with room to spare
885      * (i.e., the array has more elements than this deque), the element in
886      * the array immediately following the end of the deque is set to
887      * {@code null}.
888      *
889      * <p>Like the {@link #toArray()} method, this method acts as bridge between
890      * array-based and collection-based APIs.  Further, this method allows
891      * precise control over the runtime type of the output array, and may,
892      * under certain circumstances, be used to save allocation costs.
893      *
894      * <p>Suppose {@code x} is a deque known to contain only strings.
895      * The following code can be used to dump the deque into a newly
896      * allocated array of {@code String}:
897      *
898      * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
899      *
900      * Note that {@code toArray(new Object[0])} is identical in function to
901      * {@code toArray()}.
902      *
903      * @param a the array into which the elements of the deque are to
904      *          be stored, if it is big enough; otherwise, a new array of the
905      *          same runtime type is allocated for this purpose
906      * @return an array containing all of the elements in this deque
907      * @throws ArrayStoreException if the runtime type of the specified array
908      *         is not a supertype of the runtime type of every element in
909      *         this deque
910      * @throws NullPointerException if the specified array is null
911      */
912     @SuppressWarnings("unchecked")
toArray(T[] a)913     public <T> T[] toArray(T[] a) {
914         final ReentrantLock lock = this.lock;
915         lock.lock();
916         try {
917             if (a.length < count)
918                 a = (T[])java.lang.reflect.Array.newInstance
919                     (a.getClass().getComponentType(), count);
920 
921             int k = 0;
922             for (Node<E> p = first; p != null; p = p.next)
923                 a[k++] = (T)p.item;
924             if (a.length > k)
925                 a[k] = null;
926             return a;
927         } finally {
928             lock.unlock();
929         }
930     }
931 
toString()932     public String toString() {
933         return Helpers.collectionToString(this);
934     }
935 
936     /**
937      * Atomically removes all of the elements from this deque.
938      * The deque will be empty after this call returns.
939      */
clear()940     public void clear() {
941         final ReentrantLock lock = this.lock;
942         lock.lock();
943         try {
944             for (Node<E> f = first; f != null; ) {
945                 f.item = null;
946                 Node<E> n = f.next;
947                 f.prev = null;
948                 f.next = null;
949                 f = n;
950             }
951             first = last = null;
952             count = 0;
953             notFull.signalAll();
954         } finally {
955             lock.unlock();
956         }
957     }
958 
959     /**
960      * Returns an iterator over the elements in this deque in proper sequence.
961      * The elements will be returned in order from first (head) to last (tail).
962      *
963      * <p>The returned iterator is
964      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
965      *
966      * @return an iterator over the elements in this deque in proper sequence
967      */
iterator()968     public Iterator<E> iterator() {
969         return new Itr();
970     }
971 
972     /**
973      * Returns an iterator over the elements in this deque in reverse
974      * sequential order.  The elements will be returned in order from
975      * last (tail) to first (head).
976      *
977      * <p>The returned iterator is
978      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
979      *
980      * @return an iterator over the elements in this deque in reverse order
981      */
descendingIterator()982     public Iterator<E> descendingIterator() {
983         return new DescendingItr();
984     }
985 
986     /**
987      * Base class for LinkedBlockingDeque iterators.
988      */
989     private abstract class AbstractItr implements Iterator<E> {
990         /**
991          * The next node to return in next().
992          */
993         Node<E> next;
994 
995         /**
996          * nextItem holds on to item fields because once we claim that
997          * an element exists in hasNext(), we must return item read
998          * under lock (in advance()) even if it was in the process of
999          * being removed when hasNext() was called.
1000          */
1001         E nextItem;
1002 
1003         /**
1004          * Node returned by most recent call to next. Needed by remove.
1005          * Reset to null if this element is deleted by a call to remove.
1006          */
1007         private Node<E> lastRet;
1008 
firstNode()1009         abstract Node<E> firstNode();
nextNode(Node<E> n)1010         abstract Node<E> nextNode(Node<E> n);
1011 
AbstractItr()1012         AbstractItr() {
1013             // set to initial position
1014             final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1015             lock.lock();
1016             try {
1017                 next = firstNode();
1018                 nextItem = (next == null) ? null : next.item;
1019             } finally {
1020                 lock.unlock();
1021             }
1022         }
1023 
1024         /**
1025          * Returns the successor node of the given non-null, but
1026          * possibly previously deleted, node.
