1 /* 2 * Written by Doug Lea with assistance from members of JCP JSR-166 3 * Expert Group and released to the public domain, as explained at 4 * http://creativecommons.org/publicdomain/zero/1.0/ 5 */ 6 7 package java.util.concurrent; 8 9 import java.util.AbstractQueue; 10 import java.util.Arrays; 11 import java.util.Collection; 12 import java.util.Comparator; 13 import java.util.Iterator; 14 import java.util.NoSuchElementException; 15 import java.util.PriorityQueue; 16 import java.util.Queue; 17 import java.util.SortedSet; 18 import java.util.Spliterator; 19 import java.util.concurrent.locks.Condition; 20 import java.util.concurrent.locks.ReentrantLock; 21 import java.util.function.Consumer; 22 23 // BEGIN android-note 24 // removed link to collections framework docs 25 // END android-note 26 27 /** 28 * An unbounded {@linkplain BlockingQueue blocking queue} that uses 29 * the same ordering rules as class {@link PriorityQueue} and supplies 30 * blocking retrieval operations. While this queue is logically 31 * unbounded, attempted additions may fail due to resource exhaustion 32 * (causing {@code OutOfMemoryError}). This class does not permit 33 * {@code null} elements. A priority queue relying on {@linkplain 34 * Comparable natural ordering} also does not permit insertion of 35 * non-comparable objects (doing so results in 36 * {@code ClassCastException}). 37 * 38 * <p>This class and its iterator implement all of the 39 * <em>optional</em> methods of the {@link Collection} and {@link 40 * Iterator} interfaces. The Iterator provided in method {@link 41 * #iterator()} is <em>not</em> guaranteed to traverse the elements of 42 * the PriorityBlockingQueue in any particular order. If you need 43 * ordered traversal, consider using 44 * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo} 45 * can be used to <em>remove</em> some or all elements in priority 46 * order and place them in another collection. 47 * 48 * <p>Operations on this class make no guarantees about the ordering 49 * of elements with equal priority. If you need to enforce an 50 * ordering, you can define custom classes or comparators that use a 51 * secondary key to break ties in primary priority values. For 52 * example, here is a class that applies first-in-first-out 53 * tie-breaking to comparable elements. To use it, you would insert a 54 * {@code new FIFOEntry(anEntry)} instead of a plain entry object. 55 * 56 * <pre> {@code 57 * class FIFOEntry<E extends Comparable<? super E>> 58 * implements Comparable<FIFOEntry<E>> { 59 * static final AtomicLong seq = new AtomicLong(0); 60 * final long seqNum; 61 * final E entry; 62 * public FIFOEntry(E entry) { 63 * seqNum = seq.getAndIncrement(); 64 * this.entry = entry; 65 * } 66 * public E getEntry() { return entry; } 67 * public int compareTo(FIFOEntry<E> other) { 68 * int res = entry.compareTo(other.entry); 69 * if (res == 0 && other.entry != this.entry) 70 * res = (seqNum < other.seqNum ? -1 : 1); 71 * return res; 72 * } 73 * }}</pre> 74 * 75 * @since 1.5 76 * @author Doug Lea 77 * @param <E> the type of elements held in this queue 78 */ 79 @SuppressWarnings("unchecked") 80 public class PriorityBlockingQueue<E> extends AbstractQueue<E> 81 implements BlockingQueue<E>, java.io.Serializable { 82 private static final long serialVersionUID = 5595510919245408276L; 83 84 /* 85 * The implementation uses an array-based binary heap, with public 86 * operations protected with a single lock. However, allocation 87 * during resizing uses a simple spinlock (used only while not 88 * holding main lock) in order to allow takes to operate 89 * concurrently with allocation. This avoids repeated 90 * postponement of waiting consumers and consequent element 91 * build-up. The need to back away from lock during allocation 92 * makes it impossible to simply wrap delegated 93 * java.util.PriorityQueue operations within a lock, as was done 94 * in a previous version of this class. To maintain 95 * interoperability, a plain PriorityQueue is still used during 96 * serialization, which maintains compatibility at the expense of 97 * transiently doubling overhead. 