1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator.h"
18
19 #ifdef ART_ENABLE_CODEGEN_arm
20 #include "code_generator_arm.h"
21 #endif
22
23 #ifdef ART_ENABLE_CODEGEN_arm64
24 #include "code_generator_arm64.h"
25 #endif
26
27 #ifdef ART_ENABLE_CODEGEN_x86
28 #include "code_generator_x86.h"
29 #endif
30
31 #ifdef ART_ENABLE_CODEGEN_x86_64
32 #include "code_generator_x86_64.h"
33 #endif
34
35 #ifdef ART_ENABLE_CODEGEN_mips
36 #include "code_generator_mips.h"
37 #endif
38
39 #ifdef ART_ENABLE_CODEGEN_mips64
40 #include "code_generator_mips64.h"
41 #endif
42
43 #include "bytecode_utils.h"
44 #include "compiled_method.h"
45 #include "dex/verified_method.h"
46 #include "driver/compiler_driver.h"
47 #include "graph_visualizer.h"
48 #include "intrinsics.h"
49 #include "leb128.h"
50 #include "mirror/array-inl.h"
51 #include "mirror/object_array-inl.h"
52 #include "mirror/object_reference.h"
53 #include "parallel_move_resolver.h"
54 #include "ssa_liveness_analysis.h"
55 #include "utils/assembler.h"
56
57 namespace art {
58
59 // Return whether a location is consistent with a type.
CheckType(Primitive::Type type,Location location)60 static bool CheckType(Primitive::Type type, Location location) {
61 if (location.IsFpuRegister()
62 || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
63 return (type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble);
64 } else if (location.IsRegister() ||
65 (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
66 return Primitive::IsIntegralType(type) || (type == Primitive::kPrimNot);
67 } else if (location.IsRegisterPair()) {
68 return type == Primitive::kPrimLong;
69 } else if (location.IsFpuRegisterPair()) {
70 return type == Primitive::kPrimDouble;
71 } else if (location.IsStackSlot()) {
72 return (Primitive::IsIntegralType(type) && type != Primitive::kPrimLong)
73 || (type == Primitive::kPrimFloat)
74 || (type == Primitive::kPrimNot);
75 } else if (location.IsDoubleStackSlot()) {
76 return (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
77 } else if (location.IsConstant()) {
78 if (location.GetConstant()->IsIntConstant()) {
79 return Primitive::IsIntegralType(type) && (type != Primitive::kPrimLong);
80 } else if (location.GetConstant()->IsNullConstant()) {
81 return type == Primitive::kPrimNot;
82 } else if (location.GetConstant()->IsLongConstant()) {
83 return type == Primitive::kPrimLong;
84 } else if (location.GetConstant()->IsFloatConstant()) {
85 return type == Primitive::kPrimFloat;
86 } else {
87 return location.GetConstant()->IsDoubleConstant()
88 && (type == Primitive::kPrimDouble);
89 }
90 } else {
91 return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
92 }
93 }
94
95 // Check that a location summary is consistent with an instruction.
