• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.  Oracle designates this
9  * particular file as subject to the "Classpath" exception as provided
10  * by Oracle in the LICENSE file that accompanied this code.
11  *
12  * This code is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  * version 2 for more details (a copy is included in the LICENSE file that
16  * accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License version
19  * 2 along with this work; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23  * or visit www.oracle.com if you need additional information or have any
24  * questions.
25  */
26 package java.lang;
27 
28 import java.io.ObjectStreamField;
29 import java.io.UnsupportedEncodingException;
30 import java.lang.ArrayIndexOutOfBoundsException;
31 import java.nio.charset.Charset;
32 import java.util.ArrayList;
33 import java.util.Arrays;
34 import java.util.Comparator;
35 import java.util.Formatter;
36 import java.util.Locale;
37 import java.util.regex.Matcher;
38 import java.util.regex.Pattern;
39 import java.util.regex.PatternSyntaxException;
40 
41 import libcore.util.CharsetUtils;
42 import libcore.util.EmptyArray;
43 
44 /**
45  * The <code>String</code> class represents character strings. All
46  * string literals in Java programs, such as <code>"abc"</code>, are
47  * implemented as instances of this class.
48  * <p>
49  * Strings are constant; their values cannot be changed after they
50  * are created. String buffers support mutable strings.
51  * Because String objects are immutable they can be shared. For example:
52  * <p><blockquote><pre>
53  *     String str = "abc";
54  * </pre></blockquote><p>
55  * is equivalent to:
56  * <p><blockquote><pre>
57  *     char data[] = {'a', 'b', 'c'};
58  *     String str = new String(data);
59  * </pre></blockquote><p>
60  * Here are some more examples of how strings can be used:
61  * <p><blockquote><pre>
62  *     System.out.println("abc");
63  *     String cde = "cde";
64  *     System.out.println("abc" + cde);
65  *     String c = "abc".substring(2,3);
66  *     String d = cde.substring(1, 2);
67  * </pre></blockquote>
68  * <p>
69  * The class <code>String</code> includes methods for examining
70  * individual characters of the sequence, for comparing strings, for
71  * searching strings, for extracting substrings, and for creating a
72  * copy of a string with all characters translated to uppercase or to
73  * lowercase. Case mapping is based on the Unicode Standard version
74  * specified by the {@link java.lang.Character Character} class.
75  * <p>
76  * The Java language provides special support for the string
77  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
78  * other objects to strings. String concatenation is implemented
79  * through the <code>StringBuilder</code>(or <code>StringBuffer</code>)
80  * class and its <code>append</code> method.
81  * String conversions are implemented through the method
82  * <code>toString</code>, defined by <code>Object</code> and
83  * inherited by all classes in Java. For additional information on
84  * string concatenation and conversion, see Gosling, Joy, and Steele,
85  * <i>The Java Language Specification</i>.
86  *
87  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
88  * or method in this class will cause a {@link NullPointerException} to be
89  * thrown.
90  *
91  * <p>A <code>String</code> represents a string in the UTF-16 format
92  * in which <em>supplementary characters</em> are represented by <em>surrogate
93  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
94  * Character Representations</a> in the <code>Character</code> class for
95  * more information).
96  * Index values refer to <code>char</code> code units, so a supplementary
97  * character uses two positions in a <code>String</code>.
98  * <p>The <code>String</code> class provides methods for dealing with
99  * Unicode code points (i.e., characters), in addition to those for
100  * dealing with Unicode code units (i.e., <code>char</code> values).
101  *
102  * @author  Lee Boynton
103  * @author  Arthur van Hoff
104  * @author  Martin Buchholz
105  * @author  Ulf Zibis
106  * @see     java.lang.Object#toString()
107  * @see     java.lang.StringBuffer
108  * @see     java.lang.StringBuilder
109  * @see     java.nio.charset.Charset
110  * @since   JDK1.0
111  */
112 
113 public final class String
114     implements java.io.Serializable, Comparable<String>, CharSequence {
115 
116     // The associated character storage is managed by the runtime. We only
117     // keep track of the length here.
118     //
119     // private final char value[];
120     private final int count;
121 
122     /** Cache the hash code for the string */
123     private int hash; // Default to 0
124 
125     /** use serialVersionUID from JDK 1.0.2 for interoperability */
126     private static final long serialVersionUID = -6849794470754667710L;
127 
128     /**
129      * Class String is special cased within the Serialization Stream Protocol.
130      *
131      * A String instance is written initially into an ObjectOutputStream in the
132      * following format:
133      * <pre>
134      *      <code>TC_STRING</code> (utf String)
135      * </pre>
136      * The String is written by method <code>DataOutput.writeUTF</code>.
137      * A new handle is generated to  refer to all future references to the
138      * string instance within the stream.
139      */
140     private static final ObjectStreamField[] serialPersistentFields =
141             new ObjectStreamField[0];
142 
143     /**
144      * Initializes a newly created {@code String} object so that it represents
145      * an empty character sequence.  Note that use of this constructor is
146      * unnecessary since Strings are immutable.
147      */
String()148     public String() {
149         throw new UnsupportedOperationException("Use StringFactory instead.");
150     }
151 
152     /**
153      * Initializes a newly created {@code String} object so that it represents
154      * the same sequence of characters as the argument; in other words, the
155      * newly created string is a copy of the argument string. Unless an
156      * explicit copy of {@code original} is needed, use of this constructor is
157      * unnecessary since Strings are immutable.
158      *
159      * @param  original
160      *         A {@code String}
161      */
String(String original)162     public String(String original) {
163         throw new UnsupportedOperationException("Use StringFactory instead.");
164     }
165 
166     /**
167      * Allocates a new {@code String} so that it represents the sequence of
168      * characters currently contained in the character array argument. The
169      * contents of the character array are copied; subsequent modification of
170      * the character array does not affect the newly created string.
171      *
172      * @param  value
173      *         The initial value of the string
174      */
String(char value[])175     public String(char value[]) {
176         throw new UnsupportedOperationException("Use StringFactory instead.");
177     }
178 
179     /**
180      * Allocates a new {@code String} that contains characters from a subarray
181      * of the character array argument. The {@code offset} argument is the
182      * index of the first character of the subarray and the {@code count}
183      * argument specifies the length of the subarray. The contents of the
184      * subarray are copied; subsequent modification of the character array does
185      * not affect the newly created string.
186      *
187      * @param  value
188      *         Array that is the source of characters
189      *
190      * @param  offset
191      *         The initial offset
192      *
193      * @param  count
194      *         The length
195      *
196      * @throws  IndexOutOfBoundsException
197      *          If the {@code offset} and {@code count} arguments index
198      *          characters outside the bounds of the {@code value} array
199      */
String(char value[], int offset, int count)200     public String(char value[], int offset, int count) {
201         throw new UnsupportedOperationException("Use StringFactory instead.");
202     }
203 
204     /**
205      * Allocates a new {@code String} that contains characters from a subarray
206      * of the <a href="Character.html#unicode">Unicode code point</a> array
207      * argument.  The {@code offset} argument is the index of the first code
208      * point of the subarray and the {@code count} argument specifies the
209      * length of the subarray.  The contents of the subarray are converted to
210      * {@code char}s; subsequent modification of the {@code int} array does not
211      * affect the newly created string.
212      *
213      * @param  codePoints
214      *         Array that is the source of Unicode code points
215      *
216      * @param  offset
217      *         The initial offset
218      *
219      * @param  count
220      *         The length
221      *
222      * @throws  IllegalArgumentException
223      *          If any invalid Unicode code point is found in {@code
224      *          codePoints}
225      *
226      * @throws  IndexOutOfBoundsException
227      *          If the {@code offset} and {@code count} arguments index
228      *          characters outside the bounds of the {@code codePoints} array
229      *
230      * @since  1.5
231      */
String(int[] codePoints, int offset, int count)232     public String(int[] codePoints, int offset, int count) {
233         throw new UnsupportedOperationException("Use StringFactory instead.");
234     }
235 
236     /**
237      * Allocates a new {@code String} constructed from a subarray of an array
238      * of 8-bit integer values.
239      *
240      * <p> The {@code offset} argument is the index of the first byte of the
241      * subarray, and the {@code count} argument specifies the length of the
242      * subarray.
243      *
244      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
245      * specified in the method above.
246      *
247      * @deprecated This method does not properly convert bytes into characters.
248      * As of JDK&nbsp;1.1, the preferred way to do this is via the
249      * {@code String} constructors that take a {@link
250      * java.nio.charset.Charset}, charset name, or that use the platform's
251      * default charset.
252      *
253      * @param  ascii
254      *         The bytes to be converted to characters
255      *
256      * @param  hibyte
257      *         The top 8 bits of each 16-bit Unicode code unit
258      *
259      * @param  offset
260      *         The initial offset
261      * @param  count
262      *         The length
263      *
264      * @throws  IndexOutOfBoundsException
265      *          If the {@code offset} or {@code count} argument is invalid
266      *
267      * @see  #String(byte[], int)
268      * @see  #String(byte[], int, int, java.lang.String)
269      * @see  #String(byte[], int, int, java.nio.charset.Charset)
270      * @see  #String(byte[], int, int)
271      * @see  #String(byte[], java.lang.String)
272      * @see  #String(byte[], java.nio.charset.Charset)
273      * @see  #String(byte[])
274      */
275     @Deprecated
String(byte ascii[], int hibyte, int offset, int count)276     public String(byte ascii[], int hibyte, int offset, int count) {
277         throw new UnsupportedOperationException("Use StringFactory instead.");
278     }
279 
280     /**
281      * Allocates a new {@code String} containing characters constructed from
282      * an array of 8-bit integer values. Each character <i>c</i>in the
283      * resulting string is constructed from the corresponding component
284      * <i>b</i> in the byte array such that:
285      *
286      * <blockquote><pre>
287      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
288      *                         | (<b><i>b</i></b> &amp; 0xff))
289      * </pre></blockquote>
290      *
291      * @deprecated  This method does not properly convert bytes into
292      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
293      * {@code String} constructors that take a {@link
294      * java.nio.charset.Charset}, charset name, or that use the platform's
295      * default charset.
296      *
297      * @param  ascii
298      *         The bytes to be converted to characters
299      *
300      * @param  hibyte
301      *         The top 8 bits of each 16-bit Unicode code unit
302      *
303      * @see  #String(byte[], int, int, java.lang.String)
304      * @see  #String(byte[], int, int, java.nio.charset.Charset)
305      * @see  #String(byte[], int, int)
306      * @see  #String(byte[], java.lang.String)
307      * @see  #String(byte[], java.nio.charset.Charset)
308      * @see  #String(byte[])
309      */
310     @Deprecated
String(byte ascii[], int hibyte)311     public String(byte ascii[], int hibyte) {
312         throw new UnsupportedOperationException("Use StringFactory instead.");
313     }
314 
315     /**
316      * Constructs a new {@code String} by decoding the specified subarray of
317      * bytes using the specified charset.  The length of the new {@code String}
318      * is a function of the charset, and hence may not be equal to the length
319      * of the subarray.
320      *
321      * <p> The behavior of this constructor when the given bytes are not valid
322      * in the given charset is unspecified.  The {@link
323      * java.nio.charset.CharsetDecoder} class should be used when more control
324      * over the decoding process is required.
325      *
326      * @param  bytes
327      *         The bytes to be decoded into characters
328      *
329      * @param  offset
330      *         The index of the first byte to decode
331      *
332      * @param  length
333      *         The number of bytes to decode
334 
335      * @param  charsetName
336      *         The name of a supported {@linkplain java.nio.charset.Charset
337      *         charset}
338      *
339      * @throws  UnsupportedEncodingException
340      *          If the named charset is not supported
341      *
342      * @throws  IndexOutOfBoundsException
343      *          If the {@code offset} and {@code length} arguments index
344      *          characters outside the bounds of the {@code bytes} array
345      *
346      * @since  JDK1.1
347      */
String(byte bytes[], int offset, int length, String charsetName)348     public String(byte bytes[], int offset, int length, String charsetName)
349             throws UnsupportedEncodingException {
350         throw new UnsupportedOperationException("Use StringFactory instead.");
351     }
352 
353     /**
354      * Constructs a new {@code String} by decoding the specified subarray of
355      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
356      * The length of the new {@code String} is a function of the charset, and
357      * hence may not be equal to the length of the subarray.
358      *
359      * <p> This method always replaces malformed-input and unmappable-character
360      * sequences with this charset's default replacement string.  The {@link
361      * java.nio.charset.CharsetDecoder} class should be used when more control
362      * over the decoding process is required.
363      *
364      * @param  bytes
365      *         The bytes to be decoded into characters
366      *
367      * @param  offset
368      *         The index of the first byte to decode
369      *
370      * @param  length
371      *         The number of bytes to decode
372      *
373      * @param  charset
374      *         The {@linkplain java.nio.charset.Charset charset} to be used to
375      *         decode the {@code bytes}
376      *
377      * @throws  IndexOutOfBoundsException
378      *          If the {@code offset} and {@code length} arguments index
379      *          characters outside the bounds of the {@code bytes} array
380      *
381      * @since  1.6
382      */
String(byte bytes[], int offset, int length, Charset charset)383     public String(byte bytes[], int offset, int length, Charset charset) {
384         throw new UnsupportedOperationException("Use StringFactory instead.");
385     }
386 
387     /**
388      * Constructs a new {@code String} by decoding the specified array of bytes
389      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
390      * length of the new {@code String} is a function of the charset, and hence
391      * may not be equal to the length of the byte array.