98 */ 99 100 /** 101 * Default array capacity. 102 */ 103 private static final int DEFAULT_INITIAL_CAPACITY = 11; 104 105 /** 106 * The maximum size of array to allocate. 107 * Some VMs reserve some header words in an array. 108 * Attempts to allocate larger arrays may result in 109 * OutOfMemoryError: Requested array size exceeds VM limit 110 */ 111 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; 112 113 /** 114 * Priority queue represented as a balanced binary heap: the two 115 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The 116 * priority queue is ordered by comparator, or by the elements' 117 * natural ordering, if comparator is null: For each node n in the 118 * heap and each descendant d of n, n <= d. The element with the 119 * lowest value is in queue[0], assuming the queue is nonempty. 120 */ 121 private transient Object[] queue; 122 123 /** 124 * The number of elements in the priority queue. 125 */ 126 private transient int size; 127 128 /** 129 * The comparator, or null if priority queue uses elements' 130 * natural ordering. 131 */ 132 private transient Comparator<? super E> comparator; 133 134 /** 135 * Lock used for all public operations. 136 */ 137 private final ReentrantLock lock; 138 139 /** 140 * Condition for blocking when empty. 141 */ 142 private final Condition notEmpty; 143 144 /** 145 * Spinlock for allocation, acquired via CAS. 146 */ 147 private transient volatile int allocationSpinLock; 148 149 /** 150 * A plain PriorityQueue used only for serialization, 151 * to maintain compatibility with previous versions 152 * of this class. Non-null only during serialization/deserialization. 153 */ 154 private PriorityQueue<E> q; 155 156 /** 157 * Creates a {@code PriorityBlockingQueue} with the default 158 * initial capacity (11) that orders its elements according to 159 * their {@linkplain Comparable natural ordering}. 160 */ PriorityBlockingQueue()161 public PriorityBlockingQueue() { 162 this(DEFAULT_INITIAL_CAPACITY, null); 163 } 164 165 /** 166 * Creates a {@code PriorityBlockingQueue} with the specified 167 * initial capacity that orders its elements according to their 168 * {@linkplain Comparable natural ordering}. 169 * 170 * @param initialCapacity the initial capacity for this priority queue 171 * @throws IllegalArgumentException if {@code initialCapacity} is less 172 * than 1 173 */ PriorityBlockingQueue(int initialCapacity)174 public PriorityBlockingQueue(int initialCapacity) { 175 this(initialCapacity, null); 176 } 177 178 /** 179 * Creates a {@code PriorityBlockingQueue} with the specified initial 180 * capacity that orders its elements according to the specified 181 * comparator. 182 * 183 * @param initialCapacity the initial capacity for this priority queue 184 * @param comparator the comparator that will be used to order this 185 * priority queue. If {@code null}, the {@linkplain Comparable 186 * natural ordering} of the elements will be used. 187 * @throws IllegalArgumentException if {@code initialCapacity} is less 188 * than 1 189 */ PriorityBlockingQueue(int initialCapacity, Comparator<? super E> comparator)190 public PriorityBlockingQueue(int initialCapacity, 191 Comparator<? super E> comparator) { 192 if (initialCapacity < 1) 193 throw new IllegalArgumentException(); 194 this.lock = new ReentrantLock(); 195 this.notEmpty = lock.newCondition(); 196 this.comparator = comparator; 197 this.queue = new Object[initialCapacity]; 198 } 199 200 /** 201 * Creates a {@code PriorityBlockingQueue} containing the elements 202 * in the specified collection. If the specified collection is a 203 * {@link SortedSet} or a {@link PriorityQueue}, this 204 * priority queue will be ordered according to the same ordering. 205 * Otherwise, this priority queue will be ordered according to the 206 * {@linkplain Comparable natural ordering} of its elements. 