CheckTypeConsistency(HInstruction * instruction)96 static bool CheckTypeConsistency(HInstruction* instruction) {
97 LocationSummary* locations = instruction->GetLocations();
98 if (locations == nullptr) {
99 return true;
100 }
101
102 if (locations->Out().IsUnallocated()
103 && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
104 DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
105 << instruction->GetType()
106 << " " << locations->InAt(0);
107 } else {
108 DCHECK(CheckType(instruction->GetType(), locations->Out()))
109 << instruction->GetType()
110 << " " << locations->Out();
111 }
112
113 for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
114 DCHECK(CheckType(instruction->InputAt(i)->GetType(), locations->InAt(i)))
115 << instruction->InputAt(i)->GetType()
116 << " " << locations->InAt(i);
117 }
118
119 HEnvironment* environment = instruction->GetEnvironment();
120 for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
121 if (environment->GetInstructionAt(i) != nullptr) {
122 Primitive::Type type = environment->GetInstructionAt(i)->GetType();
123 DCHECK(CheckType(type, environment->GetLocationAt(i)))
124 << type << " " << environment->GetLocationAt(i);
125 } else {
126 DCHECK(environment->GetLocationAt(i).IsInvalid())
127 << environment->GetLocationAt(i);
128 }
129 }
130 return true;
131 }
132
GetCacheOffset(uint32_t index)133 size_t CodeGenerator::GetCacheOffset(uint32_t index) {
134 return sizeof(GcRoot<mirror::Object>) * index;
135 }
136
GetCachePointerOffset(uint32_t index)137 size_t CodeGenerator::GetCachePointerOffset(uint32_t index) {
138 auto pointer_size = InstructionSetPointerSize(GetInstructionSet());
139 return pointer_size * index;
140 }
141
GoesToNextBlock(HBasicBlock * current,HBasicBlock * next) const142 bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
143 DCHECK_EQ((*block_order_)[current_block_index_], current);
144 return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
145 }
146
GetNextBlockToEmit() const147 HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
148 for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
149 HBasicBlock* block = (*block_order_)[i];
150 if (!block->IsSingleJump()) {
151 return block;
152 }
153 }
154 return nullptr;
155 }
156
FirstNonEmptyBlock(HBasicBlock * block) const157 HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
158 while (block->IsSingleJump()) {
159 block = block->GetSuccessors()[0];
160 }
161 return block;
162 }
163
164 class DisassemblyScope {
165 public:
DisassemblyScope(HInstruction * instruction,const CodeGenerator & codegen)166 DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
167 : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
168 if (codegen_.GetDisassemblyInformation() != nullptr) {
169 start_offset_ = codegen_.GetAssembler().CodeSize();
170 }
171 }
172
~DisassemblyScope()173 ~DisassemblyScope() {
174 // We avoid building this data when we know it will not be used.
175 if (codegen_.GetDisassemblyInformation() != nullptr) {
176 codegen_.GetDisassemblyInformation()->AddInstructionInterval(
177 instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
178 }
179 }
180
181 private:
182 const CodeGenerator& codegen_;
183 HInstruction* instruction_;
184 size_t start_offset_;
185 };
186
187
GenerateSlowPaths()188 void CodeGenerator::GenerateSlowPaths() {
189 size_t code_start = 0;
190 for (const std::unique_ptr<SlowPathCode>& slow_path_unique_ptr : slow_paths_) {
191 SlowPathCode* slow_path = slow_path_unique_ptr.get();
192 current_slow_path_ = slow_path;
193 if (disasm_info_ != nullptr) {
194 code_start = GetAssembler()->CodeSize();
195 }
196 // Record the dex pc at start of slow path (required for java line number mapping).
197 MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
198 slow_path->EmitNativeCode(this);
199 if (disasm_info_ != nullptr) {
200 disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
201 }
202 }
203 current_slow_path_ = nullptr;
204 }
205
Compile(CodeAllocator * allocator)206 void CodeGenerator::Compile(CodeAllocator* allocator) {
207 // The register allocator already called `InitializeCodeGeneration`,
208 // where the frame size has been computed.
209 DCHECK(block_order_ != nullptr);
210 Initialize();
211
212 HGraphVisitor* instruction_visitor = GetInstructionVisitor();
213 DCHECK_EQ(current_block_index_, 0u);
214
215 size_t frame_start = GetAssembler()->CodeSize();
216 GenerateFrameEntry();
217 DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
218 if (disasm_info_ != nullptr) {
219 disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
220 }
221
222 for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
223 HBasicBlock* block = (*block_order_)[current_block_index_];
224 // Don't generate code for an empty block. Its predecessors will branch to its successor
225 // directly. Also, the label of that block will not be emitted, so this helps catch
226 // errors where we reference that label.
227 if (block->IsSingleJump()) continue;
228 Bind(block);
229 // This ensures that we have correct native line mapping for all native instructions.
230 // It is necessary to make stepping over a statement work. Otherwise, any initial
231 // instructions (e.g. moves) would be assumed to be the start of next statement.
232 MaybeRecordNativeDebugInfo(nullptr /* instruction */, block->GetDexPc());
233 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
234 HInstruction* current = it.Current();
235 if (current->HasEnvironment()) {
236 // Create stackmap for HNativeDebugInfo or any instruction which calls native code.
