• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.  Oracle designates this
9  * particular file as subject to the "Classpath" exception as provided
10  * by Oracle in the LICENSE file that accompanied this code.
11  *
12  * This code is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  * version 2 for more details (a copy is included in the LICENSE file that
16  * accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License version
19  * 2 along with this work; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23  * or visit www.oracle.com if you need additional information or have any
24  * questions.
25  */
26 
27 package java.util;
28 
29 import sun.misc.Hashing;
30 
31 import java.io.*;
32 import java.util.function.BiFunction;
33 import java.util.function.Consumer;
34 import java.util.function.BiConsumer;
35 
36 /**
37  * <p>Hash table and linked list implementation of the <tt>Map</tt> interface,
38  * with predictable iteration order.  This implementation differs from
39  * <tt>HashMap</tt> in that it maintains a doubly-linked list running through
40  * all of its entries.  This linked list defines the iteration ordering,
41  * which is normally the order in which keys were inserted into the map
42  * (<i>insertion-order</i>).  Note that insertion order is not affected
43  * if a key is <i>re-inserted</i> into the map.  (A key <tt>k</tt> is
44  * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when
45  * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to
46  * the invocation.)
47  *
48  * <p>This implementation spares its clients from the unspecified, generally
49  * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
50  * without incurring the increased cost associated with {@link TreeMap}.  It
51  * can be used to produce a copy of a map that has the same order as the
52  * original, regardless of the original map's implementation:
53  * <pre>
54  *     void foo(Map m) {
55  *         Map copy = new LinkedHashMap(m);
56  *         ...
57  *     }
58  * </pre>
59  * This technique is particularly useful if a module takes a map on input,
60  * copies it, and later returns results whose order is determined by that of
61  * the copy.  (Clients generally appreciate having things returned in the same
62  * order they were presented.)
63  *
64  * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
65  * provided to create a linked hash map whose order of iteration is the order
66  * in which its entries were last accessed, from least-recently accessed to
67  * most-recently (<i>access-order</i>).  This kind of map is well-suited to
68  * building LRU caches.  Invoking the {@code put}, {@code putIfAbsent},
69  * {@code get}, {@code getOrDefault}, {@code compute}, {@code computeIfAbsent},
70  * {@code computeIfPresent}, or {@code merge} methods results
71  * in an access to the corresponding entry (assuming it exists after the
72  * invocation completes). The {@code replace} methods only result in an access
73  * of the entry if the value is replaced.  The {@code putAll} method generates one
74  * entry access for each mapping in the specified map, in the order that
75  * key-value mappings are provided by the specified map's entry set iterator.
76  * <i>No other methods generate entry accesses.</i>  In particular, operations
77  * on collection-views do <i>not</i> affect the order of iteration of the
78  * backing map. *
79  * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
80  * impose a policy for removing stale mappings automatically when new mappings
81  * are added to the map.
82  *
83  * <p>This class provides all of the optional <tt>Map</tt> operations, and
84  * permits null elements.  Like <tt>HashMap</tt>, it provides constant-time
85  * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
86  * <tt>remove</tt>), assuming the hash function disperses elements
87  * properly among the buckets.  Performance is likely to be just slightly
88  * below that of <tt>HashMap</tt>, due to the added expense of maintaining the
89  * linked list, with one exception: Iteration over the collection-views
90  * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i>
91  * of the map, regardless of its capacity.  Iteration over a <tt>HashMap</tt>
92  * is likely to be more expensive, requiring time proportional to its
93  * <i>capacity</i>.
94  *
95  * <p>A linked hash map has two parameters that affect its performance:
96  * <i>initial capacity</i> and <i>load factor</i>.  They are defined precisely
97  * as for <tt>HashMap</tt>.  Note, however, that the penalty for choosing an
98  * excessively high value for initial capacity is less severe for this class
99  * than for <tt>HashMap</tt>, as iteration times for this class are unaffected
100  * by capacity.
101  *
102  * <p><strong>Note that this implementation is not synchronized.</strong>
103  * If multiple threads access a linked hash map concurrently, and at least
104  * one of the threads modifies the map structurally, it <em>must</em> be
105  * synchronized externally.  This is typically accomplished by
106  * synchronizing on some object that naturally encapsulates the map.