392      *
393      * <p> The behavior of this constructor when the given bytes are not valid
394      * in the given charset is unspecified.  The {@link
395      * java.nio.charset.CharsetDecoder} class should be used when more control
396      * over the decoding process is required.
397      *
398      * @param  bytes
399      *         The bytes to be decoded into characters
400      *
401      * @param  charsetName
402      *         The name of a supported {@linkplain java.nio.charset.Charset
403      *         charset}
404      *
405      * @throws  UnsupportedEncodingException
406      *          If the named charset is not supported
407      *
408      * @since  JDK1.1
409      */
String(byte bytes[], String charsetName)410     public String(byte bytes[], String charsetName)
411             throws UnsupportedEncodingException {
412         throw new UnsupportedOperationException("Use StringFactory instead.");
413     }
414 
415     /**
416      * Constructs a new {@code String} by decoding the specified array of
417      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
418      * The length of the new {@code String} is a function of the charset, and
419      * hence may not be equal to the length of the byte array.
420      *
421      * <p> This method always replaces malformed-input and unmappable-character
422      * sequences with this charset's default replacement string.  The {@link
423      * java.nio.charset.CharsetDecoder} class should be used when more control
424      * over the decoding process is required.
425      *
426      * @param  bytes
427      *         The bytes to be decoded into characters
428      *
429      * @param  charset
430      *         The {@linkplain java.nio.charset.Charset charset} to be used to
431      *         decode the {@code bytes}
432      *
433      * @since  1.6
434      */
String(byte bytes[], Charset charset)435     public String(byte bytes[], Charset charset) {
436         throw new UnsupportedOperationException("Use StringFactory instead.");
437     }
438 
439     /**
440      * Constructs a new {@code String} by decoding the specified subarray of
441      * bytes using the platform's default charset.  The length of the new
442      * {@code String} is a function of the charset, and hence may not be equal
443      * to the length of the subarray.
444      *
445      * <p> The behavior of this constructor when the given bytes are not valid
446      * in the default charset is unspecified.  The {@link
447      * java.nio.charset.CharsetDecoder} class should be used when more control
448      * over the decoding process is required.
449      *
450      * @param  bytes
451      *         The bytes to be decoded into characters
452      *
453      * @param  offset
454      *         The index of the first byte to decode
455      *
456      * @param  length
457      *         The number of bytes to decode
458      *
459      * @throws  IndexOutOfBoundsException
460      *          If the {@code offset} and the {@code length} arguments index
461      *          characters outside the bounds of the {@code bytes} array
462      *
463      * @since  JDK1.1
464      */
String(byte bytes[], int offset, int length)465     public String(byte bytes[], int offset, int length) {
466         throw new UnsupportedOperationException("Use StringFactory instead.");
467     }
468 
469     /**
470      * Constructs a new {@code String} by decoding the specified array of bytes
471      * using the platform's default charset.  The length of the new {@code
472      * String} is a function of the charset, and hence may not be equal to the
473      * length of the byte array.
474      *
475      * <p> The behavior of this constructor when the given bytes are not valid
476      * in the default charset is unspecified.  The {@link
477      * java.nio.charset.CharsetDecoder} class should be used when more control
478      * over the decoding process is required.
479      *
480      * @param  bytes
481      *         The bytes to be decoded into characters
482      *
483      * @since  JDK1.1
484      */
String(byte bytes[])485     public String(byte bytes[]) {
486         throw new UnsupportedOperationException("Use StringFactory instead.");
487     }
488 
489     /**
490      * Allocates a new string that contains the sequence of characters
491      * currently contained in the string buffer argument. The contents of the
492      * string buffer are copied; subsequent modification of the string buffer
493      * does not affect the newly created string.
494      *
495      * @param  buffer
496      *         A {@code StringBuffer}
497      */
String(StringBuffer buffer)498     public String(StringBuffer buffer) {
499         throw new UnsupportedOperationException("Use StringFactory instead.");
500     }
501 
502     /**
503      * Allocates a new string that contains the sequence of characters
504      * currently contained in the string builder argument. The contents of the
505      * string builder are copied; subsequent modification of the string builder
506      * does not affect the newly created string.
507      *
508      * <p> This constructor is provided to ease migration to {@code
509      * StringBuilder}. Obtaining a string from a string builder via the {@code
510      * toString} method is likely to run faster and is generally preferred.
511      *
512      * @param   builder
513      *          A {@code StringBuilder}
514      *
515      * @since  1.5
516      */
String(StringBuilder builder)517     public String(StringBuilder builder) {
518         throw new UnsupportedOperationException("Use StringFactory instead.");
519     }
520 
521 
522     /**
523      * Package private constructor
524      *
525      * @deprecated Use {@link #String(char[],int,int)} instead.
526      */
527     @Deprecated
String(int offset, int count, char[] value)528     String(int offset, int count, char[] value) {
529         throw new UnsupportedOperationException("Use StringFactory instead.");
530     }
531 
532     /**
533      * Returns the length of this string.
534      * The length is equal to the number of <a href="Character.html#unicode">Unicode
535      * code units</a> in the string.
536      *
537      * @return  the length of the sequence of characters represented by this
538      *          object.
539      */
length()540     public int length() {
541         return count;
542     }
543 
544     /**
545      * Returns <tt>true</tt> if, and only if, {@link #length()} is <tt>0</tt>.
546      *
547      * @return <tt>true</tt> if {@link #length()} is <tt>0</tt>, otherwise
548      * <tt>false</tt>
549      *
550      * @since 1.6
551      */
isEmpty()552     public boolean isEmpty() {
553         return count == 0;
554     }
555 
556     /**
557      * Returns the <code>char</code> value at the
558      * specified index. An index ranges from <code>0</code> to
559      * <code>length() - 1</code>. The first <code>char</code> value of the sequence
560      * is at index <code>0</code>, the next at index <code>1</code>,
561      * and so on, as for array indexing.
562      *
563      * <p>If the <code>char</code> value specified by the index is a
564      * <a href="Character.html#unicode">surrogate</a>, the surrogate
565      * value is returned.
566      *
567      * @param      index   the index of the <code>char</code> value.
568      * @return     the <code>char</code> value at the specified index of this string.
569      *             The first <code>char</code> value is at index <code>0</code>.
570      * @exception  IndexOutOfBoundsException  if the <code>index</code>
571      *             argument is negative or not less than the length of this
572      *             string.
573      */
charAt(int index)574     public native char charAt(int index);
575 
setCharAt(int index, char c)576     native void setCharAt(int index, char c);
577 
578     /**
579      * Returns the character (Unicode code point) at the specified
580      * index. The index refers to <code>char</code> values
581      * (Unicode code units) and ranges from <code>0</code> to
582      * {@link #length()}<code> - 1</code>.
583      *
584      * <p> If the <code>char</code> value specified at the given index
585      * is in the high-surrogate range, the following index is less
586      * than the length of this <code>String</code>, and the
587      * <code>char</code> value at the following index is in the
588      * low-surrogate range, then the supplementary code point
589      * corresponding to this surrogate pair is returned. Otherwise,
590      * the <code>char</code> value at the given index is returned.
591      *
592      * @param      index the index to the <code>char</code> values
593      * @return     the code point value of the character at the
594      *             <code>index</code>
595      * @exception  IndexOutOfBoundsException  if the <code>index</code>
596      *             argument is negative or not less than the length of this
597      *             string.
598      * @since      1.5
599      */
codePointAt(int index)600     public int codePointAt(int index) {
601         if ((index < 0) || (index >= count)) {
602             throw new StringIndexOutOfBoundsException(index);
603         }
604         return Character.codePointAt(this, index);
605     }
606 
607     /**
608      * Returns the character (Unicode code point) before the specified
609      * index. The index refers to <code>char</code> values
610      * (Unicode code units) and ranges from <code>1</code> to {@link
611      * CharSequence#length() length}.
612      *
613      * <p> If the <code>char</code> value at <code>(index - 1)</code>
614      * is in the low-surrogate range, <code>(index - 2)</code> is not
615      * negative, and the <code>char</code> value at <code>(index -
616      * 2)</code> is in the high-surrogate range, then the
617      * supplementary code point value of the surrogate pair is
618      * returned. If the <code>char</code> value at <code>index -
619      * 1</code> is an unpaired low-surrogate or a high-surrogate, the
620      * surrogate value is returned.
621      *
622      * @param     index the index following the code point that should be returned
623      * @return    the Unicode code point value before the given index.
624      * @exception IndexOutOfBoundsException if the <code>index</code>
625      *            argument is less than 1 or greater than the length
626      *            of this string.
627      * @since     1.5
628      */
codePointBefore(int index)629     public int codePointBefore(int index) {
630         int i = index - 1;
631         if ((i < 0) || (i >= count)) {
632             throw new StringIndexOutOfBoundsException(index);
633         }
634         return Character.codePointBefore(this, index);
635     }
636 
637     /**
638      * Returns the number of Unicode code points in the specified text
639      * range of this <code>String</code>. The text range begins at the
640      * specified <code>beginIndex</code> and extends to the
641      * <code>char</code> at index <code>endIndex - 1</code>. Thus the
642      * length (in <code>char</code>s) of the text range is
643      * <code>endIndex-beginIndex</code>. Unpaired surrogates within
644      * the text range count as one code point each.
645      *
646      * @param beginIndex the index to the first <code>char</code> of
647      * the text range.
648      * @param endIndex the index after the last <code>char</code> of
649      * the text range.
650      * @return the number of Unicode code points in the specified text
651      * range
652      * @exception IndexOutOfBoundsException if the
653      * <code>beginIndex</code> is negative, or <code>endIndex</code>
654      * is larger than the length of this <code>String</code>, or
655      * <code>beginIndex</code> is larger than <code>endIndex</code>.
656      * @since  1.5
657      */
codePointCount(int beginIndex, int endIndex)658     public int codePointCount(int beginIndex, int endIndex) {
659         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
660             throw new IndexOutOfBoundsException();
661         }
662         return Character.codePointCount(this, beginIndex, endIndex);
663     }
664 
665     /**
666      * Returns the index within this <code>String</code> that is
667      * offset from the given <code>index</code> by
668      * <code>codePointOffset</code> code points. Unpaired surrogates
669      * within the text range given by <code>index</code> and
670      * <code>codePointOffset</code> count as one code point each.
671      *
672      * @param index the index to be offset
673      * @param codePointOffset the offset in code points
674      * @return the index within this <code>String</code>
675      * @exception IndexOutOfBoundsException if <code>index</code>
676      *   is negative or larger then the length of this
677      *   <code>String</code>, or if <code>codePointOffset</code> is positive
678      *   and the substring starting with <code>index</code> has fewer
679      *   than <code>codePointOffset</code> code points,
680      *   or if <code>codePointOffset</code> is negative and the substring
681      *   before <code>index</code> has fewer than the absolute value
682      *   of <code>codePointOffset</code> code points.
683      * @since 1.5
684      */
offsetByCodePoints(int index, int codePointOffset)685     public int offsetByCodePoints(int index, int codePointOffset) {
686         if (index < 0 || index > count) {
687             throw new IndexOutOfBoundsException();
688         }
689         return Character.offsetByCodePoints(this, index, codePointOffset);
690     }
691 
692     /**
693      * Copies characters from this string into the destination character
694      * array.
695      * <p>
696      * The first character to be copied is at index <code>srcBegin</code>;
697      * the last character to be copied is at index <code>srcEnd-1</code>
698      * (thus the total number of characters to be copied is
699      * <code>srcEnd-srcBegin</code>). The characters are copied into the
700      * subarray of <code>dst</code> starting at index <code>dstBegin</code>
701      * and ending at index:
702      * <p><blockquote><pre>
703      *     dstbegin + (srcEnd-srcBegin) - 1
704      * </pre></blockquote>
705      *
706      * @param      srcBegin   index of the first character in the string
707      *                        to copy.
708      * @param      srcEnd     index after the last character in the string
709      *                        to copy.
710      * @param      dst        the destination array.
711      * @param      dstBegin   the start offset in the destination array.
712      * @exception IndexOutOfBoundsException If any of the following
713      *            is true:
714      *            <ul><li><code>srcBegin</code> is negative.
715      *            <li><code>srcBegin</code> is greater than <code>srcEnd</code>
716      *            <li><code>srcEnd</code> is greater than the length of this
717      *                string
718      *            <li><code>dstBegin</code> is negative
719      *            <li><code>dstBegin+(srcEnd-srcBegin)</code> is larger than
720      *                <code>dst.length</code></ul>
721      */
getChars(int srcBegin, int srcEnd, char dst[], int dstBegin)722     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
723         if (dst == null) {
724             throw new NullPointerException("dst == null");
725         }
726 
727         if (srcBegin < 0) {
728             throw new StringIndexOutOfBoundsException(this, srcBegin);
729         }
730         if (srcEnd > count) {
731             throw new StringIndexOutOfBoundsException(this, srcEnd);
732         }
733 
734         int n = srcEnd - srcBegin;
735         if (srcEnd < srcBegin) {
736             throw new StringIndexOutOfBoundsException(this, srcBegin, n);
737         }
738 
739         if (dstBegin < 0) {
740             throw new ArrayIndexOutOfBoundsException("dstBegin < 0. dstBegin=" + dstBegin);
741         }
742         // dstBegin can be equal to dst.length, but only in the case where zero chars are to be
743         // copied.