237 // Note that we need correct mapping for the native PC of the call instruction,
238 // so the runtime's stackmap is not sufficient since it is at PC after the call.
239 MaybeRecordNativeDebugInfo(current, block->GetDexPc());
240 }
241 DisassemblyScope disassembly_scope(current, *this);
242 DCHECK(CheckTypeConsistency(current));
243 current->Accept(instruction_visitor);
244 }
245 }
246
247 GenerateSlowPaths();
248
249 // Emit catch stack maps at the end of the stack map stream as expected by the
250 // runtime exception handler.
251 if (graph_->HasTryCatch()) {
252 RecordCatchBlockInfo();
253 }
254
255 // Finalize instructions in assember;
256 Finalize(allocator);
257 }
258
Finalize(CodeAllocator * allocator)259 void CodeGenerator::Finalize(CodeAllocator* allocator) {
260 size_t code_size = GetAssembler()->CodeSize();
261 uint8_t* buffer = allocator->Allocate(code_size);
262
263 MemoryRegion code(buffer, code_size);
264 GetAssembler()->FinalizeInstructions(code);
265 }
266
EmitLinkerPatches(ArenaVector<LinkerPatch> * linker_patches ATTRIBUTE_UNUSED)267 void CodeGenerator::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) {
268 // No linker patches by default.
269 }
270
InitializeCodeGeneration(size_t number_of_spill_slots,size_t maximum_number_of_live_core_registers,size_t maximum_number_of_live_fpu_registers,size_t number_of_out_slots,const ArenaVector<HBasicBlock * > & block_order)271 void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
272 size_t maximum_number_of_live_core_registers,
273 size_t maximum_number_of_live_fpu_registers,
274 size_t number_of_out_slots,
275 const ArenaVector<HBasicBlock*>& block_order) {
276 block_order_ = &block_order;
277 DCHECK(!block_order.empty());
278 DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
279 ComputeSpillMask();
280 first_register_slot_in_slow_path_ = (number_of_out_slots + number_of_spill_slots) * kVRegSize;
281
282 if (number_of_spill_slots == 0
283 && !HasAllocatedCalleeSaveRegisters()
284 && IsLeafMethod()
285 && !RequiresCurrentMethod()) {
286 DCHECK_EQ(maximum_number_of_live_core_registers, 0u);
287 DCHECK_EQ(maximum_number_of_live_fpu_registers, 0u);
288 SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
289 } else {
290 SetFrameSize(RoundUp(
291 number_of_spill_slots * kVRegSize
292 + number_of_out_slots * kVRegSize
293 + maximum_number_of_live_core_registers * GetWordSize()
294 + maximum_number_of_live_fpu_registers * GetFloatingPointSpillSlotSize()
295 + FrameEntrySpillSize(),
296 kStackAlignment));
297 }
298 }
299
CreateCommonInvokeLocationSummary(HInvoke * invoke,InvokeDexCallingConventionVisitor * visitor)300 void CodeGenerator::CreateCommonInvokeLocationSummary(
301 HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
302 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena();
303 LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCall);
304
305 for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
306 HInstruction* input = invoke->InputAt(i);
307 locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
308 }
309
310 locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
311
312 if (invoke->IsInvokeStaticOrDirect()) {
313 HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
314 switch (call->GetMethodLoadKind()) {
315 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
316 locations->SetInAt(call->GetSpecialInputIndex(), visitor->GetMethodLocation());
317 break;
318 case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod:
319 locations->AddTemp(visitor->GetMethodLocation());
320 locations->SetInAt(call->GetSpecialInputIndex(), Location::RequiresRegister());
321 break;
322 default:
323 locations->AddTemp(visitor->GetMethodLocation());
324 break;
325 }
326 } else {
327 locations->AddTemp(visitor->GetMethodLocation());
328 }
329 }
330
GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved * invoke)331 void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
332 MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetDexMethodIndex());
333
334 // Initialize to anything to silent compiler warnings.