107  *
108  * If no such object exists, the map should be "wrapped" using the
109  * {@link Collections#synchronizedMap Collections.synchronizedMap}
110  * method.  This is best done at creation time, to prevent accidental
111  * unsynchronized access to the map:<pre>
112  *   Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
113  *
114  * A structural modification is any operation that adds or deletes one or more
115  * mappings or, in the case of access-ordered linked hash maps, affects
116  * iteration order.  In insertion-ordered linked hash maps, merely changing
117  * the value associated with a key that is already contained in the map is not
118  * a structural modification.  <strong>In access-ordered linked hash maps,
119  * merely querying the map with <tt>get</tt> is a structural
120  * modification.</strong>)
121  *
122  * <p>The iterators returned by the <tt>iterator</tt> method of the collections
123  * returned by all of this class's collection view methods are
124  * <em>fail-fast</em>: if the map is structurally modified at any time after
125  * the iterator is created, in any way except through the iterator's own
126  * <tt>remove</tt> method, the iterator will throw a {@link
127  * ConcurrentModificationException}.  Thus, in the face of concurrent
128  * modification, the iterator fails quickly and cleanly, rather than risking
129  * arbitrary, non-deterministic behavior at an undetermined time in the future.
130  *
131  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
132  * as it is, generally speaking, impossible to make any hard guarantees in the
133  * presence of unsynchronized concurrent modification.  Fail-fast iterators
134  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
135  * Therefore, it would be wrong to write a program that depended on this
136  * exception for its correctness:   <i>the fail-fast behavior of iterators
137  * should be used only to detect bugs.</i>
138  *
139  * <p>The spliterators returned by the spliterator method of the collections
140  * returned by all of this class's collection view methods are
141  * <em><a href="Spliterator.html#binding">late-binding</a></em>,
142  * <em>fail-fast</em>, and additionally report {@link Spliterator#ORDERED}.
143  *
144  * <p>This class is a member of the
145  * <a href="{@docRoot}openjdk-redirect.html?v=8&path=/technotes/guides/collections/index.html">
146  * Java Collections Framework</a>.
147  *
148  * @implNote
149  * The spliterators returned by the spliterator method of the collections
150  * returned by all of this class's collection view methods are created from
151  * the iterators of the corresponding collections.
152  *
153  * @param <K> the type of keys maintained by this map
154  * @param <V> the type of mapped values
155  *
156  * @author  Josh Bloch
157  * @see     Object#hashCode()
158  * @see     Collection
159  * @see     Map
160  * @see     HashMap
161  * @see     TreeMap
162  * @see     Hashtable
163  * @since   1.4
164  */
165 
166 public class LinkedHashMap<K,V>
167     extends HashMap<K,V>
168     implements Map<K,V>
169 {
170 
171     private static final long serialVersionUID = 3801124242820219131L;
172 
173     /**
174      * The head of the doubly linked list.
175      */
176     private transient LinkedHashMapEntry<K,V> header;
177 
178     /**
179      * The iteration ordering method for this linked hash map: <tt>true</tt>
180      * for access-order, <tt>false</tt> for insertion-order.
181      *
182      * @serial
183      */
184     private final boolean accessOrder;
185 
186     /**
187      * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
188      * with the specified initial capacity and load factor.
189      *
190      * @param  initialCapacity the initial capacity
191      * @param  loadFactor      the load factor
192      * @throws IllegalArgumentException if the initial capacity is negative
193      *         or the load factor is nonpositive
194      */
LinkedHashMap(int initialCapacity, float loadFactor)195     public LinkedHashMap(int initialCapacity, float loadFactor) {
196         super(initialCapacity, loadFactor);
197         accessOrder = false;
198     }
199 
200     /**
201      * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
202      * with the specified initial capacity and a default load factor (0.75).
203      *
204      * @param  initialCapacity the initial capacity
205      * @throws IllegalArgumentException if the initial capacity is negative
206      */
LinkedHashMap(int initialCapacity)207     public LinkedHashMap(int initialCapacity) {
208         super(initialCapacity);
209         accessOrder = false;
210     }
211 
212     /**
213      * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
214      * with the default initial capacity (16) and load factor (0.75).