744         if (dstBegin > dst.length) {
745             throw new ArrayIndexOutOfBoundsException(
746                     "dstBegin > dst.length. dstBegin=" + dstBegin + ", dst.length=" + dst.length);
747         }
748         if (n > dst.length - dstBegin) {
749             throw new ArrayIndexOutOfBoundsException(
750                     "n > dst.length - dstBegin. n=" + n + ", dst.length=" + dst.length
751                             + "dstBegin=" + dstBegin);
752         }
753 
754         getCharsNoCheck(srcBegin, srcEnd, dst, dstBegin);
755     }
756 
757     /**
758      * getChars without bounds checks, for use by other classes
759      * within the java.lang package only.  The caller is responsible for
760      * ensuring that start >= 0 && start <= end && end <= count.
761      */
getCharsNoCheck(int start, int end, char[] buffer, int index)762     native void getCharsNoCheck(int start, int end, char[] buffer, int index);
763 
764 
765     /**
766      * Copies characters from this string into the destination byte array. Each
767      * byte receives the 8 low-order bits of the corresponding character. The
768      * eight high-order bits of each character are not copied and do not
769      * participate in the transfer in any way.
770      *
771      * <p> The first character to be copied is at index {@code srcBegin}; the
772      * last character to be copied is at index {@code srcEnd-1}.  The total
773      * number of characters to be copied is {@code srcEnd-srcBegin}. The
774      * characters, converted to bytes, are copied into the subarray of {@code
775      * dst} starting at index {@code dstBegin} and ending at index:
776      *
777      * <blockquote><pre>
778      *     dstbegin + (srcEnd-srcBegin) - 1
779      * </pre></blockquote>
780      *
781      * @deprecated  This method does not properly convert characters into
782      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
783      * {@link #getBytes()} method, which uses the platform's default charset.
784      *
785      * @param  srcBegin
786      *         Index of the first character in the string to copy
787      *
788      * @param  srcEnd
789      *         Index after the last character in the string to copy
790      *
791      * @param  dst
792      *         The destination array
793      *
794      * @param  dstBegin
795      *         The start offset in the destination array
796      *
797      * @throws  IndexOutOfBoundsException
798      *          If any of the following is true:
799      *          <ul>
800      *            <li> {@code srcBegin} is negative
801      *            <li> {@code srcBegin} is greater than {@code srcEnd}
802      *            <li> {@code srcEnd} is greater than the length of this String
803      *            <li> {@code dstBegin} is negative
804      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
805      *                 dst.length}
806      *          </ul>
807      */
808     @Deprecated
getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin)809     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
810         if (srcBegin < 0) {
811             throw new StringIndexOutOfBoundsException(this, srcBegin);
812         }
813         if (srcEnd > count) {
814             throw new StringIndexOutOfBoundsException(this, srcEnd);
815         }
816         if (srcBegin > srcEnd) {
817             throw new StringIndexOutOfBoundsException(this, (srcEnd - srcBegin));
818         }
819 
820         int j = dstBegin;
821         int n = srcEnd;
822         int i = srcBegin;
823 
824         while (i < n) {
825             dst[j++] = (byte)charAt(i++);
826         }
827     }
828 
829     /**
830      * Encodes this {@code String} into a sequence of bytes using the named
831      * charset, storing the result into a new byte array.
832      *
833      * <p> The behavior of this method when this string cannot be encoded in
834      * the given charset is unspecified.  The {@link
835      * java.nio.charset.CharsetEncoder} class should be used when more control
836      * over the encoding process is required.
837      *
838      * @param  charsetName
839      *         The name of a supported {@linkplain java.nio.charset.Charset
840      *         charset}
841      *
842      * @return  The resultant byte array
843      *
844      * @throws  UnsupportedEncodingException
845      *          If the named charset is not supported
846      *
847      * @since  JDK1.1
848      */
getBytes(String charsetName)849     public byte[] getBytes(String charsetName)
850             throws UnsupportedEncodingException {
851         return getBytes(Charset.forNameUEE(charsetName));
852     }
853 
854     /**
855      * Encodes this {@code String} into a sequence of bytes using the given
856      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
857      * new byte array.
858      *
859      * <p> This method always replaces malformed-input and unmappable-character
860      * sequences with this charset's default replacement byte array.  The
861      * {@link java.nio.charset.CharsetEncoder} class should be used when more
862      * control over the encoding process is required.
863      *
864      * @param  charset
865      *         The {@linkplain java.nio.charset.Charset} to be used to encode
866      *         the {@code String}
867      *
868      * @return  The resultant byte array
869      *
870      * @since  1.6
871      */
getBytes(Charset charset)872     public byte[] getBytes(Charset charset) {
873         if (charset == null) {
874             throw new NullPointerException("charset == null");
875         }
876 
877         final String name = charset.name();
878         if ("UTF-8".equals(name)) {
879             return CharsetUtils.toUtf8Bytes(this, 0, count);
880         } else if ("ISO-8859-1".equals(name)) {
881             return CharsetUtils.toIsoLatin1Bytes(this, 0, count);
882         } else if ("US-ASCII".equals(name)) {
883             return CharsetUtils.toAsciiBytes(this, 0, count);
884         } else if ("UTF-16BE".equals(name)) {
885             return CharsetUtils.toBigEndianUtf16Bytes(this, 0, count);
886         }
887 
888         return StringCoding.encode(charset, this);
889     }
890 
891     /**
892      * Encodes this {@code String} into a sequence of bytes using the
893      * platform's default charset, storing the result into a new byte array.
894      *
895      * <p> The behavior of this method when this string cannot be encoded in
896      * the default charset is unspecified.  The {@link
897      * java.nio.charset.CharsetEncoder} class should be used when more control
898      * over the encoding process is required.
899      *
900      * @return  The resultant byte array
901      *
902      * @since      JDK1.1
903      */
getBytes()904     public byte[] getBytes() {
905         return getBytes(Charset.defaultCharset());
906     }
907 
908     /**
909      * Compares this string to the specified object.  The result is {@code
910      * true} if and only if the argument is not {@code null} and is a {@code
911      * String} object that represents the same sequence of characters as this
912      * object.
913      *
914      * @param  anObject
915      *         The object to compare this {@code String} against
916      *
917      * @return  {@code true} if the given object represents a {@code String}
918      *          equivalent to this string, {@code false} otherwise
919      *
920      * @see  #compareTo(String)
921      * @see  #equalsIgnoreCase(String)
922      */
equals(Object anObject)923     public boolean equals(Object anObject) {
924         if (this == anObject) {
925             return true;
926         }
927         if (anObject instanceof String) {
928             String anotherString = (String) anObject;
929             int n = count;
930             if (n == anotherString.count) {
931                 int i = 0;
932                 while (n-- != 0) {
933                     if (charAt(i) != anotherString.charAt(i))
934                             return false;
935                     i++;
936                 }
937                 return true;
938             }
939         }
940         return false;
941     }
942 
943     /**
944      * Compares this string to the specified {@code StringBuffer}.  The result
945      * is {@code true} if and only if this {@code String} represents the same
946      * sequence of characters as the specified {@code StringBuffer}.
947      *
948      * @param  sb
949      *         The {@code StringBuffer} to compare this {@code String} against
950      *
951      * @return  {@code true} if this {@code String} represents the same
952      *          sequence of characters as the specified {@code StringBuffer},
953      *          {@code false} otherwise
954      *
955      * @since  1.4
956      */
contentEquals(StringBuffer sb)957     public boolean contentEquals(StringBuffer sb) {
958         synchronized (sb) {
959             return contentEquals((CharSequence) sb);
960         }
961     }
962 
963     /**
964      * Compares this string to the specified {@code CharSequence}.  The result
965      * is {@code true} if and only if this {@code String} represents the same
966      * sequence of char values as the specified sequence.
967      *
968      * @param  cs
969      *         The sequence to compare this {@code String} against
970      *
971      * @return  {@code true} if this {@code String} represents the same
972      *          sequence of char values as the specified sequence, {@code
973      *          false} otherwise
974      *
975      * @since  1.5
976      */
contentEquals(CharSequence cs)977     public boolean contentEquals(CharSequence cs) {
978         if (count != cs.length())
979             return false;
980         // Argument is a StringBuffer, StringBuilder
981         if (cs instanceof AbstractStringBuilder) {
982             char v2[] = ((AbstractStringBuilder) cs).getValue();
983             int i = 0;
984             int n = count;
985             while (n-- != 0) {
986                 if (charAt(i) != v2[i])
987                     return false;
988                 i++;
989             }
990             return true;
991         }
992         // Argument is a String
993         if (cs.equals(this))
994             return true;
995         // Argument is a generic CharSequence
996         int i = 0;
997         int n = count;
998         while (n-- != 0) {
999             if (charAt(i) != cs.charAt(i))
1000                 return false;
1001             i++;
1002         }
1003         return true;
1004     }
1005 
1006     /**
1007      * Compares this {@code String} to another {@code String}, ignoring case
1008      * considerations.  Two strings are considered equal ignoring case if they
1009      * are of the same length and corresponding characters in the two strings
1010      * are equal ignoring case.
1011      *
1012      * <p> Two characters {@code c1} and {@code c2} are considered the same
1013      * ignoring case if at least one of the following is true:
1014      * <ul>
1015      *   <li> The two characters are the same (as compared by the
1016      *        {@code ==} operator)
1017      *   <li> Applying the method {@link
1018      *        java.lang.Character#toUpperCase(char)} to each character
1019      *        produces the same result
1020      *   <li> Applying the method {@link
1021      *        java.lang.Character#toLowerCase(char)} to each character
1022      *        produces the same result
1023      * </ul>
1024      *
1025      * @param  anotherString
1026      *         The {@code String} to compare this {@code String} against
1027      *
1028      * @return  {@code true} if the argument is not {@code null} and it
1029      *          represents an equivalent {@code String} ignoring case; {@code
1030      *          false} otherwise
1031      *
1032      * @see  #equals(Object)
1033      */
equalsIgnoreCase(String anotherString)1034     public boolean equalsIgnoreCase(String anotherString) {
1035         return (this == anotherString) ? true
1036                 : (anotherString != null)
1037                 && (anotherString.count == count)
1038                 && regionMatches(true, 0, anotherString, 0, count);
1039     }
1040 
1041     /**
1042      * Compares two strings lexicographically.
1043      * The comparison is based on the Unicode value of each character in
1044      * the strings. The character sequence represented by this
1045      * <code>String</code> object is compared lexicographically to the
1046      * character sequence represented by the argument string. The result is
1047      * a negative integer if this <code>String</code> object
1048      * lexicographically precedes the argument string. The result is a
1049      * positive integer if this <code>String</code> object lexicographically
1050      * follows the argument string. The result is zero if the strings
1051      * are equal; <code>compareTo</code> returns <code>0</code> exactly when
1052      * the {@link #equals(Object)} method would return <code>true</code>.
1053      * <p>
1054      * This is the definition of lexicographic ordering. If two strings are
1055      * different, then either they have different characters at some index
1056      * that is a valid index for both strings, or their lengths are different,
1057      * or both. If they have different characters at one or more index
1058      * positions, let <i>k</i> be the smallest such index; then the string
1059      * whose character at position <i>k</i> has the smaller value, as
1060      * determined by using the &lt; operator, lexicographically precedes the
1061      * other string. In this case, <code>compareTo</code> returns the
1062      * difference of the two character values at position <code>k</code> in
1063      * the two string -- that is, the value:
1064      * <blockquote><pre>
1065      * this.charAt(k)-anotherString.charAt(k)
1066      * </pre></blockquote>
1067      * If there is no index position at which they differ, then the shorter
1068      * string lexicographically precedes the longer string. In this case,
1069      * <code>compareTo</code> returns the difference of the lengths of the
1070      * strings -- that is, the value:
1071      * <blockquote><pre>
1072      * this.length()-anotherString.length()
1073      * </pre></blockquote>
1074      *
1075      * @param   anotherString   the <code>String</code> to be compared.
1076      * @return  the value <code>0</code> if the argument string is equal to
1077      *          this string; a value less than <code>0</code> if this string
1078      *          is lexicographically less than the string argument; and a
1079      *          value greater than <code>0</code> if this string is
1080      *          lexicographically greater than the string argument.
1081      */
compareTo(String anotherString)1082     public native int compareTo(String anotherString);
1083 
1084     /**
1085      * A Comparator that orders <code>String</code> objects as by
1086      * <code>compareToIgnoreCase</code>. This comparator is serializable.
1087      * <p>
1088      * Note that this Comparator does <em>not</em> take locale into account,
1089      * and will result in an unsatisfactory ordering for certain locales.
1090      * The java.text package provides <em>Collators</em> to allow
1091      * locale-sensitive ordering.