335 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
336 switch (invoke->GetOriginalInvokeType()) {
337 case kStatic:
338 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
339 break;
340 case kDirect:
341 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
342 break;
343 case kVirtual:
344 entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
345 break;
346 case kSuper:
347 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
348 break;
349 case kInterface:
350 entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
351 break;
352 }
353 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
354 }
355
CreateUnresolvedFieldLocationSummary(HInstruction * field_access,Primitive::Type field_type,const FieldAccessCallingConvention & calling_convention)356 void CodeGenerator::CreateUnresolvedFieldLocationSummary(
357 HInstruction* field_access,
358 Primitive::Type field_type,
359 const FieldAccessCallingConvention& calling_convention) {
360 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
361 || field_access->IsUnresolvedInstanceFieldSet();
362 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
363 || field_access->IsUnresolvedStaticFieldGet();
364
365 ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetArena();
366 LocationSummary* locations =
367 new (allocator) LocationSummary(field_access, LocationSummary::kCall);
368
369 locations->AddTemp(calling_convention.GetFieldIndexLocation());
370
371 if (is_instance) {
372 // Add the `this` object for instance field accesses.
373 locations->SetInAt(0, calling_convention.GetObjectLocation());
374 }
375
376 // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
377 // regardless of the the type. Because of that we forced to special case
378 // the access to floating point values.
379 if (is_get) {
380 if (Primitive::IsFloatingPointType(field_type)) {
381 // The return value will be stored in regular registers while register
382 // allocator expects it in a floating point register.
383 // Note We don't need to request additional temps because the return
384 // register(s) are already blocked due the call and they may overlap with
385 // the input or field index.
386 // The transfer between the two will be done at codegen level.
387 locations->SetOut(calling_convention.GetFpuLocation(field_type));
388 } else {
389 locations->SetOut(calling_convention.GetReturnLocation(field_type));
390 }
391 } else {
392 size_t set_index = is_instance ? 1 : 0;
393 if (Primitive::IsFloatingPointType(field_type)) {
394 // The set value comes from a float location while the calling convention
395 // expects it in a regular register location. Allocate a temp for it and
396 // make the transfer at codegen.
397 AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
398 locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
399 } else {
400 locations->SetInAt(set_index,
401 calling_convention.GetSetValueLocation(field_type, is_instance));
402 }
403 }
404 }
405
GenerateUnresolvedFieldAccess(HInstruction * field_access,Primitive::Type field_type,uint32_t field_index,uint32_t dex_pc,const FieldAccessCallingConvention & calling_convention)406 void CodeGenerator::GenerateUnresolvedFieldAccess(
407 HInstruction* field_access,
408 Primitive::Type field_type,
409 uint32_t field_index,
410 uint32_t dex_pc,
411 const FieldAccessCallingConvention& calling_convention) {
412 LocationSummary* locations = field_access->GetLocations();
413
414 MoveConstant(locations->GetTemp(0), field_index);
415
416 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
417 || field_access->IsUnresolvedInstanceFieldSet();
418 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
419 || field_access->IsUnresolvedStaticFieldGet();
420
421 if (!is_get && Primitive::IsFloatingPointType(field_type)) {
422 // Copy the float value to be set into the calling convention register.
423 // Note that using directly the temp location is problematic as we don't
424 // support temp register pairs. To avoid boilerplate conversion code, use
425 // the location from the calling convention.
426 MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
427 locations->InAt(is_instance ? 1 : 0),
428 (Primitive::Is64BitType(field_type) ? Primitive::kPrimLong : Primitive::kPrimInt));