215      */
LinkedHashMap()216     public LinkedHashMap() {
217         super();
218         accessOrder = false;
219     }
220 
221     /**
222      * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
223      * the same mappings as the specified map.  The <tt>LinkedHashMap</tt>
224      * instance is created with a default load factor (0.75) and an initial
225      * capacity sufficient to hold the mappings in the specified map.
226      *
227      * @param  m the map whose mappings are to be placed in this map
228      * @throws NullPointerException if the specified map is null
229      */
LinkedHashMap(Map<? extends K, ? extends V> m)230     public LinkedHashMap(Map<? extends K, ? extends V> m) {
231         super(m);
232         accessOrder = false;
233     }
234 
235     /**
236      * Constructs an empty <tt>LinkedHashMap</tt> instance with the
237      * specified initial capacity, load factor and ordering mode.
238      *
239      * @param  initialCapacity the initial capacity
240      * @param  loadFactor      the load factor
241      * @param  accessOrder     the ordering mode - <tt>true</tt> for
242      *         access-order, <tt>false</tt> for insertion-order
243      * @throws IllegalArgumentException if the initial capacity is negative
244      *         or the load factor is nonpositive
245      */
LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder)246     public LinkedHashMap(int initialCapacity,
247                          float loadFactor,
248                          boolean accessOrder) {
249         super(initialCapacity, loadFactor);
250         this.accessOrder = accessOrder;
251     }
252 
253     /**
254      * Called by superclass constructors and pseudoconstructors (clone,
255      * readObject) before any entries are inserted into the map.  Initializes
256      * the chain.
257      */
258     @Override
init()259     void init() {
260         header = new LinkedHashMapEntry<>(-1, null, null, null);
261         header.before = header.after = header;
262     }
263 
264     /**
265      * Transfers all entries to new table array.  This method is called
266      * by superclass resize.  It is overridden for performance, as it is
267      * faster to iterate using our linked list.
268      */
269     @Override
transfer(HashMapEntry[] newTable)270     void transfer(HashMapEntry[] newTable) {
271         int newCapacity = newTable.length;
272         for (LinkedHashMapEntry<K,V> e = header.after; e != header; e = e.after) {
273             int index = indexFor(e.hash, newCapacity);
274             e.next = newTable[index];
275             newTable[index] = e;
276         }
277     }
278 
279 
280     /**
281      * Returns <tt>true</tt> if this map maps one or more keys to the
282      * specified value.
283      *
284      * @param value value whose presence in this map is to be tested
285      * @return <tt>true</tt> if this map maps one or more keys to the
286      *         specified value
287      */
containsValue(Object value)288     public boolean containsValue(Object value) {
289         // Overridden to take advantage of faster iterator
290         if (value==null) {
291             for (LinkedHashMapEntry e = header.after; e != header; e = e.after)
292                 if (e.value==null)
293                     return true;
294         } else {
295             for (LinkedHashMapEntry e = header.after; e != header; e = e.after)
296                 if (value.equals(e.value))
297                     return true;
298         }
299         return false;
300     }
301 
302     /**
303      * Returns the value to which the specified key is mapped,
304      * or {@code null} if this map contains no mapping for the key.
305      *
306      * <p>More formally, if this map contains a mapping from a key
307      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
308      * key.equals(k))}, then this method returns {@code v}; otherwise
309      * it returns {@code null}.  (There can be at most one such mapping.)
310      *
311      * <p>A return value of {@code null} does not <i>necessarily</i>
312      * indicate that the map contains no mapping for the key; it's also
313      * possible that the map explicitly maps the key to {@code null}.
314      * The {@link #containsKey containsKey} operation may be used to
315      * distinguish these two cases.
316      */
get(Object key)317     public V get(Object key) {
318         LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key);
319         if (e == null)
320             return null;
321         e.recordAccess(this);
322         return e.value;
323     }
324 
325     /**
326      * Removes all of the mappings from this map.
327      * The map will be empty after this call returns.
328      */
clear()329     public void clear() {
330         super.clear();
331         header.before = header.after = header;
332     }
333 
334     /**
335      * LinkedHashMap entry.
336      */
337     private static class LinkedHashMapEntry<K,V> extends HashMapEntry<K,V> {
338         // These fields comprise the doubly linked list used for iteration.