1092      *
1093      * @see     java.text.Collator#compare(String, String)
1094      * @since   1.2
1095      */
1096     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1097                                          = new CaseInsensitiveComparator();
1098     private static class CaseInsensitiveComparator
1099             implements Comparator<String>, java.io.Serializable {
1100         // use serialVersionUID from JDK 1.2.2 for interoperability
1101         private static final long serialVersionUID = 8575799808933029326L;
1102 
compare(String s1, String s2)1103         public int compare(String s1, String s2) {
1104             int n1 = s1.length();
1105             int n2 = s2.length();
1106             int min = Math.min(n1, n2);
1107             for (int i = 0; i < min; i++) {
1108                 char c1 = s1.charAt(i);
1109                 char c2 = s2.charAt(i);
1110                 if (c1 != c2) {
1111                     c1 = Character.toUpperCase(c1);
1112                     c2 = Character.toUpperCase(c2);
1113                     if (c1 != c2) {
1114                         c1 = Character.toLowerCase(c1);
1115                         c2 = Character.toLowerCase(c2);
1116                         if (c1 != c2) {
1117                             // No overflow because of numeric promotion
1118                             return c1 - c2;
1119                         }
1120                     }
1121                 }
1122             }
1123             return n1 - n2;
1124         }
1125     }
1126 
1127     /**
1128      * Compares two strings lexicographically, ignoring case
1129      * differences. This method returns an integer whose sign is that of
1130      * calling <code>compareTo</code> with normalized versions of the strings
1131      * where case differences have been eliminated by calling
1132      * <code>Character.toLowerCase(Character.toUpperCase(character))</code> on
1133      * each character.
1134      * <p>
1135      * Note that this method does <em>not</em> take locale into account,
1136      * and will result in an unsatisfactory ordering for certain locales.
1137      * The java.text package provides <em>collators</em> to allow
1138      * locale-sensitive ordering.
1139      *
1140      * @param   str   the <code>String</code> to be compared.
1141      * @return  a negative integer, zero, or a positive integer as the
1142      *          specified String is greater than, equal to, or less
1143      *          than this String, ignoring case considerations.
1144      * @see     java.text.Collator#compare(String, String)
1145      * @since   1.2
1146      */
compareToIgnoreCase(String str)1147     public int compareToIgnoreCase(String str) {
1148         return CASE_INSENSITIVE_ORDER.compare(this, str);
1149     }
1150 
1151     /**
1152      * Tests if two string regions are equal.
1153      * <p>
1154      * A substring of this <tt>String</tt> object is compared to a substring
1155      * of the argument other. The result is true if these substrings
1156      * represent identical character sequences. The substring of this
1157      * <tt>String</tt> object to be compared begins at index <tt>toffset</tt>
1158      * and has length <tt>len</tt>. The substring of other to be compared
1159      * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The
1160      * result is <tt>false</tt> if and only if at least one of the following
1161      * is true:
1162      * <ul><li><tt>toffset</tt> is negative.
1163      * <li><tt>ooffset</tt> is negative.
1164      * <li><tt>toffset+len</tt> is greater than the length of this
1165      * <tt>String</tt> object.
1166      * <li><tt>ooffset+len</tt> is greater than the length of the other
1167      * argument.
1168      * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt>
1169      * such that:
1170      * <tt>this.charAt(toffset+<i>k</i>)&nbsp;!=&nbsp;other.charAt(ooffset+<i>k</i>)</tt>
1171      * </ul>
1172      *
1173      * @param   toffset   the starting offset of the subregion in this string.
1174      * @param   other     the string argument.
1175      * @param   ooffset   the starting offset of the subregion in the string
1176      *                    argument.
1177      * @param   len       the number of characters to compare.
1178      * @return  <code>true</code> if the specified subregion of this string
1179      *          exactly matches the specified subregion of the string argument;
1180      *          <code>false</code> otherwise.
1181      */
regionMatches(int toffset, String other, int ooffset, int len)1182     public boolean regionMatches(int toffset, String other, int ooffset,
1183             int len) {
1184         int to = toffset;
1185         int po = ooffset;
1186         // Note: toffset, ooffset, or len might be near -1>>>1.
1187         if ((ooffset < 0) || (toffset < 0)
1188                 || (toffset > (long)count - len)
1189                 || (ooffset > (long)other.count - len)) {
1190             return false;
1191         }
1192         while (len-- > 0) {
1193             if (charAt(to++) != other.charAt(po++)) {
1194                 return false;
1195             }
1196         }
1197         return true;
1198     }
1199 
1200     /**
1201      * Tests if two string regions are equal.
1202      * <p>
1203      * A substring of this <tt>String</tt> object is compared to a substring
1204      * of the argument <tt>other</tt>. The result is <tt>true</tt> if these
1205      * substrings represent character sequences that are the same, ignoring
1206      * case if and only if <tt>ignoreCase</tt> is true. The substring of
1207      * this <tt>String</tt> object to be compared begins at index
1208      * <tt>toffset</tt> and has length <tt>len</tt>. The substring of
1209      * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and
1210      * has length <tt>len</tt>. The result is <tt>false</tt> if and only if
1211      * at least one of the following is true:
1212      * <ul><li><tt>toffset</tt> is negative.
1213      * <li><tt>ooffset</tt> is negative.
1214      * <li><tt>toffset+len</tt> is greater than the length of this
1215      * <tt>String</tt> object.
1216      * <li><tt>ooffset+len</tt> is greater than the length of the other
1217      * argument.
1218      * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative
1219      * integer <i>k</i> less than <tt>len</tt> such that:
1220      * <blockquote><pre>
1221      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1222      * </pre></blockquote>
1223      * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative
1224      * integer <i>k</i> less than <tt>len</tt> such that:
1225      * <blockquote><pre>
1226      * Character.toLowerCase(this.charAt(toffset+k)) !=
1227      Character.toLowerCase(other.charAt(ooffset+k))
1228      * </pre></blockquote>
1229      * and:
1230      * <blockquote><pre>
1231      * Character.toUpperCase(this.charAt(toffset+k)) !=
1232      *         Character.toUpperCase(other.charAt(ooffset+k))
1233      * </pre></blockquote>
1234      * </ul>
1235      *
1236      * @param   ignoreCase   if <code>true</code>, ignore case when comparing
1237      *                       characters.
1238      * @param   toffset      the starting offset of the subregion in this
1239      *                       string.
1240      * @param   other        the string argument.
1241      * @param   ooffset      the starting offset of the subregion in the string
1242      *                       argument.
1243      * @param   len          the number of characters to compare.
1244      * @return  <code>true</code> if the specified subregion of this string
1245      *          matches the specified subregion of the string argument;
1246      *          <code>false</code> otherwise. Whether the matching is exact
1247      *          or case insensitive depends on the <code>ignoreCase</code>
1248      *          argument.
1249      */
regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len)1250     public boolean regionMatches(boolean ignoreCase, int toffset,
1251             String other, int ooffset, int len) {
1252         int to = toffset;
1253         int po = ooffset;
1254         // Note: toffset, ooffset, or len might be near -1>>>1.
1255         if ((ooffset < 0) || (toffset < 0)
1256                 || (toffset > (long)count - len)
1257                 || (ooffset > (long)other.count - len)) {
1258             return false;
1259         }
1260         while (len-- > 0) {
1261             char c1 = charAt(to++);
1262             char c2 = other.charAt(po++);
1263             if (c1 == c2) {
1264                 continue;
1265             }
1266             if (ignoreCase) {
1267                 // If characters don't match but case may be ignored,
1268                 // try converting both characters to uppercase.
1269                 // If the results match, then the comparison scan should
1270                 // continue.
1271                 char u1 = Character.toUpperCase(c1);
1272                 char u2 = Character.toUpperCase(c2);
1273                 if (u1 == u2) {
1274                     continue;
1275                 }
1276                 // Unfortunately, conversion to uppercase does not work properly
1277                 // for the Georgian alphabet, which has strange rules about case
1278                 // conversion.  So we need to make one last check before
1279                 // exiting.
1280                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
1281                     continue;
1282                 }
1283             }
1284             return false;
1285         }
1286         return true;
1287     }
1288 
1289     /**
1290      * Tests if the substring of this string beginning at the
1291      * specified index starts with the specified prefix.
1292      *
1293      * @param   prefix    the prefix.
1294      * @param   toffset   where to begin looking in this string.
1295      * @return  <code>true</code> if the character sequence represented by the
1296      *          argument is a prefix of the substring of this object starting
1297      *          at index <code>toffset</code>; <code>false</code> otherwise.
1298      *          The result is <code>false</code> if <code>toffset</code> is
1299      *          negative or greater than the length of this
1300      *          <code>String</code> object; otherwise the result is the same
1301      *          as the result of the expression
1302      *          <pre>
1303      *          this.substring(toffset).startsWith(prefix)
1304      *          </pre>
1305      */
startsWith(String prefix, int toffset)1306     public boolean startsWith(String prefix, int toffset) {
1307         int to = toffset;
1308         int po = 0;
1309         int pc = prefix.count;
1310         // Note: toffset might be near -1>>>1.
1311         if ((toffset < 0) || (toffset > count - pc)) {
1312             return false;
1313         }
1314         while (--pc >= 0) {
1315             if (charAt(to++) != prefix.charAt(po++)) {
1316                 return false;
1317             }
1318         }
1319         return true;
1320     }
1321 
1322     /**
1323      * Tests if this string starts with the specified prefix.
1324      *
1325      * @param   prefix   the prefix.
1326      * @return  <code>true</code> if the character sequence represented by the
1327      *          argument is a prefix of the character sequence represented by
1328      *          this string; <code>false</code> otherwise.
1329      *          Note also that <code>true</code> will be returned if the
1330      *          argument is an empty string or is equal to this
1331      *          <code>String</code> object as determined by the
1332      *          {@link #equals(Object)} method.
1333      * @since   1. 0
1334      */
startsWith(String prefix)1335     public boolean startsWith(String prefix) {
1336         return startsWith(prefix, 0);
1337     }
1338 
1339     /**
1340      * Tests if this string ends with the specified suffix.
1341      *
1342      * @param   suffix   the suffix.
1343      * @return  <code>true</code> if the character sequence represented by the
1344      *          argument is a suffix of the character sequence represented by
1345      *          this object; <code>false</code> otherwise. Note that the
1346      *          result will be <code>true</code> if the argument is the
1347      *          empty string or is equal to this <code>String</code> object
1348      *          as determined by the {@link #equals(Object)} method.
1349      */
endsWith(String suffix)1350     public boolean endsWith(String suffix) {
1351         return startsWith(suffix, count - suffix.count);
1352     }
1353 
1354     /**
1355      * Returns a hash code for this string. The hash code for a
1356      * <code>String</code> object is computed as
1357      * <blockquote><pre>
1358      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1359      * </pre></blockquote>
1360      * using <code>int</code> arithmetic, where <code>s[i]</code> is the
1361      * <i>i</i>th character of the string, <code>n</code> is the length of
1362      * the string, and <code>^</code> indicates exponentiation.
1363      * (The hash value of the empty string is zero.)
1364      *
1365      * @return  a hash code value for this object.
1366      */
hashCode()1367     public int hashCode() {
1368         int h = hash;
1369         if (h == 0 && count > 0) {
1370             for (int i = 0; i < count; i++) {
1371                 h = 31 * h + charAt(i);
1372             }
1373             hash = h;
1374         }
1375         return h;
1376     }
1377 
1378     /**
1379      * Returns the index within this string of the first occurrence of
1380      * the specified character. If a character with value
1381      * <code>ch</code> occurs in the character sequence represented by
1382      * this <code>String</code> object, then the index (in Unicode
1383      * code units) of the first such occurrence is returned. For
1384      * values of <code>ch</code> in the range from 0 to 0xFFFF
1385      * (inclusive), this is the smallest value <i>k</i> such that:
1386      * <blockquote><pre>
1387      * this.charAt(<i>k</i>) == ch
1388      * </pre></blockquote>
1389      * is true. For other values of <code>ch</code>, it is the
1390      * smallest value <i>k</i> such that:
1391      * <blockquote><pre>
1392      * this.codePointAt(<i>k</i>) == ch
1393      * </pre></blockquote>
1394      * is true. In either case, if no such character occurs in this
1395      * string, then <code>-1</code> is returned.
1396      *
1397      * @param   ch   a character (Unicode code point).
1398      * @return  the index of the first occurrence of the character in the
1399      *          character sequence represented by this object, or
1400      *          <code>-1</code> if the character does not occur.
1401      */
indexOf(int ch)1402     public int indexOf(int ch) {
1403         return indexOf(ch, 0);
1404     }
1405 
1406     /**
1407      * Returns the index within this string of the first occurrence of the
1408      * specified character, starting the search at the specified index.
1409      * <p>
1410      * If a character with value <code>ch</code> occurs in the
1411      * character sequence represented by this <code>String</code>
1412      * object at an index no smaller than <code>fromIndex</code>, then
1413      * the index of the first such occurrence is returned. For values
1414      * of <code>ch</code> in the range from 0 to 0xFFFF (inclusive),
1415      * this is the smallest value <i>k</i> such that:
1416      * <blockquote><pre>
1417      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
1418      * </pre></blockquote>
1419      * is true. For other values of <code>ch</code>, it is the
1420      * smallest value <i>k</i> such that:
1421      * <blockquote><pre>
1422      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
1423      * </pre></blockquote>
1424      * is true. In either case, if no such character occurs in this
1425      * string at or after position <code>fromIndex</code>, then
1426      * <code>-1</code> is returned.