429 }
430
431 QuickEntrypointEnum entrypoint = kQuickSet8Static; // Initialize to anything to avoid warnings.
432 switch (field_type) {
433 case Primitive::kPrimBoolean:
434 entrypoint = is_instance
435 ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
436 : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
437 break;
438 case Primitive::kPrimByte:
439 entrypoint = is_instance
440 ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
441 : (is_get ? kQuickGetByteStatic : kQuickSet8Static);
442 break;
443 case Primitive::kPrimShort:
444 entrypoint = is_instance
445 ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
446 : (is_get ? kQuickGetShortStatic : kQuickSet16Static);
447 break;
448 case Primitive::kPrimChar:
449 entrypoint = is_instance
450 ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
451 : (is_get ? kQuickGetCharStatic : kQuickSet16Static);
452 break;
453 case Primitive::kPrimInt:
454 case Primitive::kPrimFloat:
455 entrypoint = is_instance
456 ? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
457 : (is_get ? kQuickGet32Static : kQuickSet32Static);
458 break;
459 case Primitive::kPrimNot:
460 entrypoint = is_instance
461 ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
462 : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
463 break;
464 case Primitive::kPrimLong:
465 case Primitive::kPrimDouble:
466 entrypoint = is_instance
467 ? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
468 : (is_get ? kQuickGet64Static : kQuickSet64Static);
469 break;
470 default:
471 LOG(FATAL) << "Invalid type " << field_type;
472 }
473 InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);
474
475 if (is_get && Primitive::IsFloatingPointType(field_type)) {
476 MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
477 }
478 }
479
480 // TODO: Remove argument `code_generator_supports_read_barrier` when
481 // all code generators have read barrier support.
CreateLoadClassLocationSummary(HLoadClass * cls,Location runtime_type_index_location,Location runtime_return_location,bool code_generator_supports_read_barrier)482 void CodeGenerator::CreateLoadClassLocationSummary(HLoadClass* cls,
483 Location runtime_type_index_location,
484 Location runtime_return_location,
485 bool code_generator_supports_read_barrier) {
486 ArenaAllocator* allocator = cls->GetBlock()->GetGraph()->GetArena();
487 LocationSummary::CallKind call_kind = cls->NeedsAccessCheck()
488 ? LocationSummary::kCall
489 : (((code_generator_supports_read_barrier && kEmitCompilerReadBarrier) ||
490 cls->CanCallRuntime())
491 ? LocationSummary::kCallOnSlowPath
492 : LocationSummary::kNoCall);
493 LocationSummary* locations = new (allocator) LocationSummary(cls, call_kind);
494 if (cls->NeedsAccessCheck()) {
495 locations->SetInAt(0, Location::NoLocation());
496 locations->AddTemp(runtime_type_index_location);
497 locations->SetOut(runtime_return_location);
498 } else {
499 locations->SetInAt(0, Location::RequiresRegister());
500 locations->SetOut(Location::RequiresRegister());
501 }
502 }
503
504
BlockIfInRegister(Location location,bool is_out) const505 void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
506 // The DCHECKS below check that a register is not specified twice in
507 // the summary. The out location can overlap with an input, so we need
508 // to special case it.
509 if (location.IsRegister()) {
510 DCHECK(is_out || !blocked_core_registers_[location.reg()]);
511 blocked_core_registers_[location.reg()] = true;
512 } else if (location.IsFpuRegister()) {
513 DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
514 blocked_fpu_registers_[location.reg()] = true;
515 } else if (location.IsFpuRegisterPair()) {
516 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
517 blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
518 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
519 blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
520 } else if (location.IsRegisterPair()) {
521 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
522 blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
523 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
524 blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
525 }
526 }
527
AllocateLocations(HInstruction * instruction)528 void CodeGenerator::AllocateLocations(HInstruction* instruction) {
529 instruction->Accept(GetLocationBuilder());
530 DCHECK(CheckTypeConsistency(instruction));
531 LocationSummary* locations = instruction->GetLocations();
532 if (!instruction->IsSuspendCheckEntry()) {
533 if (locations != nullptr) {
534 if (locations->CanCall()) {
535 MarkNotLeaf();
536 } else if (locations->Intrinsified() &&
537 instruction->IsInvokeStaticOrDirect() &&
538 !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
539 // A static method call that has been fully intrinsified, and cannot call on the slow
540 // path or refer to the current method directly, no longer needs current method.