339         LinkedHashMapEntry<K,V> before, after;
340 
LinkedHashMapEntry(int hash, K key, V value, HashMapEntry<K,V> next)341         LinkedHashMapEntry(int hash, K key, V value, HashMapEntry<K,V> next) {
342             super(hash, key, value, next);
343         }
344 
345         /**
346          * Removes this entry from the linked list.
347          */
remove()348         private void remove() {
349             before.after = after;
350             after.before = before;
351         }
352 
353         /**
354          * Inserts this entry before the specified existing entry in the list.
355          */
addBefore(LinkedHashMapEntry<K,V> existingEntry)356         private void addBefore(LinkedHashMapEntry<K,V> existingEntry) {
357             after  = existingEntry;
358             before = existingEntry.before;
359             before.after = this;
360             after.before = this;
361         }
362 
363         /**
364          * This method is invoked by the superclass whenever the value
365          * of a pre-existing entry is read by Map.get or modified by Map.set.
366          * If the enclosing Map is access-ordered, it moves the entry
367          * to the end of the list; otherwise, it does nothing.
368          */
recordAccess(HashMap<K,V> m)369         void recordAccess(HashMap<K,V> m) {
370             LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
371             if (lm.accessOrder) {
372                 lm.modCount++;
373                 remove();
374                 addBefore(lm.header);
375             }
376         }
377 
recordRemoval(HashMap<K,V> m)378         void recordRemoval(HashMap<K,V> m) {
379             remove();
380         }
381     }
382 
383     private abstract class LinkedHashIterator<T> implements Iterator<T> {
384         LinkedHashMapEntry<K,V> nextEntry    = header.after;
385         LinkedHashMapEntry<K,V> lastReturned = null;
386 
387         /**
388          * The modCount value that the iterator believes that the backing
389          * List should have.  If this expectation is violated, the iterator
390          * has detected concurrent modification.
391          */
392         int expectedModCount = modCount;
393 
hasNext()394         public boolean hasNext() {
395             return nextEntry != header;
396         }
397 
remove()398         public void remove() {
399             if (lastReturned == null)
400                 throw new IllegalStateException();
401             if (modCount != expectedModCount)
402                 throw new ConcurrentModificationException();
403 
404             LinkedHashMap.this.remove(lastReturned.key);
405             lastReturned = null;
406             expectedModCount = modCount;
407         }
408 
nextEntry()409         Entry<K,V> nextEntry() {
410             if (modCount != expectedModCount)
411                 throw new ConcurrentModificationException();
412             if (nextEntry == header)
413                 throw new NoSuchElementException();
414 
415             LinkedHashMapEntry<K,V> e = lastReturned = nextEntry;
416             nextEntry = e.after;
417             return e;
418         }
419     }
420 
421     private class KeyIterator extends LinkedHashIterator<K> {
next()422         public K next() { return nextEntry().getKey(); }
423     }
424 
425     private class ValueIterator extends LinkedHashIterator<V> {
next()426         public V next() { return nextEntry().getValue(); }
427     }
428 
429     private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> {
next()430         public Map.Entry<K,V> next() { return nextEntry(); }
431     }
432 
433     // These Overrides alter the behavior of superclass view iterator() methods
newKeyIterator()434     Iterator<K> newKeyIterator()   { return new KeyIterator();   }
newValueIterator()435     Iterator<V> newValueIterator() { return new ValueIterator(); }
newEntryIterator()436     Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); }
437 
438     /**
439      * This override alters behavior of superclass put method. It causes newly
440      * allocated entry to get inserted at the end of the linked list and
441      * removes the eldest entry if appropriate.
442      */
addEntry(int hash, K key, V value, int bucketIndex)443     void addEntry(int hash, K key, V value, int bucketIndex) {
444         // Previous Android releases called removeEldestEntry() before actually
445         // inserting a value but after increasing the size.
446         // The RI is documented to call it afterwards.
447         // **** THIS CHANGE WILL BE REVERTED IN A FUTURE ANDROID RELEASE ****
448 
449         // Remove eldest entry if instructed
450         LinkedHashMapEntry<K,V> eldest = header.after;
451         if (eldest != header) {
452             boolean removeEldest;
453             size++;
454             try {
455                 removeEldest = removeEldestEntry(eldest);
456             } finally {
457                 size--;
458             }
459             if (removeEldest) {
460                 removeEntryForKey(eldest.key);
461             }
462         }
463 
464         super.addEntry(hash, key, value, bucketIndex);
465     }
466 
467     /**
468      * Returns the eldest entry in the map, or {@code null} if the map is empty.