207 * 208 * @param c the collection whose elements are to be placed 209 * into this priority queue 210 * @throws ClassCastException if elements of the specified collection 211 * cannot be compared to one another according to the priority 212 * queue's ordering 213 * @throws NullPointerException if the specified collection or any 214 * of its elements are null 215 */ PriorityBlockingQueue(Collection<? extends E> c)216 public PriorityBlockingQueue(Collection<? extends E> c) { 217 this.lock = new ReentrantLock(); 218 this.notEmpty = lock.newCondition(); 219 boolean heapify = true; // true if not known to be in heap order 220 boolean screen = true; // true if must screen for nulls 221 if (c instanceof SortedSet<?>) { 222 SortedSet<? extends E> ss = (SortedSet<? extends E>) c; 223 this.comparator = (Comparator<? super E>) ss.comparator(); 224 heapify = false; 225 } 226 else if (c instanceof PriorityBlockingQueue<?>) { 227 PriorityBlockingQueue<? extends E> pq = 228 (PriorityBlockingQueue<? extends E>) c; 229 this.comparator = (Comparator<? super E>) pq.comparator(); 230 screen = false; 231 if (pq.getClass() == PriorityBlockingQueue.class) // exact match 232 heapify = false; 233 } 234 Object[] a = c.toArray(); 235 int n = a.length; 236 // If c.toArray incorrectly doesn't return Object[], copy it. 237 if (a.getClass() != Object[].class) 238 a = Arrays.copyOf(a, n, Object[].class); 239 if (screen && (n == 1 || this.comparator != null)) { 240 for (int i = 0; i < n; ++i) 241 if (a[i] == null) 242 throw new NullPointerException(); 243 } 244 this.queue = a; 245 this.size = n; 246 if (heapify) 247 heapify(); 248 } 249 250 /** 251 * Tries to grow array to accommodate at least one more element 252 * (but normally expand by about 50%), giving up (allowing retry) 253 * on contention (which we expect to be rare). Call only while 254 * holding lock. 255 * 256 * @param array the heap array 257 * @param oldCap the length of the array 258 */ tryGrow(Object[] array, int oldCap)259 private void tryGrow(Object[] array, int oldCap) { 260 lock.unlock(); // must release and then re-acquire main lock 261 Object[] newArray = null; 262 if (allocationSpinLock == 0 && 263 U.compareAndSwapInt(this, ALLOCATIONSPINLOCK, 0, 1)) { 264 try { 265 int newCap = oldCap + ((oldCap < 64) ? 266 (oldCap + 2) : // grow faster if small 267 (oldCap >> 1)); 268 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow 269 int minCap = oldCap + 1; 270 if (minCap < 0 || minCap > MAX_ARRAY_SIZE) 271 throw new OutOfMemoryError(); 272 newCap = MAX_ARRAY_SIZE; 273 } 274 if (newCap > oldCap && queue == array) 275 newArray = new Object[newCap]; 276 } finally { 277 allocationSpinLock = 0; 278 } 279 } 280 if (newArray == null) // back off if another thread is allocating 281 Thread.yield(); 282 lock.lock(); 283 if (newArray != null && queue == array) { 284 queue = newArray; 285 System.arraycopy(array, 0, newArray, 0, oldCap); 286 } 287 } 288 289 /** 290 * Mechanics for poll(). Call only while holding lock. 291 */ dequeue()292 private E dequeue() { 293 int n = size - 1; 294 if (n < 0) 295 return null; 296 else { 297 Object[] array = queue; 298 E result = (E) array[0]; 299 E x = (E) array[n]; 300 array[n] = null; 301 Comparator<? super E> cmp = comparator; 302 if (cmp == null) 303 siftDownComparable(0, x, array, n); 304 else 305 siftDownUsingComparator(0, x, array, n, cmp); 306 size = n; 307 return result; 308 } 309 } 310 311 /** 312 * Inserts item x at position k, maintaining heap invariant by 313 * promoting x up the tree until it is greater than or equal to 314 * its parent, or is the root. 315 * 316 * To simplify and speed up coercions and comparisons. the 317 * Comparable and Comparator versions are separated into different 318 * methods that are otherwise identical. (Similarly for siftDown.) 319 * These methods are static, with heap state as arguments, to 320 * simplify use in light of possible comparator exceptions. 