1027          */
succ(Node<E> n)1028         private Node<E> succ(Node<E> n) {
1029             // Chains of deleted nodes ending in null or self-links
1030             // are possible if multiple interior nodes are removed.
1031             for (;;) {
1032                 Node<E> s = nextNode(n);
1033                 if (s == null)
1034                     return null;
1035                 else if (s.item != null)
1036                     return s;
1037                 else if (s == n)
1038                     return firstNode();
1039                 else
1040                     n = s;
1041             }
1042         }
1043 
1044         /**
1045          * Advances next.
1046          */
advance()1047         void advance() {
1048             final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1049             lock.lock();
1050             try {
1051                 // assert next != null;
1052                 next = succ(next);
1053                 nextItem = (next == null) ? null : next.item;
1054             } finally {
1055                 lock.unlock();
1056             }
1057         }
1058 
hasNext()1059         public boolean hasNext() {
1060             return next != null;
1061         }
1062 
next()1063         public E next() {
1064             if (next == null)
1065                 throw new NoSuchElementException();
1066             lastRet = next;
1067             E x = nextItem;
1068             advance();
1069             return x;
1070         }
1071 
remove()1072         public void remove() {
1073             Node<E> n = lastRet;
1074             if (n == null)
1075                 throw new IllegalStateException();
1076             lastRet = null;
1077             final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1078             lock.lock();
1079             try {
1080                 if (n.item != null)
1081                     unlink(n);
1082             } finally {
1083                 lock.unlock();
1084             }
1085         }
1086     }
1087 
1088     /** Forward iterator */
1089     private class Itr extends AbstractItr {
firstNode()1090         Node<E> firstNode() { return first; }
nextNode(Node<E> n)1091         Node<E> nextNode(Node<E> n) { return n.next; }
1092     }
1093 
1094     /** Descending iterator */
1095     private class DescendingItr extends AbstractItr {
firstNode()1096         Node<E> firstNode() { return last; }
nextNode(Node<E> n)1097         Node<E> nextNode(Node<E> n) { return n.prev; }
1098     }
1099 
1100     /** A customized variant of Spliterators.IteratorSpliterator */
1101     static final class LBDSpliterator<E> implements Spliterator<E> {
1102         static final int MAX_BATCH = 1 << 25;  // max batch array size;
1103         final LinkedBlockingDeque<E> queue;
1104         Node<E> current;    // current node; null until initialized
1105         int batch;          // batch size for splits
1106         boolean exhausted;  // true when no more nodes
1107         long est;           // size estimate
LBDSpliterator(LinkedBlockingDeque<E> queue)1108         LBDSpliterator(LinkedBlockingDeque<E> queue) {
1109             this.queue = queue;
1110             this.est = queue.size();
1111         }
1112 
estimateSize()1113         public long estimateSize() { return est; }
1114 
trySplit()1115         public Spliterator<E> trySplit() {
1116             Node<E> h;
1117             final LinkedBlockingDeque<E> q = this.queue;
1118             int b = batch;
1119             int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1120             if (!exhausted &&
1121                 ((h = current) != null || (h = q.first) != null) &&
1122                 h.next != null) {
1123                 Object[] a = new Object[n];
1124                 final ReentrantLock lock = q.lock;
1125                 int i = 0;
1126                 Node<E> p = current;
1127                 lock.lock();
1128                 try {
1129                     if (p != null || (p = q.first) != null) {
1130                         do {
1131                             if ((a[i] = p.item) != null)
1132                                 ++i;
1133                         } while ((p = p.next) != null && i < n);
1134                     }
1135                 } finally {
1136                     lock.unlock();
1137                 }
1138                 if ((current = p) == null) {
1139                     est = 0L;
1140                     exhausted = true;
1141                 }
1142                 else if ((est -= i) < 0L)
1143                     est = 0L;
1144                 if (i > 0) {
1145                     batch = i;
1146                     return Spliterators.spliterator
1147                         (a, 0, i, (Spliterator.ORDERED |
1148                                    Spliterator.NONNULL |
1149                                    Spliterator.CONCURRENT));
1150                 }
1151             }
1152             return null;
1153         }
1154 
forEachRemaining(Consumer<? super E> action)1155         public void forEachRemaining(Consumer<? super E> action) {