541 return;
542 }
543 }
544 if (instruction->NeedsCurrentMethod()) {
545 SetRequiresCurrentMethod();
546 }
547 }
548 }
549
MaybeRecordStat(MethodCompilationStat compilation_stat,size_t count) const550 void CodeGenerator::MaybeRecordStat(MethodCompilationStat compilation_stat, size_t count) const {
551 if (stats_ != nullptr) {
552 stats_->RecordStat(compilation_stat, count);
553 }
554 }
555
Create(HGraph * graph,InstructionSet instruction_set,const InstructionSetFeatures & isa_features,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)556 std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
557 InstructionSet instruction_set,
558 const InstructionSetFeatures& isa_features,
559 const CompilerOptions& compiler_options,
560 OptimizingCompilerStats* stats) {
561 ArenaAllocator* arena = graph->GetArena();
562 switch (instruction_set) {
563 #ifdef ART_ENABLE_CODEGEN_arm
564 case kArm:
565 case kThumb2: {
566 return std::unique_ptr<CodeGenerator>(
567 new (arena) arm::CodeGeneratorARM(graph,
568 *isa_features.AsArmInstructionSetFeatures(),
569 compiler_options,
570 stats));
571 }
572 #endif
573 #ifdef ART_ENABLE_CODEGEN_arm64
574 case kArm64: {
575 return std::unique_ptr<CodeGenerator>(
576 new (arena) arm64::CodeGeneratorARM64(graph,
577 *isa_features.AsArm64InstructionSetFeatures(),
578 compiler_options,
579 stats));
580 }
581 #endif
582 #ifdef ART_ENABLE_CODEGEN_mips
583 case kMips: {
584 return std::unique_ptr<CodeGenerator>(
585 new (arena) mips::CodeGeneratorMIPS(graph,
586 *isa_features.AsMipsInstructionSetFeatures(),
587 compiler_options,
588 stats));
589 }
590 #endif
591 #ifdef ART_ENABLE_CODEGEN_mips64
592 case kMips64: {
593 return std::unique_ptr<CodeGenerator>(
594 new (arena) mips64::CodeGeneratorMIPS64(graph,
595 *isa_features.AsMips64InstructionSetFeatures(),
596 compiler_options,
597 stats));
598 }
599 #endif
600 #ifdef ART_ENABLE_CODEGEN_x86
601 case kX86: {
602 return std::unique_ptr<CodeGenerator>(
603 new (arena) x86::CodeGeneratorX86(graph,
604 *isa_features.AsX86InstructionSetFeatures(),
605 compiler_options,
606 stats));
607 }
608 #endif
609 #ifdef ART_ENABLE_CODEGEN_x86_64
610 case kX86_64: {
611 return std::unique_ptr<CodeGenerator>(
612 new (arena) x86_64::CodeGeneratorX86_64(graph,
613 *isa_features.AsX86_64InstructionSetFeatures(),
614 compiler_options,
615 stats));
616 }
617 #endif
618 default:
619 return nullptr;
620 }
621 }
622
ComputeStackMapsSize()623 size_t CodeGenerator::ComputeStackMapsSize() {
624 return stack_map_stream_.PrepareForFillIn();
625 }
626
CheckCovers(uint32_t dex_pc,const HGraph & graph,const CodeInfo & code_info,const ArenaVector<HSuspendCheck * > & loop_headers,ArenaVector<size_t> * covered)627 static void CheckCovers(uint32_t dex_pc,
628 const HGraph& graph,
629 const CodeInfo& code_info,
630 const ArenaVector<HSuspendCheck*>& loop_headers,
631 ArenaVector<size_t>* covered) {
632 CodeInfoEncoding encoding = code_info.ExtractEncoding();
633 for (size_t i = 0; i < loop_headers.size(); ++i) {
634 if (loop_headers[i]->GetDexPc() == dex_pc) {
635 if (graph.IsCompilingOsr()) {
636 DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc, encoding).IsValid());
637 }
638 ++(*covered)[i];
639 }
640 }
641 }
642
643 // Debug helper to ensure loop entries in compiled code are matched by
644 // dex branch instructions.
CheckLoopEntriesCanBeUsedForOsr(const HGraph & graph,const CodeInfo & code_info,const DexFile::CodeItem & code_item)645 static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
646 const CodeInfo& code_info,
647 const DexFile::CodeItem& code_item) {
648 if (graph.HasTryCatch()) {
649 // One can write loops through try/catch, which we do not support for OSR anyway.