321 * 322 * @param k the position to fill 323 * @param x the item to insert 324 * @param array the heap array 325 */ siftUpComparable(int k, T x, Object[] array)326 private static <T> void siftUpComparable(int k, T x, Object[] array) { 327 Comparable<? super T> key = (Comparable<? super T>) x; 328 while (k > 0) { 329 int parent = (k - 1) >>> 1; 330 Object e = array[parent]; 331 if (key.compareTo((T) e) >= 0) 332 break; 333 array[k] = e; 334 k = parent; 335 } 336 array[k] = key; 337 } 338 siftUpUsingComparator(int k, T x, Object[] array, Comparator<? super T> cmp)339 private static <T> void siftUpUsingComparator(int k, T x, Object[] array, 340 Comparator<? super T> cmp) { 341 while (k > 0) { 342 int parent = (k - 1) >>> 1; 343 Object e = array[parent]; 344 if (cmp.compare(x, (T) e) >= 0) 345 break; 346 array[k] = e; 347 k = parent; 348 } 349 array[k] = x; 350 } 351 352 /** 353 * Inserts item x at position k, maintaining heap invariant by 354 * demoting x down the tree repeatedly until it is less than or 355 * equal to its children or is a leaf. 356 * 357 * @param k the position to fill 358 * @param x the item to insert 359 * @param array the heap array 360 * @param n heap size 361 */ siftDownComparable(int k, T x, Object[] array, int n)362 private static <T> void siftDownComparable(int k, T x, Object[] array, 363 int n) { 364 if (n > 0) { 365 Comparable<? super T> key = (Comparable<? super T>)x; 366 int half = n >>> 1; // loop while a non-leaf 367 while (k < half) { 368 int child = (k << 1) + 1; // assume left child is least 369 Object c = array[child]; 370 int right = child + 1; 371 if (right < n && 372 ((Comparable<? super T>) c).compareTo((T) array[right]) > 0) 373 c = array[child = right]; 374 if (key.compareTo((T) c) <= 0) 375 break; 376 array[k] = c; 377 k = child; 378 } 379 array[k] = key; 380 } 381 } 382 siftDownUsingComparator(int k, T x, Object[] array, int n, Comparator<? super T> cmp)383 private static <T> void siftDownUsingComparator(int k, T x, Object[] array, 384 int n, 385 Comparator<? super T> cmp) { 386 if (n > 0) { 387 int half = n >>> 1; 388 while (k < half) { 389 int child = (k << 1) + 1; 390 Object c = array[child]; 391 int right = child + 1; 392 if (right < n && cmp.compare((T) c, (T) array[right]) > 0) 393 c = array[child = right]; 394 if (cmp.compare(x, (T) c) <= 0) 395 break; 396 array[k] = c; 397 k = child; 398 } 399 array[k] = x; 400 } 401 } 402 403 /** 404 * Establishes the heap invariant (described above) in the entire tree, 405 * assuming nothing about the order of the elements prior to the call. 406 */ heapify()407 private void heapify() { 408 Object[] array = queue; 409 int n = size; 410 int half = (n >>> 1) - 1; 411 Comparator<? super E> cmp = comparator; 412 if (cmp == null) { 413 for (int i = half; i >= 0; i--) 414 siftDownComparable(i, (E) array[i], array, n); 415 } 416 else { 417 for (int i = half; i >= 0; i--) 418 siftDownUsingComparator(i, (E) array[i], array, n, cmp); 419 } 420 } 421 422 /** 423 * Inserts the specified element into this priority queue. 424 * 425 * @param e the element to add 426 * @return {@code true} (as specified by {@link Collection#add}) 427 * @throws ClassCastException if the specified element cannot be compared 428 * with elements currently in the priority queue according to the 429 * priority queue's ordering 430 * @throws NullPointerException if the specified element is null 431 */ add(E e)432 public boolean add(E e) { 433 return offer(e); 434 } 435 436 /** 437 * Inserts the specified element into this priority queue. 438 * As the queue is unbounded, this method will never return {@code false}. 439 * 440 * @param e the element to add 441 * @return {@code true} (as specified by {@link Queue#offer}) 442 * @throws ClassCastException if the specified element cannot be compared 443 * with elements currently in the priority queue according to the 444 * priority queue's ordering 445 * @throws NullPointerException if the specified element is null 446 */ offer(E e)447 public boolean offer(E e) { 448 if (e == null) 449 throw new NullPointerException(); 450 final ReentrantLock lock = this.lock; 451 lock.lock(); 452 int n, cap; 453 Object[] array; 454 while ((n = size) >= (cap = (array = queue).length)) 455 tryGrow(array, cap); 456 try { 457 Comparator<? super E> cmp = comparator; 458 if (cmp == null) 459 siftUpComparable(n, e, array); 460 else 461 siftUpUsingComparator(n, e, array, cmp); 462 size = n + 1; 463 notEmpty.signal(); 464 } finally { 465 lock.unlock(); 466 } 467 return true; 468 } 469 470 /** 471 * Inserts the specified element into this priority queue. 