1427      *
1428      * <p>
1429      * There is no restriction on the value of <code>fromIndex</code>. If it
1430      * is negative, it has the same effect as if it were zero: this entire
1431      * string may be searched. If it is greater than the length of this
1432      * string, it has the same effect as if it were equal to the length of
1433      * this string: <code>-1</code> is returned.
1434      *
1435      * <p>All indices are specified in <code>char</code> values
1436      * (Unicode code units).
1437      *
1438      * @param   ch          a character (Unicode code point).
1439      * @param   fromIndex   the index to start the search from.
1440      * @return  the index of the first occurrence of the character in the
1441      *          character sequence represented by this object that is greater
1442      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
1443      *          if the character does not occur.
1444      */
indexOf(int ch, int fromIndex)1445     public int indexOf(int ch, int fromIndex) {
1446         final int max = count;
1447         if (fromIndex < 0) {
1448             fromIndex = 0;
1449         } else if (fromIndex >= max) {
1450             // Note: fromIndex might be near -1>>>1.
1451             return -1;
1452         }
1453 
1454         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1455             // handle most cases here (ch is a BMP code point or a
1456             // negative value (invalid code point))
1457             for (int i = fromIndex; i < max; i++) {
1458                 if (charAt(i) == ch) {
1459                     return i;
1460                 }
1461             }
1462             return -1;
1463         } else {
1464             return indexOfSupplementary(ch, fromIndex);
1465         }
1466     }
1467 
fastIndexOf(int c, int start)1468     private native int fastIndexOf(int c, int start);
1469 
1470     /**
1471      * Handles (rare) calls of indexOf with a supplementary character.
1472      */
indexOfSupplementary(int ch, int fromIndex)1473     private int indexOfSupplementary(int ch, int fromIndex) {
1474         if (Character.isValidCodePoint(ch)) {
1475             final char hi = Character.highSurrogate(ch);
1476             final char lo = Character.lowSurrogate(ch);
1477             final int max = count - 1;
1478             for (int i = fromIndex; i < max; i++) {
1479                 if (charAt(i) == hi && charAt(i + 1) == lo) {
1480                     return i;
1481                 }
1482             }
1483         }
1484         return -1;
1485     }
1486 
1487     /**
1488      * Returns the index within this string of the last occurrence of
1489      * the specified character. For values of <code>ch</code> in the
1490      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1491      * units) returned is the largest value <i>k</i> such that:
1492      * <blockquote><pre>
1493      * this.charAt(<i>k</i>) == ch
1494      * </pre></blockquote>
1495      * is true. For other values of <code>ch</code>, it is the
1496      * largest value <i>k</i> such that:
1497      * <blockquote><pre>
1498      * this.codePointAt(<i>k</i>) == ch
1499      * </pre></blockquote>
1500      * is true.  In either case, if no such character occurs in this
1501      * string, then <code>-1</code> is returned.  The
1502      * <code>String</code> is searched backwards starting at the last
1503      * character.
1504      *
1505      * @param   ch   a character (Unicode code point).
1506      * @return  the index of the last occurrence of the character in the
1507      *          character sequence represented by this object, or
1508      *          <code>-1</code> if the character does not occur.
1509      */
lastIndexOf(int ch)1510     public int lastIndexOf(int ch) {
1511         return lastIndexOf(ch, count - 1);
1512     }
1513 
1514     /**
1515      * Returns the index within this string of the last occurrence of
1516      * the specified character, searching backward starting at the
1517      * specified index. For values of <code>ch</code> in the range
1518      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1519      * value <i>k</i> such that:
1520      * <blockquote><pre>
1521      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
1522      * </pre></blockquote>
1523      * is true. For other values of <code>ch</code>, it is the
1524      * largest value <i>k</i> such that:
1525      * <blockquote><pre>
1526      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
1527      * </pre></blockquote>
1528      * is true. In either case, if no such character occurs in this
1529      * string at or before position <code>fromIndex</code>, then
1530      * <code>-1</code> is returned.
1531      *
1532      * <p>All indices are specified in <code>char</code> values
1533      * (Unicode code units).
1534      *
1535      * @param   ch          a character (Unicode code point).
1536      * @param   fromIndex   the index to start the search from. There is no
1537      *          restriction on the value of <code>fromIndex</code>. If it is
1538      *          greater than or equal to the length of this string, it has
1539      *          the same effect as if it were equal to one less than the
1540      *          length of this string: this entire string may be searched.
1541      *          If it is negative, it has the same effect as if it were -1:
1542      *          -1 is returned.
1543      * @return  the index of the last occurrence of the character in the
1544      *          character sequence represented by this object that is less
1545      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
1546      *          if the character does not occur before that point.
1547      */
lastIndexOf(int ch, int fromIndex)1548     public int lastIndexOf(int ch, int fromIndex) {
1549         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1550             // handle most cases here (ch is a BMP code point or a
1551             // negative value (invalid code point))
1552             int i = Math.min(fromIndex, count - 1);
1553             for (; i >= 0; i--) {
1554                 if (charAt(i) == ch) {
1555                     return i;
1556                 }
1557             }
1558             return -1;
1559         } else {
1560             return lastIndexOfSupplementary(ch, fromIndex);
1561         }
1562     }
1563 
1564     /**
1565      * Handles (rare) calls of lastIndexOf with a supplementary character.
1566      */
lastIndexOfSupplementary(int ch, int fromIndex)1567     private int lastIndexOfSupplementary(int ch, int fromIndex) {
1568         if (Character.isValidCodePoint(ch)) {
1569             char hi = Character.highSurrogate(ch);
1570             char lo = Character.lowSurrogate(ch);
1571             int i = Math.min(fromIndex, count - 2);
1572             for (; i >= 0; i--) {
1573                 if (charAt(i) == hi && charAt(i + 1) == lo) {
1574                     return i;
1575                 }
1576             }
1577         }
1578         return -1;
1579     }
1580 
1581     /**
1582      * Returns the index within this string of the first occurrence of the
1583      * specified substring.
1584      *
1585      * <p>The returned index is the smallest value <i>k</i> for which:
1586      * <blockquote><pre>
1587      * this.startsWith(str, <i>k</i>)
1588      * </pre></blockquote>
1589      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1590      *
1591      * @param   str   the substring to search for.
1592      * @return  the index of the first occurrence of the specified substring,
1593      *          or {@code -1} if there is no such occurrence.
1594      */
indexOf(String str)1595     public int indexOf(String str) {
1596         return indexOf(str, 0);
1597     }
1598 
1599     /**
1600      * Returns the index within this string of the first occurrence of the
1601      * specified substring, starting at the specified index.
1602      *
1603      * <p>The returned index is the smallest value <i>k</i> for which:
1604      * <blockquote><pre>
1605      * <i>k</i> &gt;= fromIndex && this.startsWith(str, <i>k</i>)
1606      * </pre></blockquote>
1607      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1608      *
1609      * @param   str         the substring to search for.
1610      * @param   fromIndex   the index from which to start the search.
1611      * @return  the index of the first occurrence of the specified substring,
1612      *          starting at the specified index,
1613      *          or {@code -1} if there is no such occurrence.
1614      */
indexOf(String str, int fromIndex)1615     public int indexOf(String str, int fromIndex) {
1616         return indexOf(this, str, fromIndex);
1617     }
1618 
1619     /**
1620      * Code shared by String and StringBuffer to do searches. The
1621      * source is the character array being searched, and the target
1622      * is the string being searched for.
1623      *
1624      * @param   source       the characters being searched.
1625      * @param   target       the characters being searched for.
1626      * @param   fromIndex    the index to begin searching from.
1627      */
indexOf(String source, String target, int fromIndex)1628     static int indexOf(String source,
1629                        String target,
1630                        int fromIndex) {
1631         if (fromIndex >= source.count) {
1632             return (target.count == 0 ? source.count : -1);
1633         }
1634         if (fromIndex < 0) {
1635             fromIndex = 0;
1636         }
1637         if (target.count == 0) {
1638             return fromIndex;
1639         }
1640 
1641         char first = target.charAt(0);
1642         int max = (source.count - target.count);
1643 
1644         for (int i = fromIndex; i <= max; i++) {
1645             /* Look for first character. */
1646             if (source.charAt(i)!= first) {
1647                 while (++i <= max && source.charAt(i) != first);
1648             }
1649 
1650             /* Found first character, now look at the rest of v2 */
1651             if (i <= max) {
1652                 int j = i + 1;
1653                 int end = j + target.count - 1;
1654                 for (int k = 1; j < end && source.charAt(j)
1655                          == target.charAt(k); j++, k++);
1656 
1657                 if (j == end) {
1658                     /* Found whole string. */
1659                     return i;
1660                 }
1661             }
1662         }
1663         return -1;
1664     }
1665 
1666     /**
1667      * Code shared by String and StringBuffer to do searches. The
1668      * source is the character array being searched, and the target
1669      * is the string being searched for.
1670      *
1671      * @param   source       the characters being searched.
1672      * @param   sourceOffset offset of the source string.
1673      * @param   sourceCount  count of the source string.
1674      * @param   target       the characters being searched for.
1675      * @param   targetOffset offset of the target string.
1676      * @param   targetCount  count of the target string.
1677      * @param   fromIndex    the index to begin searching from.
1678      */
indexOf(char[] source, int sourceOffset, int sourceCount, char[] target, int targetOffset, int targetCount, int fromIndex)1679     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1680             char[] target, int targetOffset, int targetCount,
1681             int fromIndex) {
1682         if (fromIndex >= sourceCount) {
1683             return (targetCount == 0 ? sourceCount : -1);
1684         }
1685         if (fromIndex < 0) {
1686             fromIndex = 0;
1687         }
1688         if (targetCount == 0) {
1689             return fromIndex;
1690         }
1691 
1692         char first = target[targetOffset];
1693         int max = sourceOffset + (sourceCount - targetCount);
1694 
1695         for (int i = sourceOffset + fromIndex; i <= max; i++) {
1696             /* Look for first character. */
1697             if (source[i] != first) {
1698                 while (++i <= max && source[i] != first);
1699             }
1700 
1701             /* Found first character, now look at the rest of v2 */
1702             if (i <= max) {
1703                 int j = i + 1;
1704                 int end = j + targetCount - 1;
1705                 for (int k = targetOffset + 1; j < end && source[j]
1706                         == target[k]; j++, k++);
1707 
1708                 if (j == end) {
1709                     /* Found whole string. */
1710                     return i - sourceOffset;
1711                 }
1712             }
1713         }
1714         return -1;
1715     }
1716 
1717     /**
1718      * Returns the index within this string of the last occurrence of the
1719      * specified substring.  The last occurrence of the empty string ""
1720      * is considered to occur at the index value {@code this.length()}.
1721      *
1722      * <p>The returned index is the largest value <i>k</i> for which:
1723      * <blockquote><pre>
1724      * this.startsWith(str, <i>k</i>)
1725      * </pre></blockquote>
1726      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1727      *
1728      * @param   str   the substring to search for.
1729      * @return  the index of the last occurrence of the specified substring,
1730      *          or {@code -1} if there is no such occurrence.
1731      */
lastIndexOf(String str)1732     public int lastIndexOf(String str) {
1733         return lastIndexOf(str, count);
1734     }
1735 
1736     /**
1737      * Returns the index within this string of the last occurrence of the
1738      * specified substring, searching backward starting at the specified index.
1739      *
1740      * <p>The returned index is the largest value <i>k</i> for which:
1741      * <blockquote><pre>
1742      * <i>k</i> &lt;= fromIndex && this.startsWith(str, <i>k</i>)
1743      * </pre></blockquote>
1744      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1745      *
1746      * @param   str         the substring to search for.
1747      * @param   fromIndex   the index to start the search from.
1748      * @return  the index of the last occurrence of the specified substring,
1749      *          searching backward from the specified index,
1750      *          or {@code -1} if there is no such occurrence.
1751      */
lastIndexOf(String str, int fromIndex)1752     public int lastIndexOf(String str, int fromIndex) {
1753         return lastIndexOf(this, str, fromIndex);
1754     }
1755 
1756     /**
1757      * Code shared by String and StringBuffer to do searches. The
1758      * source is the character array being searched, and the target
1759      * is the string being searched for.
1760      *
1761      * @param   source       the characters being searched.
1762      * @param   sourceOffset offset of the source string.
1763      * @param   sourceCount  count of the source string.
1764      * @param   target       the characters being searched for.
1765      * @param   targetOffset offset of the target string.
1766      * @param   targetCount  count of the target string.
1767      * @param   fromIndex    the index to begin searching from.
1768      */
lastIndexOf(String source, String target, int fromIndex)1769     static int lastIndexOf(String source,
1770                            String target,
1771                            int fromIndex) {
1772         /*
1773          * Check arguments; return immediately where possible. For
1774          * consistency, don't check for null str.