650 return;
651 }
652 ArenaVector<HSuspendCheck*> loop_headers(graph.GetArena()->Adapter(kArenaAllocMisc));
653 for (HReversePostOrderIterator it(graph); !it.Done(); it.Advance()) {
654 if (it.Current()->IsLoopHeader()) {
655 HSuspendCheck* suspend_check = it.Current()->GetLoopInformation()->GetSuspendCheck();
656 if (!suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
657 loop_headers.push_back(suspend_check);
658 }
659 }
660 }
661 ArenaVector<size_t> covered(loop_headers.size(), 0, graph.GetArena()->Adapter(kArenaAllocMisc));
662 const uint16_t* code_ptr = code_item.insns_;
663 const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
664
665 size_t dex_pc = 0;
666 while (code_ptr < code_end) {
667 const Instruction& instruction = *Instruction::At(code_ptr);
668 if (instruction.IsBranch()) {
669 uint32_t target = dex_pc + instruction.GetTargetOffset();
670 CheckCovers(target, graph, code_info, loop_headers, &covered);
671 } else if (instruction.IsSwitch()) {
672 DexSwitchTable table(instruction, dex_pc);
673 uint16_t num_entries = table.GetNumEntries();
674 size_t offset = table.GetFirstValueIndex();
675
676 // Use a larger loop counter type to avoid overflow issues.
677 for (size_t i = 0; i < num_entries; ++i) {
678 // The target of the case.
679 uint32_t target = dex_pc + table.GetEntryAt(i + offset);
680 CheckCovers(target, graph, code_info, loop_headers, &covered);
681 }
682 }
683 dex_pc += instruction.SizeInCodeUnits();
684 code_ptr += instruction.SizeInCodeUnits();
685 }
686
687 for (size_t i = 0; i < covered.size(); ++i) {
688 DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
689 }
690 }
691
BuildStackMaps(MemoryRegion region,const DexFile::CodeItem & code_item)692 void CodeGenerator::BuildStackMaps(MemoryRegion region, const DexFile::CodeItem& code_item) {
693 stack_map_stream_.FillIn(region);
694 if (kIsDebugBuild) {
695 CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(region), code_item);
696 }
697 }
698
RecordPcInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)699 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
700 uint32_t dex_pc,
701 SlowPathCode* slow_path) {
702 if (instruction != nullptr) {
703 // The code generated for some type conversions
704 // may call the runtime, thus normally requiring a subsequent
705 // call to this method. However, the method verifier does not
706 // produce PC information for certain instructions, which are
707 // considered "atomic" (they cannot join a GC).
708 // Therefore we do not currently record PC information for such
709 // instructions. As this may change later, we added this special
710 // case so that code generators may nevertheless call
711 // CodeGenerator::RecordPcInfo without triggering an error in
712 // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
713 // thereafter.
714 if (instruction->IsTypeConversion()) {
715 return;
716 }
717 if (instruction->IsRem()) {
718 Primitive::Type type = instruction->AsRem()->GetResultType();
719 if ((type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble)) {
720 return;
721 }
722 }
723 }
724
725 uint32_t outer_dex_pc = dex_pc;
726 uint32_t outer_environment_size = 0;
727 uint32_t inlining_depth = 0;
728 if (instruction != nullptr) {
729 for (HEnvironment* environment = instruction->GetEnvironment();
730 environment != nullptr;
731 environment = environment->GetParent()) {
732 outer_dex_pc = environment->GetDexPc();
733 outer_environment_size = environment->Size();
734 if (environment != instruction->GetEnvironment()) {
735 inlining_depth++;
736 }
737 }
738 }
739
740 // Collect PC infos for the mapping table.
741 uint32_t native_pc = GetAssembler()->CodeSize();
742
743 if (instruction == nullptr) {
744 // For stack overflow checks and native-debug-info entries without dex register
745 // mapping (i.e. start of basic block or start of slow path).
746 stack_map_stream_.BeginStackMapEntry(outer_dex_pc, native_pc, 0, 0, 0, 0);
747 stack_map_stream_.EndStackMapEntry();
748 return;
749 }
750 LocationSummary* locations = instruction->GetLocations();
751
752 uint32_t register_mask = locations->GetRegisterMask();
753 if (locations->OnlyCallsOnSlowPath()) {
754 // In case of slow path, we currently set the location of caller-save registers
755 // to register (instead of their stack location when pushed before the slow-path
756 // call). Therefore register_mask contains both callee-save and caller-save
757 // registers that hold objects. We must remove the caller-save from the mask, since
758 // they will be overwritten by the callee.