472 * As the queue is unbounded, this method will never block. 473 * 474 * @param e the element to add 475 * @throws ClassCastException if the specified element cannot be compared 476 * with elements currently in the priority queue according to the 477 * priority queue's ordering 478 * @throws NullPointerException if the specified element is null 479 */ put(E e)480 public void put(E e) { 481 offer(e); // never need to block 482 } 483 484 /** 485 * Inserts the specified element into this priority queue. 486 * As the queue is unbounded, this method will never block or 487 * return {@code false}. 488 * 489 * @param e the element to add 490 * @param timeout This parameter is ignored as the method never blocks 491 * @param unit This parameter is ignored as the method never blocks 492 * @return {@code true} (as specified by 493 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer}) 494 * @throws ClassCastException if the specified element cannot be compared 495 * with elements currently in the priority queue according to the 496 * priority queue's ordering 497 * @throws NullPointerException if the specified element is null 498 */ offer(E e, long timeout, TimeUnit unit)499 public boolean offer(E e, long timeout, TimeUnit unit) { 500 return offer(e); // never need to block 501 } 502 poll()503 public E poll() { 504 final ReentrantLock lock = this.lock; 505 lock.lock(); 506 try { 507 return dequeue(); 508 } finally { 509 lock.unlock(); 510 } 511 } 512 take()513 public E take() throws InterruptedException { 514 final ReentrantLock lock = this.lock; 515 lock.lockInterruptibly(); 516 E result; 517 try { 518 while ( (result = dequeue()) == null) 519 notEmpty.await(); 520 } finally { 521 lock.unlock(); 522 } 523 return result; 524 } 525 poll(long timeout, TimeUnit unit)526 public E poll(long timeout, TimeUnit unit) throws InterruptedException { 527 long nanos = unit.toNanos(timeout); 528 final ReentrantLock lock = this.lock; 529 lock.lockInterruptibly(); 530 E result; 531 try { 532 while ( (result = dequeue()) == null && nanos > 0) 533 nanos = notEmpty.awaitNanos(nanos); 534 } finally { 535 lock.unlock(); 536 } 537 return result; 538 } 539 peek()540 public E peek() { 541 final ReentrantLock lock = this.lock; 542 lock.lock(); 543 try { 544 return (size == 0) ? null : (E) queue[0]; 545 } finally { 546 lock.unlock(); 547 } 548 } 549 550 /** 551 * Returns the comparator used to order the elements in this queue, 552 * or {@code null} if this queue uses the {@linkplain Comparable 553 * natural ordering} of its elements. 554 * 555 * @return the comparator used to order the elements in this queue, 556 * or {@code null} if this queue uses the natural 557 * ordering of its elements 558 */ comparator()559 public Comparator<? super E> comparator() { 560 return comparator; 561 } 562 size()563 public int size() { 564 final ReentrantLock lock = this.lock; 565 lock.lock(); 566 try { 567 return size; 568 } finally { 569 lock.unlock(); 570 } 571 } 572 573 /** 574 * Always returns {@code Integer.MAX_VALUE} because 575 * a {@code PriorityBlockingQueue} is not capacity constrained. 576 * @return {@code Integer.MAX_VALUE} always 577 */ remainingCapacity()578 public int remainingCapacity() { 579 return Integer.MAX_VALUE; 580 } 581 indexOf(Object o)582 private int indexOf(Object o) { 583 if (o != null) { 584 Object[] array = queue; 585 int n = size; 586 for (int i = 0; i < n; i++) 587 if (o.equals(array[i])) 588 return i; 589 } 590 return -1; 591 } 592 593 /** 594 * Removes the ith element from queue. 