1156             if (action == null) throw new NullPointerException();
1157             final LinkedBlockingDeque<E> q = this.queue;
1158             final ReentrantLock lock = q.lock;
1159             if (!exhausted) {
1160                 exhausted = true;
1161                 Node<E> p = current;
1162                 do {
1163                     E e = null;
1164                     lock.lock();
1165                     try {
1166                         if (p == null)
1167                             p = q.first;
1168                         while (p != null) {
1169                             e = p.item;
1170                             p = p.next;
1171                             if (e != null)
1172                                 break;
1173                         }
1174                     } finally {
1175                         lock.unlock();
1176                     }
1177                     if (e != null)
1178                         action.accept(e);
1179                 } while (p != null);
1180             }
1181         }
1182 
tryAdvance(Consumer<? super E> action)1183         public boolean tryAdvance(Consumer<? super E> action) {
1184             if (action == null) throw new NullPointerException();
1185             final LinkedBlockingDeque<E> q = this.queue;
1186             final ReentrantLock lock = q.lock;
1187             if (!exhausted) {
1188                 E e = null;
1189                 lock.lock();
1190                 try {
1191                     if (current == null)
1192                         current = q.first;
1193                     while (current != null) {
1194                         e = current.item;
1195                         current = current.next;
1196                         if (e != null)
1197                             break;
1198                     }
1199                 } finally {
1200                     lock.unlock();
1201                 }
1202                 if (current == null)
1203                     exhausted = true;
1204                 if (e != null) {
1205                     action.accept(e);
1206                     return true;
1207                 }
1208             }
1209             return false;
1210         }
1211 
characteristics()1212         public int characteristics() {
1213             return Spliterator.ORDERED | Spliterator.NONNULL |
1214                 Spliterator.CONCURRENT;
1215         }
1216     }
1217 
1218     /**
1219      * Returns a {@link Spliterator} over the elements in this deque.
1220      *
1221      * <p>The returned spliterator is
1222      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1223      *
1224      * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1225      * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1226      *
1227      * @implNote
1228      * The {@code Spliterator} implements {@code trySplit} to permit limited
1229      * parallelism.
1230      *
1231      * @return a {@code Spliterator} over the elements in this deque
1232      * @since 1.8
1233      */
spliterator()1234     public Spliterator<E> spliterator() {
1235         return new LBDSpliterator<E>(this);
1236     }
1237 
1238     /**
1239      * Saves this deque to a stream (that is, serializes it).
1240      *
1241      * @param s the stream
1242      * @throws java.io.IOException if an I/O error occurs
1243      * @serialData The capacity (int), followed by elements (each an
1244      * {@code Object}) in the proper order, followed by a null
1245      */
writeObject(java.io.ObjectOutputStream s)1246     private void writeObject(java.io.ObjectOutputStream s)
1247         throws java.io.IOException {
1248         final ReentrantLock lock = this.lock;
1249         lock.lock();
1250         try {
1251             // Write out capacity and any hidden stuff
1252             s.defaultWriteObject();
1253             // Write out all elements in the proper order.
1254             for (Node<E> p = first; p != null; p = p.next)
1255                 s.writeObject(p.item);
1256             // Use trailing null as sentinel
1257             s.writeObject(null);
1258         } finally {
1259             lock.unlock();
1260         }
1261     }
1262 
1263     /**
1264      * Reconstitutes this deque from a stream (that is, deserializes it).
1265      * @param s the stream
1266      * @throws ClassNotFoundException if the class of a serialized object
1267      *         could not be found
1268      * @throws java.io.IOException if an I/O error occurs
1269      */
readObject(java.io.ObjectInputStream s)1270     private void readObject(java.io.ObjectInputStream s)
1271         throws java.io.IOException, ClassNotFoundException {
1272         s.defaultReadObject();
1273         count = 0;
1274         first = null;
1275         last = null;
1276         // Read in all elements and place in queue
1277         for (;;) {
1278             @SuppressWarnings("unchecked")
1279             E item = (E)s.readObject();
1280             if (item == null)
1281                 break;
1282             add(item);
1283         }
1284     }
1285 
1286 }
1287