469      *
470      * Android-added.
471      *
472      * @hide
473      */
eldest()474     public Map.Entry<K, V> eldest() {
475         Entry<K, V> eldest = header.after;
476         return eldest != header ? eldest : null;
477     }
478 
479     /**
480      * This override differs from addEntry in that it doesn't resize the
481      * table or remove the eldest entry.
482      */
createEntry(int hash, K key, V value, int bucketIndex)483     void createEntry(int hash, K key, V value, int bucketIndex) {
484         HashMapEntry<K,V> old = table[bucketIndex];
485         LinkedHashMapEntry<K,V> e = new LinkedHashMapEntry<>(hash, key, value, old);
486         table[bucketIndex] = e;
487         e.addBefore(header);
488         size++;
489     }
490 
491     // Intentionally make this not JavaDoc, as the we don't conform to
492     // the behaviour documented here (we call removeEldestEntry before
493     // inserting the new value to be consistent with previous Android
494     // releases).
495     // **** THIS CHANGE WILL BE REVERTED IN A FUTURE ANDROID RELEASE ****
496     /*
497      * Returns <tt>true</tt> if this map should remove its eldest entry.
498      * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
499      * inserting a new entry into the map.  It provides the implementor
500      * with the opportunity to remove the eldest entry each time a new one
501      * is added.  This is useful if the map represents a cache: it allows
502      * the map to reduce memory consumption by deleting stale entries.
503      *
504      * <p>Sample use: this override will allow the map to grow up to 100
505      * entries and then delete the eldest entry each time a new entry is
506      * added, maintaining a steady state of 100 entries.
507      * <pre>
508      *     private static final int MAX_ENTRIES = 100;
509      *
510      *     protected boolean removeEldestEntry(Map.Entry eldest) {
511      *        return size() > MAX_ENTRIES;
512      *     }
513      * </pre>
514      *
515      * <p>This method typically does not modify the map in any way,
516      * instead allowing the map to modify itself as directed by its
517      * return value.  It <i>is</i> permitted for this method to modify
518      * the map directly, but if it does so, it <i>must</i> return
519      * <tt>false</tt> (indicating that the map should not attempt any
520      * further modification).  The effects of returning <tt>true</tt>
521      * after modifying the map from within this method are unspecified.
522      *
523      * <p>This implementation merely returns <tt>false</tt> (so that this
524      * map acts like a normal map - the eldest element is never removed).
525      *
526      * @param    eldest The least recently inserted entry in the map, or if
527      *           this is an access-ordered map, the least recently accessed
528      *           entry.  This is the entry that will be removed it this
529      *           method returns <tt>true</tt>.  If the map was empty prior
530      *           to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
531      *           in this invocation, this will be the entry that was just
532      *           inserted; in other words, if the map contains a single
533      *           entry, the eldest entry is also the newest.
534      * @return   <tt>true</tt> if the eldest entry should be removed
535      *           from the map; <tt>false</tt> if it should be retained.
536      */
removeEldestEntry(Map.Entry<K,V> eldest)537     protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
538         return false;
539     }
540 
541     // Map overrides
forEach(BiConsumer<? super K, ? super V> action)542     public void forEach(BiConsumer<? super K, ? super V> action) {
543         if (action == null)
544             throw new NullPointerException();
545         int mc = modCount;
546         // Android modified - breaks from the loop when modCount != mc
547         for (LinkedHashMapEntry<K,V> e = header.after; modCount == mc && e != header; e = e.after)
548             action.accept(e.key, e.value);
549         if (modCount != mc)
550             throw new ConcurrentModificationException();
551     }
552 
replaceAll(BiFunction<? super K, ? super V, ? extends V> function)553     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
554         if (function == null)
555             throw new NullPointerException();
556         int mc = modCount;
557         // Android modified - breaks from the loop when modCount != mc
558         for (LinkedHashMapEntry<K,V> e = header.after; modCount == mc && e != header; e = e.after)
559             e.value = function.apply(e.key, e.value);
560         if (modCount != mc)
561             throw new ConcurrentModificationException();
562     }
563 }
564