595 */ removeAt(int i)596 private void removeAt(int i) { 597 Object[] array = queue; 598 int n = size - 1; 599 if (n == i) // removed last element 600 array[i] = null; 601 else { 602 E moved = (E) array[n]; 603 array[n] = null; 604 Comparator<? super E> cmp = comparator; 605 if (cmp == null) 606 siftDownComparable(i, moved, array, n); 607 else 608 siftDownUsingComparator(i, moved, array, n, cmp); 609 if (array[i] == moved) { 610 if (cmp == null) 611 siftUpComparable(i, moved, array); 612 else 613 siftUpUsingComparator(i, moved, array, cmp); 614 } 615 } 616 size = n; 617 } 618 619 /** 620 * Removes a single instance of the specified element from this queue, 621 * if it is present. More formally, removes an element {@code e} such 622 * that {@code o.equals(e)}, if this queue contains one or more such 623 * elements. Returns {@code true} if and only if this queue contained 624 * the specified element (or equivalently, if this queue changed as a 625 * result of the call). 626 * 627 * @param o element to be removed from this queue, if present 628 * @return {@code true} if this queue changed as a result of the call 629 */ remove(Object o)630 public boolean remove(Object o) { 631 final ReentrantLock lock = this.lock; 632 lock.lock(); 633 try { 634 int i = indexOf(o); 635 if (i == -1) 636 return false; 637 removeAt(i); 638 return true; 639 } finally { 640 lock.unlock(); 641 } 642 } 643 644 /** 645 * Identity-based version for use in Itr.remove. 646 */ removeEQ(Object o)647 void removeEQ(Object o) { 648 final ReentrantLock lock = this.lock; 649 lock.lock(); 650 try { 651 Object[] array = queue; 652 for (int i = 0, n = size; i < n; i++) { 653 if (o == array[i]) { 654 removeAt(i); 655 break; 656 } 657 } 658 } finally { 659 lock.unlock(); 660 } 661 } 662 663 /** 664 * Returns {@code true} if this queue contains the specified element. 665 * More formally, returns {@code true} if and only if this queue contains 666 * at least one element {@code e} such that {@code o.equals(e)}. 667 * 668 * @param o object to be checked for containment in this queue 669 * @return {@code true} if this queue contains the specified element 670 */ contains(Object o)671 public boolean contains(Object o) { 672 final ReentrantLock lock = this.lock; 673 lock.lock(); 674 try { 675 return indexOf(o) != -1; 676 } finally { 677 lock.unlock(); 678 } 679 } 680 toString()681 public String toString() { 682 return Helpers.collectionToString(this); 683 } 684 685 /** 686 * @throws UnsupportedOperationException {@inheritDoc} 687 * @throws ClassCastException {@inheritDoc} 688 * @throws NullPointerException {@inheritDoc} 689 * @throws IllegalArgumentException {@inheritDoc} 690 */ drainTo(Collection<? super E> c)691 public int drainTo(Collection<? super E> c) { 692 return drainTo(c, Integer.MAX_VALUE); 693 } 694 695 /** 696 * @throws UnsupportedOperationException {@inheritDoc} 697 * @throws ClassCastException {@inheritDoc} 698 * @throws NullPointerException {@inheritDoc} 699 * @throws IllegalArgumentException {@inheritDoc} 700 */ drainTo(Collection<? super E> c, int maxElements)701 public int drainTo(Collection<? super E> c, int maxElements) { 702 if (c == null) 703 throw new NullPointerException(); 704 if (c == this) 705 throw new IllegalArgumentException(); 706 if (maxElements <= 0) 707 return 0; 708 final ReentrantLock lock = this.lock; 709 lock.lock(); 710 try { 711 int n = Math.min(size, maxElements); 712 for (int i = 0; i < n; i++) { 713 c.add((E) queue[0]); // In this order, in case add() throws. 714 dequeue(); 715 } 716 return n; 717 } finally { 718 lock.unlock(); 719 } 720 } 721 722 /** 723 * Atomically removes all of the elements from this queue. 724 * The queue will be empty after this call returns. 725 */ clear()726 public void clear() { 727 final ReentrantLock lock = this.lock; 728 lock.lock(); 729 try { 730 Object[] array = queue; 731 int n = size; 732 size = 0; 733 for (int i = 0; i < n; i++) 734 array[i] = null; 735 } finally { 736 lock.unlock(); 737 } 738 } 739 740 /** 741 * Returns an array containing all of the elements in this queue. 742 * The returned array elements are in no particular order. 743 * 744 * <p>The returned array will be "safe" in that no references to it are 745 * maintained by this queue. (In other words, this method must allocate 746 * a new array). The caller is thus free to modify the returned array. 