1775          */
1776         int rightIndex = source.count - target.count;
1777         if (fromIndex < 0) {
1778             return -1;
1779         }
1780         if (fromIndex > rightIndex) {
1781             fromIndex = rightIndex;
1782         }
1783         /* Empty string always matches. */
1784         if (target.count == 0) {
1785             return fromIndex;
1786         }
1787 
1788         int strLastIndex = target.count - 1;
1789         char strLastChar = target.charAt(strLastIndex);
1790         int min = target.count - 1;
1791         int i = min + fromIndex;
1792 
1793         startSearchForLastChar:
1794         while (true) {
1795             while (i >= min && source.charAt(i) != strLastChar) {
1796                 i--;
1797             }
1798             if (i < min) {
1799                 return -1;
1800             }
1801             int j = i - 1;
1802             int start = j - (target.count - 1);
1803             int k = strLastIndex - 1;
1804 
1805             while (j > start) {
1806                 if (source.charAt(j--) != target.charAt(k--)) {
1807                     i--;
1808                     continue startSearchForLastChar;
1809                 }
1810             }
1811             return start + 1;
1812         }
1813     }
1814 
1815     /**
1816      * Code shared by String and StringBuffer to do searches. The
1817      * source is the character array being searched, and the target
1818      * is the string being searched for.
1819      *
1820      * @param   source       the characters being searched.
1821      * @param   sourceOffset offset of the source string.
1822      * @param   sourceCount  count of the source string.
1823      * @param   target       the characters being searched for.
1824      * @param   targetOffset offset of the target string.
1825      * @param   targetCount  count of the target string.
1826      * @param   fromIndex    the index to begin searching from.
1827      */
lastIndexOf(char[] source, int sourceOffset, int sourceCount, char[] target, int targetOffset, int targetCount, int fromIndex)1828     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
1829             char[] target, int targetOffset, int targetCount,
1830             int fromIndex) {
1831         /*
1832          * Check arguments; return immediately where possible. For
1833          * consistency, don't check for null str.
1834          */
1835         int rightIndex = sourceCount - targetCount;
1836         if (fromIndex < 0) {
1837             return -1;
1838         }
1839         if (fromIndex > rightIndex) {
1840             fromIndex = rightIndex;
1841         }
1842         /* Empty string always matches. */
1843         if (targetCount == 0) {
1844             return fromIndex;
1845         }
1846 
1847         int strLastIndex = targetOffset + targetCount - 1;
1848         char strLastChar = target[strLastIndex];
1849         int min = sourceOffset + targetCount - 1;
1850         int i = min + fromIndex;
1851 
1852         startSearchForLastChar:
1853         while (true) {
1854             while (i >= min && source[i] != strLastChar) {
1855                 i--;
1856             }
1857             if (i < min) {
1858                 return -1;
1859             }
1860             int j = i - 1;
1861             int start = j - (targetCount - 1);
1862             int k = strLastIndex - 1;
1863 
1864             while (j > start) {
1865                 if (source[j--] != target[k--]) {
1866                     i--;
1867                     continue startSearchForLastChar;
1868                 }
1869             }
1870             return start - sourceOffset + 1;
1871         }
1872     }
1873 
1874     /**
1875      * Returns a new string that is a substring of this string. The
1876      * substring begins with the character at the specified index and
1877      * extends to the end of this string. <p>
1878      * Examples:
1879      * <blockquote><pre>
1880      * "unhappy".substring(2) returns "happy"
1881      * "Harbison".substring(3) returns "bison"
1882      * "emptiness".substring(9) returns "" (an empty string)
1883      * </pre></blockquote>
1884      *
1885      * @param      beginIndex   the beginning index, inclusive.
1886      * @return     the specified substring.
1887      * @exception  IndexOutOfBoundsException  if
1888      *             <code>beginIndex</code> is negative or larger than the
1889      *             length of this <code>String</code> object.
1890      */
substring(int beginIndex)1891     public String substring(int beginIndex) {
1892         if (beginIndex < 0) {
1893             throw new StringIndexOutOfBoundsException(this, beginIndex);
1894         }
1895         int subLen = count - beginIndex;
1896         if (subLen < 0) {
1897             throw new StringIndexOutOfBoundsException(this, beginIndex);
1898         }
1899         return (beginIndex == 0) ? this : fastSubstring(beginIndex, subLen);
1900     }
1901 
1902     /**
1903      * Returns a new string that is a substring of this string. The
1904      * substring begins at the specified <code>beginIndex</code> and
1905      * extends to the character at index <code>endIndex - 1</code>.
1906      * Thus the length of the substring is <code>endIndex-beginIndex</code>.
1907      * <p>
1908      * Examples:
1909      * <blockquote><pre>
1910      * "hamburger".substring(4, 8) returns "urge"
1911      * "smiles".substring(1, 5) returns "mile"
1912      * </pre></blockquote>
1913      *
1914      * @param      beginIndex   the beginning index, inclusive.
1915      * @param      endIndex     the ending index, exclusive.
1916      * @return     the specified substring.
1917      * @exception  IndexOutOfBoundsException  if the
1918      *             <code>beginIndex</code> is negative, or
1919      *             <code>endIndex</code> is larger than the length of
1920      *             this <code>String</code> object, or
1921      *             <code>beginIndex</code> is larger than
1922      *             <code>endIndex</code>.
1923      */
substring(int beginIndex, int endIndex)1924     public String substring(int beginIndex, int endIndex) {
1925         if (beginIndex < 0) {
1926             throw new StringIndexOutOfBoundsException(this, beginIndex);
1927         }
1928 
1929         int subLen = endIndex - beginIndex;
1930         if (endIndex > count || subLen < 0) {
1931             throw new StringIndexOutOfBoundsException(this, beginIndex, subLen);
1932         }
1933 
1934         return ((beginIndex == 0) && (endIndex == count)) ? this
1935                 : fastSubstring(beginIndex, subLen);
1936     }
1937 
fastSubstring(int start, int length)1938     private native String fastSubstring(int start, int length);
1939 
1940     /**
1941      * Returns a new character sequence that is a subsequence of this sequence.
1942      *
1943      * <p> An invocation of this method of the form
1944      *
1945      * <blockquote><pre>
1946      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1947      *
1948      * behaves in exactly the same way as the invocation
1949      *
1950      * <blockquote><pre>
1951      * str.substring(begin,&nbsp;end)</pre></blockquote>
1952      *
1953      * This method is defined so that the <tt>String</tt> class can implement
1954      * the {@link CharSequence} interface. </p>
1955      *
1956      * @param      beginIndex   the begin index, inclusive.
1957      * @param      endIndex     the end index, exclusive.
1958      * @return     the specified subsequence.
1959      *
1960      * @throws  IndexOutOfBoundsException
1961      *          if <tt>beginIndex</tt> or <tt>endIndex</tt> are negative,
1962      *          if <tt>endIndex</tt> is greater than <tt>length()</tt>,
1963      *          or if <tt>beginIndex</tt> is greater than <tt>startIndex</tt>
1964      *
1965      * @since 1.4
1966      * @spec JSR-51
1967      */
subSequence(int beginIndex, int endIndex)1968     public CharSequence subSequence(int beginIndex, int endIndex) {
1969         return this.substring(beginIndex, endIndex);
1970     }
1971 
1972     /**
1973      * Concatenates the specified string to the end of this string.
1974      * <p>
1975      * If the length of the argument string is <code>0</code>, then this
1976      * <code>String</code> object is returned. Otherwise, a new
1977      * <code>String</code> object is created, representing a character
1978      * sequence that is the concatenation of the character sequence
1979      * represented by this <code>String</code> object and the character
1980      * sequence represented by the argument string.<p>
1981      * Examples:
1982      * <blockquote><pre>
1983      * "cares".concat("s") returns "caress"
1984      * "to".concat("get").concat("her") returns "together"
1985      * </pre></blockquote>
1986      *
1987      * @param   str   the <code>String</code> that is concatenated to the end
1988      *                of this <code>String</code>.
1989      * @return  a string that represents the concatenation of this object's
1990      *          characters followed by the string argument's characters.
1991      */
concat(String str)1992     public native String concat(String str);
1993 
1994     /**
1995      * Returns a new string resulting from replacing all occurrences of
1996      * <code>oldChar</code> in this string with <code>newChar</code>.
1997      * <p>
1998      * If the character <code>oldChar</code> does not occur in the
1999      * character sequence represented by this <code>String</code> object,
2000      * then a reference to this <code>String</code> object is returned.
2001      * Otherwise, a new <code>String</code> object is created that
2002      * represents a character sequence identical to the character sequence
2003      * represented by this <code>String</code> object, except that every
2004      * occurrence of <code>oldChar</code> is replaced by an occurrence
2005      * of <code>newChar</code>.
2006      * <p>
2007      * Examples:
2008      * <blockquote><pre>
2009      * "mesquite in your cellar".replace('e', 'o')
2010      *         returns "mosquito in your collar"
2011      * "the war of baronets".replace('r', 'y')
2012      *         returns "the way of bayonets"
2013      * "sparring with a purple porpoise".replace('p', 't')
2014      *         returns "starring with a turtle tortoise"
2015      * "JonL".replace('q', 'x') returns "JonL" (no change)
2016      * </pre></blockquote>
2017      *
2018      * @param   oldChar   the old character.
2019      * @param   newChar   the new character.
2020      * @return  a string derived from this string by replacing every
2021      *          occurrence of <code>oldChar</code> with <code>newChar</code>.
2022      */
replace(char oldChar, char newChar)2023     public String replace(char oldChar, char newChar) {
2024         String replaced = this;
2025         if (oldChar != newChar) {
2026             for (int i = 0; i < count; ++i) {
2027                 if (charAt(i) == oldChar) {
2028                     if (replaced == this) {
2029                         replaced = StringFactory.newStringFromString(this);
2030                     }
2031                     replaced.setCharAt(i, newChar);
2032                 }
2033             }
2034         }
2035         return replaced;
2036     }
2037 
2038     /**
2039      * Tells whether or not this string matches the given <a
2040      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2041      *
2042      * <p> An invocation of this method of the form
2043      * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the
2044      * same result as the expression
2045      *
2046      * <blockquote><tt> {@link java.util.regex.Pattern}.{@link
2047      * java.util.regex.Pattern#matches(String,CharSequence)
2048      * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote>
2049      *
2050      * @param   regex
2051      *          the regular expression to which this string is to be matched
2052      *
2053      * @return  <tt>true</tt> if, and only if, this string matches the
2054      *          given regular expression
2055      *
2056      * @throws  PatternSyntaxException
2057      *          if the regular expression's syntax is invalid
2058      *
2059      * @see java.util.regex.Pattern
2060      *
2061      * @since 1.4
2062      * @spec JSR-51
2063      */
matches(String regex)2064     public boolean matches(String regex) {
2065         return Pattern.matches(regex, this);
2066     }
2067 
2068     /**
2069      * Returns true if and only if this string contains the specified
2070      * sequence of char values.
2071      *
2072      * @param s the sequence to search for
2073      * @return true if this string contains <code>s</code>, false otherwise
2074      * @throws NullPointerException if <code>s</code> is <code>null</code>
2075      * @since 1.5
2076      */
contains(CharSequence s)2077     public boolean contains(CharSequence s) {
2078         return indexOf(s.toString()) > -1;
2079     }
2080 
2081     /**
2082      * Replaces the first substring of this string that matches the given <a
2083      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2084      * given replacement.
2085      *
2086      * <p> An invocation of this method of the form
2087      * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
2088      * yields exactly the same result as the expression
2089      *
2090      * <blockquote><tt>
2091      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
2092      * compile}(</tt><i>regex</i><tt>).{@link
2093      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
2094      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst
2095      * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote>
2096      *
2097      *<p>
2098      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
2099      * replacement string may cause the results to be different than if it were
2100      * being treated as a literal replacement string; see
2101      * {@link java.util.regex.Matcher#replaceFirst}.
2102      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2103      * meaning of these characters, if desired.
2104      *
2105      * @param   regex
2106      *          the regular expression to which this string is to be matched
2107      * @param   replacement
2108      *          the string to be substituted for the first match
2109      *
2110      * @return  The resulting <tt>String</tt>
2111      *
2112      * @throws  PatternSyntaxException
2113      *          if the regular expression's syntax is invalid
2114      *
2115      * @see java.util.regex.Pattern
2116      *
2117      * @since 1.4
2118      * @spec JSR-51
2119      */
replaceFirst(String regex, String replacement)2120     public String replaceFirst(String regex, String replacement) {
2121         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2122     }
2123 
2124     /**
2125      * Replaces each substring of this string that matches the given <a
2126      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2127      * given replacement.
2128      *
2129      * <p> An invocation of this method of the form
2130      * <i>str</i><tt>.replaceAll(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
2131      * yields exactly the same result as the expression
2132      *
2133      * <blockquote><tt>
2134      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
2135      * compile}(</tt><i>regex</i><tt>).{@link
2136      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
2137      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceAll
2138      * replaceAll}(</tt><i>repl</i><tt>)</tt></blockquote>
2139      *
2140      *<p>
2141      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
2142      * replacement string may cause the results to be different than if it were
2143      * being treated as a literal replacement string; see
2144      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2145      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2146      * meaning of these characters, if desired.