747 * 748 * <p>This method acts as bridge between array-based and collection-based 749 * APIs. 750 * 751 * @return an array containing all of the elements in this queue 752 */ toArray()753 public Object[] toArray() { 754 final ReentrantLock lock = this.lock; 755 lock.lock(); 756 try { 757 return Arrays.copyOf(queue, size); 758 } finally { 759 lock.unlock(); 760 } 761 } 762 763 /** 764 * Returns an array containing all of the elements in this queue; the 765 * runtime type of the returned array is that of the specified array. 766 * The returned array elements are in no particular order. 767 * If the queue fits in the specified array, it is returned therein. 768 * Otherwise, a new array is allocated with the runtime type of the 769 * specified array and the size of this queue. 770 * 771 * <p>If this queue fits in the specified array with room to spare 772 * (i.e., the array has more elements than this queue), the element in 773 * the array immediately following the end of the queue is set to 774 * {@code null}. 775 * 776 * <p>Like the {@link #toArray()} method, this method acts as bridge between 777 * array-based and collection-based APIs. Further, this method allows 778 * precise control over the runtime type of the output array, and may, 779 * under certain circumstances, be used to save allocation costs. 780 * 781 * <p>Suppose {@code x} is a queue known to contain only strings. 782 * The following code can be used to dump the queue into a newly 783 * allocated array of {@code String}: 784 * 785 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre> 786 * 787 * Note that {@code toArray(new Object[0])} is identical in function to 788 * {@code toArray()}. 789 * 790 * @param a the array into which the elements of the queue are to 791 * be stored, if it is big enough; otherwise, a new array of the 792 * same runtime type is allocated for this purpose 793 * @return an array containing all of the elements in this queue 794 * @throws ArrayStoreException if the runtime type of the specified array 795 * is not a supertype of the runtime type of every element in 796 * this queue 797 * @throws NullPointerException if the specified array is null 798 */ toArray(T[] a)799 public <T> T[] toArray(T[] a) { 800 final ReentrantLock lock = this.lock; 801 lock.lock(); 802 try { 803 int n = size; 804 if (a.length < n) 805 // Make a new array of a's runtime type, but my contents: 806 return (T[]) Arrays.copyOf(queue, size, a.getClass()); 807 System.arraycopy(queue, 0, a, 0, n); 808 if (a.length > n) 809 a[n] = null; 810 return a; 811 } finally { 812 lock.unlock(); 813 } 814 } 815 816 /** 817 * Returns an iterator over the elements in this queue. The 818 * iterator does not return the elements in any particular order. 819 * 820 * <p>The returned iterator is 821 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. 822 * 823 * @return an iterator over the elements in this queue 824 */ iterator()825 public Iterator<E> iterator() { 826 return new Itr(toArray()); 827 } 828 829 /** 830 * Snapshot iterator that works off copy of underlying q array. 831 */ 832 final class Itr implements Iterator<E> { 833 final Object[] array; // Array of all elements 834 int cursor; // index of next element to return 835 int lastRet; // index of last element, or -1 if no such 836 Itr(Object[] array)837 Itr(Object[] array) { 838 lastRet = -1; 839 this.array = array; 840 } 841 hasNext()842 public boolean hasNext() { 843 return cursor < array.length; 844 } 845 next()846 public E next() { 847 if (cursor >= array.length) 848 throw new NoSuchElementException(); 849 lastRet = cursor; 850 return (E)array[cursor++]; 851 } 852 remove()853 public void remove() { 854 if (lastRet < 0) 855 throw new IllegalStateException(); 856 removeEQ(array[lastRet]); 857 lastRet = -1; 858 } 859 } 860 861 /** 862 * Saves this queue to a stream (that is, serializes it). 863 * 864 * For compatibility with previous version of this class, elements 865 * are first copied to a java.util.PriorityQueue, which is then 866 * serialized. 867 * 868 * @param s the stream 869 * @throws java.io.IOException if an I/O error occurs 870 */ writeObject(java.io.ObjectOutputStream s)871 private void writeObject(java.io.ObjectOutputStream s) 872 throws java.io.IOException { 873 lock.lock(); 874 try { 875 // avoid zero capacity argument 876 q = new PriorityQueue<E>(Math.max(size, 1), comparator); 877 q.addAll(this); 878 s.defaultWriteObject(); 879 } finally { 880 q = null; 881 lock.unlock(); 882 } 883 } 884 885 /** 886 * Reconstitutes this queue from a stream (that is, deserializes it). 887 * @param s the stream 888 * @throws ClassNotFoundException if the class of a serialized object 889 * could not be found 890 * @throws java.io.IOException if an I/O error occurs 891 */ readObject(java.io.ObjectInputStream s)892 private void readObject(java.io.ObjectInputStream s) 893 throws java.io.IOException, ClassNotFoundException { 894 try { 895 s.defaultReadObject(); 896 this.queue = new Object[q.size()]; 897 comparator = q.comparator(); 898 addAll(q); 899 } finally { 900 q = null; 901 } 902 } 903 904 // Similar to Collections.ArraySnapshotSpliterator but avoids 905 // commitment to toArray until needed 906 static final class PBQSpliterator<E> implements Spliterator<E> { 907 final PriorityBlockingQueue<E> queue; 908 Object[] array; 909 int index; 910 int fence; 911 PBQSpliterator(PriorityBlockingQueue<E> queue, Object[] array, int index, int fence)912 PBQSpliterator(PriorityBlockingQueue<E> queue, Object[] array, 913 int index, int fence) { 914 this.queue = queue; 915 this.array = array; 916 this.index = index; 917 this.fence = fence; 918 } 919 getFence()920 final int getFence() { 921 int hi; 922 if ((hi = fence) < 0) 923 hi = fence = (array = queue.toArray()).length; 924 return hi; 925 } 926 trySplit()927 public PBQSpliterator<E> trySplit() { 928 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; 929 return (lo >= mid) ? null : 930 new PBQSpliterator<E>(queue, array, lo, index = mid); 931 } 932 933 @SuppressWarnings("unchecked") forEachRemaining(Consumer<? super E> action)934 public void forEachRemaining(Consumer<? super E> action) { 935 Object[] a; int i, hi; // hoist accesses and checks from loop 936 if (action == null) 937 throw new NullPointerException(); 938 if ((a = array) == null) 939 fence = (a = queue.toArray()).length; 940 if ((hi = fence) <= a.length && 941 (i = index) >= 0 && i < (index = hi)) { 942 do { action.accept((E)a[i]); } while (++i < hi); 943 } 944 } 945 tryAdvance(Consumer<? super E> action)946 public boolean tryAdvance(Consumer<? super E> action) { 947 if (action == null) 948 throw new NullPointerException(); 949 if (getFence() > index && index >= 0) { 950 @SuppressWarnings("unchecked") E e = (E) array[index++]; 951 action.accept(e); 952 return true; 953 } 954 return false; 955 } 956 estimateSize()957 public long estimateSize() { return (long)(getFence() - index); } 958 characteristics()959 public int characteristics() { 960 return Spliterator.NONNULL | Spliterator.SIZED | Spliterator.SUBSIZED; 961 } 962 } 963 964 /** 965 * Returns a {@link Spliterator} over the elements in this queue. 966 * 967 * <p>The returned spliterator is 968 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. 969 * 970 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and 971 * {@link Spliterator#NONNULL}. 972 * 973 * @implNote 974 * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}. 975 * 976 * @return a {@code Spliterator} over the elements in this queue 977 * @since 1.8 978 */ spliterator()979 public Spliterator<E> spliterator() { 980 return new PBQSpliterator<E>(this, null, 0, -1); 981 } 982 983 // Unsafe mechanics 984 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe(); 985 private static final long ALLOCATIONSPINLOCK; 986 static { 987 try { 988 ALLOCATIONSPINLOCK = U.objectFieldOffset 989 (PriorityBlockingQueue.class.getDeclaredField("allocationSpinLock")); 990 } catch (ReflectiveOperationException e) { 991 throw new Error(e); 992 } 993 } 994 } 995