2147      *
2148      * @param   regex
2149      *          the regular expression to which this string is to be matched
2150      * @param   replacement
2151      *          the string to be substituted for each match
2152      *
2153      * @return  The resulting <tt>String</tt>
2154      *
2155      * @throws  PatternSyntaxException
2156      *          if the regular expression's syntax is invalid
2157      *
2158      * @see java.util.regex.Pattern
2159      *
2160      * @since 1.4
2161      * @spec JSR-51
2162      */
replaceAll(String regex, String replacement)2163     public String replaceAll(String regex, String replacement) {
2164         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2165     }
2166 
2167     /**
2168      * Replaces each substring of this string that matches the literal target
2169      * sequence with the specified literal replacement sequence. The
2170      * replacement proceeds from the beginning of the string to the end, for
2171      * example, replacing "aa" with "b" in the string "aaa" will result in
2172      * "ba" rather than "ab".
2173      *
2174      * @param  target The sequence of char values to be replaced
2175      * @param  replacement The replacement sequence of char values
2176      * @return  The resulting string
2177      * @throws NullPointerException if <code>target</code> or
2178      *         <code>replacement</code> is <code>null</code>.
2179      * @since 1.5
2180      */
replace(CharSequence target, CharSequence replacement)2181     public String replace(CharSequence target, CharSequence replacement) {
2182         if (target == null) {
2183             throw new NullPointerException("target == null");
2184         }
2185 
2186         if (replacement == null) {
2187             throw new NullPointerException("replacement == null");
2188         }
2189 
2190         String replacementStr = replacement.toString();
2191         String targetStr = target.toString();
2192 
2193         // Special case when target == "". This is a pretty nonsensical transformation and nobody
2194         // should be hitting this.
2195         //
2196         // See commit 870b23b3febc85 and http://code.google.com/p/android/issues/detail?id=8807
2197         // An empty target is inserted at the start of the string, the end of the string and
2198         // between all characters.
2199         if (targetStr.isEmpty()) {
2200             // Note that overallocates by |replacement.size()| if |this| is the empty string, but
2201             // that should be a rare case within an already nonsensical case.
2202             StringBuilder sb = new StringBuilder(replacementStr.length() * (count + 2) + count);
2203             sb.append(replacementStr);
2204             for (int i = 0; i < count; ++i) {
2205                 sb.append(charAt(i));
2206                 sb.append(replacementStr);
2207             }
2208 
2209             return sb.toString();
2210         }
2211 
2212         // This is the "regular" case.
2213         int lastMatch = 0;
2214         StringBuilder sb = null;
2215         for (;;) {
2216             int currentMatch = indexOf(this, targetStr, lastMatch);
2217             if (currentMatch == -1) {
2218                 break;
2219             }
2220 
2221             if (sb == null) {
2222                 sb = new StringBuilder(count);
2223             }
2224 
2225             sb.append(this, lastMatch, currentMatch);
2226             sb.append(replacementStr);
2227             lastMatch = currentMatch + targetStr.count;
2228         }
2229 
2230         if (sb != null) {
2231             sb.append(this, lastMatch, count);
2232             return sb.toString();
2233         } else {
2234             return this;
2235         }
2236     }
2237 
2238     /**
2239      * Splits this string around matches of the given
2240      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2241      *
2242      * <p> The array returned by this method contains each substring of this
2243      * string that is terminated by another substring that matches the given
2244      * expression or is terminated by the end of the string.  The substrings in
2245      * the array are in the order in which they occur in this string.  If the
2246      * expression does not match any part of the input then the resulting array
2247      * has just one element, namely this string.
2248      *
2249      * <p> The <tt>limit</tt> parameter controls the number of times the
2250      * pattern is applied and therefore affects the length of the resulting
2251      * array.  If the limit <i>n</i> is greater than zero then the pattern
2252      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2253      * length will be no greater than <i>n</i>, and the array's last entry
2254      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2255      * is non-positive then the pattern will be applied as many times as
2256      * possible and the array can have any length.  If <i>n</i> is zero then
2257      * the pattern will be applied as many times as possible, the array can
2258      * have any length, and trailing empty strings will be discarded.
2259      *
2260      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the
2261      * following results with these parameters:
2262      *
2263      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
2264      * <tr>
2265      *     <th>Regex</th>
2266      *     <th>Limit</th>
2267      *     <th>Result</th>
2268      * </tr>
2269      * <tr><td align=center>:</td>
2270      *     <td align=center>2</td>
2271      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
2272      * <tr><td align=center>:</td>
2273      *     <td align=center>5</td>
2274      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
2275      * <tr><td align=center>:</td>
2276      *     <td align=center>-2</td>
2277      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
2278      * <tr><td align=center>o</td>
2279      *     <td align=center>5</td>
2280      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
2281      * <tr><td align=center>o</td>
2282      *     <td align=center>-2</td>
2283      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
2284      * <tr><td align=center>o</td>
2285      *     <td align=center>0</td>
2286      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
2287      * </table></blockquote>
2288      *
2289      * <p> An invocation of this method of the form
2290      * <i>str.</i><tt>split(</tt><i>regex</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
2291      * yields the same result as the expression
2292      *
2293      * <blockquote>
2294      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
2295      * compile}<tt>(</tt><i>regex</i><tt>)</tt>.{@link
2296      * java.util.regex.Pattern#split(java.lang.CharSequence,int)
2297      * split}<tt>(</tt><i>str</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
2298      * </blockquote>
2299      *
2300      *
2301      * @param  regex
2302      *         the delimiting regular expression
2303      *
2304      * @param  limit
2305      *         the result threshold, as described above
2306      *
2307      * @return  the array of strings computed by splitting this string
2308      *          around matches of the given regular expression
2309      *
2310      * @throws  PatternSyntaxException
2311      *          if the regular expression's syntax is invalid
2312      *
2313      * @see java.util.regex.Pattern
2314      *
2315      * @since 1.4
2316      * @spec JSR-51
2317      */
split(String regex, int limit)2318     public String[] split(String regex, int limit) {
2319         // Try fast splitting without allocating Pattern object
2320         String[] fast = Pattern.fastSplit(regex, this, limit);
2321         if (fast != null) {
2322             return fast;
2323         }
2324 
2325         return Pattern.compile(regex).split(this, limit);
2326     }
2327 
2328     /**
2329      * Splits this string around matches of the given <a
2330      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2331      *
2332      * <p> This method works as if by invoking the two-argument {@link
2333      * #split(String, int) split} method with the given expression and a limit
2334      * argument of zero.  Trailing empty strings are therefore not included in
2335      * the resulting array.
2336      *
2337      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the following
2338      * results with these expressions:
2339      *
2340      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
2341      * <tr>
2342      *  <th>Regex</th>
2343      *  <th>Result</th>
2344      * </tr>
2345      * <tr><td align=center>:</td>
2346      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
2347      * <tr><td align=center>o</td>
2348      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
2349      * </table></blockquote>
2350      *
2351      *
2352      * @param  regex
2353      *         the delimiting regular expression
2354      *
2355      * @return  the array of strings computed by splitting this string
2356      *          around matches of the given regular expression
2357      *
2358      * @throws  PatternSyntaxException
2359      *          if the regular expression's syntax is invalid
2360      *
2361      * @see java.util.regex.Pattern
2362      *
2363      * @since 1.4
2364      * @spec JSR-51
2365      */
split(String regex)2366     public String[] split(String regex) {
2367         return split(regex, 0);
2368     }
2369 
2370     /**
2371      * Converts all of the characters in this <code>String</code> to lower
2372      * case using the rules of the given <code>Locale</code>.  Case mapping is based
2373      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2374      * class. Since case mappings are not always 1:1 char mappings, the resulting
2375      * <code>String</code> may be a different length than the original <code>String</code>.
2376      * <p>
2377      * Examples of lowercase  mappings are in the following table:
2378      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
2379      * <tr>
2380      *   <th>Language Code of Locale</th>
2381      *   <th>Upper Case</th>
2382      *   <th>Lower Case</th>
2383      *   <th>Description</th>
2384      * </tr>
2385      * <tr>
2386      *   <td>tr (Turkish)</td>
2387      *   <td>&#92;u0130</td>
2388      *   <td>&#92;u0069</td>
2389      *   <td>capital letter I with dot above -&gt; small letter i</td>
2390      * </tr>
2391      * <tr>
2392      *   <td>tr (Turkish)</td>
2393      *   <td>&#92;u0049</td>
2394      *   <td>&#92;u0131</td>
2395      *   <td>capital letter I -&gt; small letter dotless i </td>
2396      * </tr>
2397      * <tr>
2398      *   <td>(all)</td>
2399      *   <td>French Fries</td>
2400      *   <td>french fries</td>
2401      *   <td>lowercased all chars in String</td>
2402      * </tr>
2403      * <tr>
2404      *   <td>(all)</td>
2405      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
2406      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
2407      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
2408      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
2409      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
2410      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
2411      *   <td>lowercased all chars in String</td>
2412      * </tr>
2413      * </table>
2414      *
2415      * @param locale use the case transformation rules for this locale
2416      * @return the <code>String</code>, converted to lowercase.
2417      * @see     java.lang.String#toLowerCase()
2418      * @see     java.lang.String#toUpperCase()
2419      * @see     java.lang.String#toUpperCase(Locale)
2420      * @since   1.1
2421      */
toLowerCase(Locale locale)2422     public String toLowerCase(Locale locale) {
2423         return CaseMapper.toLowerCase(locale, this);
2424     }
2425 
2426     /**
2427      * Converts all of the characters in this <code>String</code> to lower
2428      * case using the rules of the default locale. This is equivalent to calling
2429      * <code>toLowerCase(Locale.getDefault())</code>.
2430      * <p>
2431      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2432      * results if used for strings that are intended to be interpreted locale
2433      * independently.
2434      * Examples are programming language identifiers, protocol keys, and HTML
2435      * tags.
2436      * For instance, <code>"TITLE".toLowerCase()</code> in a Turkish locale
2437      * returns <code>"t\u005Cu0131tle"</code>, where '\u005Cu0131' is the
2438      * LATIN SMALL LETTER DOTLESS I character.
2439      * To obtain correct results for locale insensitive strings, use
2440      * <code>toLowerCase(Locale.ENGLISH)</code>.
2441      * <p>
2442      * @return  the <code>String</code>, converted to lowercase.
2443      * @see     java.lang.String#toLowerCase(Locale)
2444      */
toLowerCase()2445     public String toLowerCase() {
2446         return toLowerCase(Locale.getDefault());
2447     }
2448 
2449     /**
2450      * Converts all of the characters in this <code>String</code> to upper
2451      * case using the rules of the given <code>Locale</code>. Case mapping is based
2452      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2453      * class. Since case mappings are not always 1:1 char mappings, the resulting
2454      * <code>String</code> may be a different length than the original <code>String</code>.
2455      * <p>
2456      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2457      * <p>
2458      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
2459      * <tr>
2460      *   <th>Language Code of Locale</th>
2461      *   <th>Lower Case</th>
2462      *   <th>Upper Case</th>
2463      *   <th>Description</th>
2464      * </tr>
2465      * <tr>
2466      *   <td>tr (Turkish)</td>
2467      *   <td>&#92;u0069</td>
2468      *   <td>&#92;u0130</td>
2469      *   <td>small letter i -&gt; capital letter I with dot above</td>
2470      * </tr>
2471      * <tr>
2472      *   <td>tr (Turkish)</td>
2473      *   <td>&#92;u0131</td>
2474      *   <td>&#92;u0049</td>
2475      *   <td>small letter dotless i -&gt; capital letter I</td>
2476      * </tr>
2477      * <tr>
2478      *   <td>(all)</td>
2479      *   <td>&#92;u00df</td>
2480      *   <td>&#92;u0053 &#92;u0053</td>
2481      *   <td>small letter sharp s -&gt; two letters: SS</td>
2482      * </tr>
2483      * <tr>
2484      *   <td>(all)</td>
2485      *   <td>Fahrvergn&uuml;gen</td>
2486      *   <td>FAHRVERGN&Uuml;GEN</td>
2487      *   <td></td>
2488      * </tr>
2489      * </table>
2490      * @param locale use the case transformation rules for this locale
2491      * @return the <code>String</code>, converted to uppercase.
2492      * @see     java.lang.String#toUpperCase()
2493      * @see     java.lang.String#toLowerCase()
2494      * @see     java.lang.String#toLowerCase(Locale)
2495      * @since   1.1
2496      */
toUpperCase(Locale locale)2497     public String toUpperCase(Locale locale) {
2498         return CaseMapper.toUpperCase(locale, this, count);
2499     }
2500 
2501     /**
2502      * Converts all of the characters in this <code>String</code> to upper
2503      * case using the rules of the default locale. This method is equivalent to
2504      * <code>toUpperCase(Locale.getDefault())</code>.
2505      * <p>
2506      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2507      * results if used for strings that are intended to be interpreted locale
2508      * independently.
2509      * Examples are programming language identifiers, protocol keys, and HTML
2510      * tags.
2511      * For instance, <code>"title".toUpperCase()</code> in a Turkish locale
2512      * returns <code>"T\u005Cu0130TLE"</code>, where '\u005Cu0130' is the
2513      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2514      * To obtain correct results for locale insensitive strings, use
2515      * <code>toUpperCase(Locale.ENGLISH)</code>.
2516      * <p>
2517      * @return  the <code>String</code>, converted to uppercase.
2518      * @see     java.lang.String#toUpperCase(Locale)
2519      */
toUpperCase()2520     public String toUpperCase() {
2521         return toUpperCase(Locale.getDefault());
2522     }
2523 
2524     /**
2525      * Returns a copy of the string, with leading and trailing whitespace
2526      * omitted.
2527      * <p>
2528      * If this <code>String</code> object represents an empty character
2529      * sequence, or the first and last characters of character sequence
2530      * represented by this <code>String</code> object both have codes
2531      * greater than <code>'&#92;u0020'</code> (the space character), then a
2532      * reference to this <code>String</code> object is returned.
2533      * <p>
2534      * Otherwise, if there is no character with a code greater than
2535      * <code>'&#92;u0020'</code> in the string, then a new
2536      * <code>String</code> object representing an empty string is created
2537      * and returned.
2538      * <p>
2539      * Otherwise, let <i>k</i> be the index of the first character in the
2540      * string whose code is greater than <code>'&#92;u0020'</code>, and let
2541      * <i>m</i> be the index of the last character in the string whose code
2542      * is greater than <code>'&#92;u0020'</code>. A new <code>String</code>
2543      * object is created, representing the substring of this string that
2544      * begins with the character at index <i>k</i> and ends with the
2545      * character at index <i>m</i>-that is, the result of
2546      * <code>this.substring(<i>k</i>,&nbsp;<i>m</i>+1)</code>.
2547      * <p>
2548      * This method may be used to trim whitespace (as defined above) from
2549      * the beginning and end of a string.
2550      *
2551      * @return  A copy of this string with leading and trailing white
2552      *          space removed, or this string if it has no leading or
2553      *          trailing white space.
2554      */
trim()2555     public String trim() {
2556         int len = count;
2557         int st = 0;
2558 
2559         while ((st < len) && (charAt(st) <= ' ')) {
2560             st++;
2561         }
2562         while ((st < len) && (charAt(len - 1) <= ' ')) {
2563             len--;
2564         }
2565         return ((st > 0) || (len < count)) ? substring(st, len) : this;
2566     }
2567 
2568     /**
2569      * This object (which is already a string!) is itself returned.
2570      *
2571      * @return  the string itself.
2572      */
toString()2573     public String toString() {
2574         return this;
2575     }
2576 
2577     /**
2578      * Converts this string to a new character array.
2579      *
2580      * @return  a newly allocated character array whose length is the length
2581      *          of this string and whose contents are initialized to contain
2582      *          the character sequence represented by this string.
2583      */
toCharArray()2584     public native char[] toCharArray();
2585 
2586 
2587     /**
2588      * Returns a formatted string using the specified format string and
2589      * arguments.
2590      *
2591      * <p> The locale always used is the one returned by {@link
2592      * java.util.Locale#getDefault() Locale.getDefault()}.
2593      *
2594      * @param  format
2595      *         A <a href="../util/Formatter.html#syntax">format string</a>
2596      *
2597      * @param  args
2598      *         Arguments referenced by the format specifiers in the format
2599      *         string.  If there are more arguments than format specifiers, the
2600      *         extra arguments are ignored.  The number of arguments is
2601      *         variable and may be zero.  The maximum number of arguments is
2602      *         limited by the maximum dimension of a Java array as defined by
2603      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2604      *         The behaviour on a
2605      *         <tt>null</tt> argument depends on the <a
2606      *         href="../util/Formatter.html#syntax">conversion</a>.
2607      *
2608      * @throws  IllegalFormatException
2609      *          If a format string contains an illegal syntax, a format
2610      *          specifier that is incompatible with the given arguments,
2611      *          insufficient arguments given the format string, or other
2612      *          illegal conditions.  For specification of all possible
2613      *          formatting errors, see the <a
2614      *          href="../util/Formatter.html#detail">Details</a> section of the
2615      *          formatter class specification.
2616      *
2617      * @throws  NullPointerException
2618      *          If the <tt>format</tt> is <tt>null</tt>
2619      *
2620      * @return  A formatted string
2621      *
2622      * @see  java.util.Formatter
2623      * @since  1.5
2624      */
format(String format, Object... args)2625     public static String format(String format, Object... args) {
2626         return new Formatter().format(format, args).toString();
2627     }
2628 
2629     /**
2630      * Returns a formatted string using the specified locale, format string,
2631      * and arguments.
2632      *
2633      * @param  l
2634      *         The {@linkplain java.util.Locale locale} to apply during
2635      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
2636      *         is applied.
2637      *
2638      * @param  format
2639      *         A <a href="../util/Formatter.html#syntax">format string</a>
2640      *
2641      * @param  args
2642      *         Arguments referenced by the format specifiers in the format
2643      *         string.  If there are more arguments than format specifiers, the
2644      *         extra arguments are ignored.  The number of arguments is
2645      *         variable and may be zero.  The maximum number of arguments is
2646      *         limited by the maximum dimension of a Java array as defined by
2647      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2648      *         The behaviour on a
2649      *         <tt>null</tt> argument depends on the <a
2650      *         href="../util/Formatter.html#syntax">conversion</a>.
2651      *
2652      * @throws  IllegalFormatException
2653      *          If a format string contains an illegal syntax, a format
2654      *          specifier that is incompatible with the given arguments,
2655      *          insufficient arguments given the format string, or other
2656      *          illegal conditions.  For specification of all possible
2657      *          formatting errors, see the <a
2658      *          href="../util/Formatter.html#detail">Details</a> section of the
2659      *          formatter class specification
2660      *
2661      * @throws  NullPointerException
2662      *          If the <tt>format</tt> is <tt>null</tt>
2663      *
2664      * @return  A formatted string
2665      *
2666      * @see  java.util.Formatter
2667      * @since  1.5
2668      */
format(Locale l, String format, Object... args)2669     public static String format(Locale l, String format, Object... args) {
2670         return new Formatter(l).format(format, args).toString();
2671     }
2672 
2673     /**
2674      * Returns the string representation of the <code>Object</code> argument.
2675      *
2676      * @param   obj   an <code>Object</code>.
2677      * @return  if the argument is <code>null</code>, then a string equal to
2678      *          <code>"null"</code>; otherwise, the value of
2679      *          <code>obj.toString()</code> is returned.
2680      * @see     java.lang.Object#toString()
2681      */
valueOf(Object obj)2682     public static String valueOf(Object obj) {
2683         return (obj == null) ? "null" : obj.toString();
2684     }
2685 
2686     /**
2687      * Returns the string representation of the <code>char</code> array
2688      * argument. The contents of the character array are copied; subsequent
2689      * modification of the character array does not affect the newly
2690      * created string.
2691      *
2692      * @param   data   a <code>char</code> array.
2693      * @return  a newly allocated string representing the same sequence of
2694      *          characters contained in the character array argument.
2695      */
valueOf(char data[])2696     public static String valueOf(char data[]) {
2697         return StringFactory.newStringFromChars(data);
2698     }
2699 
2700     /**
2701      * Returns the string representation of a specific subarray of the
2702      * <code>char</code> array argument.
2703      * <p>
2704      * The <code>offset</code> argument is the index of the first
2705      * character of the subarray. The <code>count</code> argument
2706      * specifies the length of the subarray. The contents of the subarray
2707      * are copied; subsequent modification of the character array does not
2708      * affect the newly created string.
2709      *
2710      * @param   data     the character array.
2711      * @param   offset   the initial offset into the value of the
2712      *                  <code>String</code>.
2713      * @param   count    the length of the value of the <code>String</code>.
2714      * @return  a string representing the sequence of characters contained
2715      *          in the subarray of the character array argument.
2716      * @exception IndexOutOfBoundsException if <code>offset</code> is
2717      *          negative, or <code>count</code> is negative, or
2718      *          <code>offset+count</code> is larger than
2719      *          <code>data.length</code>.
2720      */
valueOf(char data[], int offset, int count)2721     public static String valueOf(char data[], int offset, int count) {
2722         return StringFactory.newStringFromChars(data, offset, count);
2723     }
2724 
2725     /**
2726      * Returns a String that represents the character sequence in the
2727      * array specified.
2728      *
2729      * @param   data     the character array.
2730      * @param   offset   initial offset of the subarray.
2731      * @param   count    length of the subarray.
2732      * @return  a <code>String</code> that contains the characters of the
2733      *          specified subarray of the character array.
2734      */
copyValueOf(char data[], int offset, int count)2735     public static String copyValueOf(char data[], int offset, int count) {
2736         // All public String constructors now copy the data.
2737         return StringFactory.newStringFromChars(data, offset, count);
2738     }
2739 
2740     /**
2741      * Returns a String that represents the character sequence in the
2742      * array specified.
2743      *
2744      * @param   data   the character array.
2745      * @return  a <code>String</code> that contains the characters of the
2746      *          character array.
2747      */
copyValueOf(char data[])2748     public static String copyValueOf(char data[]) {
2749         return StringFactory.newStringFromChars(data);
2750     }
2751 
2752     /**
2753      * Returns the string representation of the <code>boolean</code> argument.
2754      *
2755      * @param   b   a <code>boolean</code>.
2756      * @return  if the argument is <code>true</code>, a string equal to
2757      *          <code>"true"</code> is returned; otherwise, a string equal to
2758      *          <code>"false"</code> is returned.
2759      */
valueOf(boolean b)2760     public static String valueOf(boolean b) {
2761         return b ? "true" : "false";
2762     }
2763 
2764     /**
2765      * Returns the string representation of the <code>char</code>
2766      * argument.
2767      *
2768      * @param   c   a <code>char</code>.
2769      * @return  a string of length <code>1</code> containing
2770      *          as its single character the argument <code>c</code>.
2771      */
valueOf(char c)2772     public static String valueOf(char c) {
2773         return StringFactory.newStringFromChars(0, 1, new char[] { c });
2774     }
2775 
2776     /**
2777      * Returns the string representation of the <code>int</code> argument.
2778      * <p>
2779      * The representation is exactly the one returned by the
2780      * <code>Integer.toString</code> method of one argument.
2781      *
2782      * @param   i   an <code>int</code>.
2783      * @return  a string representation of the <code>int</code> argument.
2784      * @see     java.lang.Integer#toString(int, int)
2785      */
valueOf(int i)2786     public static String valueOf(int i) {
2787         return Integer.toString(i);
2788     }
2789 
2790     /**
2791      * Returns the string representation of the <code>long</code> argument.
2792      * <p>
2793      * The representation is exactly the one returned by the
2794      * <code>Long.toString</code> method of one argument.
2795      *
2796      * @param   l   a <code>long</code>.
2797      * @return  a string representation of the <code>long</code> argument.
2798      * @see     java.lang.Long#toString(long)
2799      */
valueOf(long l)2800     public static String valueOf(long l) {
2801         return Long.toString(l);
2802     }
2803 
2804     /**
2805      * Returns the string representation of the <code>float</code> argument.
2806      * <p>
2807      * The representation is exactly the one returned by the
2808      * <code>Float.toString</code> method of one argument.
2809      *
2810      * @param   f   a <code>float</code>.
2811      * @return  a string representation of the <code>float</code> argument.
2812      * @see     java.lang.Float#toString(float)
2813      */
valueOf(float f)2814     public static String valueOf(float f) {
2815         return Float.toString(f);
2816     }
2817 
2818     /**
2819      * Returns the string representation of the <code>double</code> argument.
2820      * <p>
2821      * The representation is exactly the one returned by the
2822      * <code>Double.toString</code> method of one argument.
2823      *
2824      * @param   d   a <code>double</code>.
2825      * @return  a  string representation of the <code>double</code> argument.
2826      * @see     java.lang.Double#toString(double)
2827      */
valueOf(double d)2828     public static String valueOf(double d) {
2829         return Double.toString(d);
2830     }
2831 
2832     /**
2833      * Returns a canonical representation for the string object.
2834      * <p>
2835      * A pool of strings, initially empty, is maintained privately by the
2836      * class <code>String</code>.
2837      * <p>
2838      * When the intern method is invoked, if the pool already contains a
2839      * string equal to this <code>String</code> object as determined by
2840      * the {@link #equals(Object)} method, then the string from the pool is
2841      * returned. Otherwise, this <code>String</code> object is added to the
2842      * pool and a reference to this <code>String</code> object is returned.
2843      * <p>
2844      * It follows that for any two strings <code>s</code> and <code>t</code>,
2845      * <code>s.intern()&nbsp;==&nbsp;t.intern()</code> is <code>true</code>
2846      * if and only if <code>s.equals(t)</code> is <code>true</code>.
2847      * <p>
2848      * All literal strings and string-valued constant expressions are
2849      * interned. String literals are defined in section 3.10.5 of the
2850      * <cite>The Java&trade; Language Specification</cite>.
2851      *
2852      * @return  a string that has the same contents as this string, but is
2853      *          guaranteed to be from a pool of unique strings.
2854      */
intern()2855     public native String intern();
2856 }
2857