759 register_mask &= core_callee_save_mask_;
760 }
761 // The register mask must be a subset of callee-save registers.
762 DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
763 stack_map_stream_.BeginStackMapEntry(outer_dex_pc,
764 native_pc,
765 register_mask,
766 locations->GetStackMask(),
767 outer_environment_size,
768 inlining_depth);
769
770 EmitEnvironment(instruction->GetEnvironment(), slow_path);
771 stack_map_stream_.EndStackMapEntry();
772
773 HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
774 if (instruction->IsSuspendCheck() &&
775 (info != nullptr) &&
776 graph_->IsCompilingOsr() &&
777 (inlining_depth == 0)) {
778 DCHECK_EQ(info->GetSuspendCheck(), instruction);
779 // We duplicate the stack map as a marker that this stack map can be an OSR entry.
780 // Duplicating it avoids having the runtime recognize and skip an OSR stack map.
781 DCHECK(info->IsIrreducible());
782 stack_map_stream_.BeginStackMapEntry(
783 dex_pc, native_pc, register_mask, locations->GetStackMask(), outer_environment_size, 0);
784 EmitEnvironment(instruction->GetEnvironment(), slow_path);
785 stack_map_stream_.EndStackMapEntry();
786 if (kIsDebugBuild) {
787 HEnvironment* environment = instruction->GetEnvironment();
788 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
789 HInstruction* in_environment = environment->GetInstructionAt(i);
790 if (in_environment != nullptr) {
791 DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
792 Location location = environment->GetLocationAt(i);
793 DCHECK(location.IsStackSlot() ||
794 location.IsDoubleStackSlot() ||
795 location.IsConstant() ||
796 location.IsInvalid());
797 if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
798 DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
799 }
800 }
801 }
802 }
803 } else if (kIsDebugBuild) {
804 // Ensure stack maps are unique, by checking that the native pc in the stack map
805 // last emitted is different than the native pc of the stack map just emitted.
806 size_t number_of_stack_maps = stack_map_stream_.GetNumberOfStackMaps();
807 if (number_of_stack_maps > 1) {
808 DCHECK_NE(stack_map_stream_.GetStackMap(number_of_stack_maps - 1).native_pc_offset,
809 stack_map_stream_.GetStackMap(number_of_stack_maps - 2).native_pc_offset);
810 }
811 }
812 }
813
HasStackMapAtCurrentPc()814 bool CodeGenerator::HasStackMapAtCurrentPc() {
815 uint32_t pc = GetAssembler()->CodeSize();
816 size_t count = stack_map_stream_.GetNumberOfStackMaps();
817 return count > 0 && stack_map_stream_.GetStackMap(count - 1).native_pc_offset == pc;
818 }
819
MaybeRecordNativeDebugInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)820 void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
821 uint32_t dex_pc,
822 SlowPathCode* slow_path) {
823 if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
824 if (HasStackMapAtCurrentPc()) {
825 // Ensure that we do not collide with the stack map of the previous instruction.
826 GenerateNop();
827 }
828 RecordPcInfo(instruction, dex_pc, slow_path);
829 }
830 }
831
RecordCatchBlockInfo()832 void CodeGenerator::RecordCatchBlockInfo() {
833 ArenaAllocator* arena = graph_->GetArena();
834
835 for (HBasicBlock* block : *block_order_) {
836 if (!block->IsCatchBlock()) {
837 continue;
838 }
839
840 uint32_t dex_pc = block->GetDexPc();
841 uint32_t num_vregs = graph_->GetNumberOfVRegs();
842 uint32_t inlining_depth = 0; // Inlining of catch blocks is not supported at the moment.
843 uint32_t native_pc = GetAddressOf(block);
844 uint32_t register_mask = 0; // Not used.
845
846 // The stack mask is not used, so we leave it empty.
847 ArenaBitVector* stack_mask =
848 ArenaBitVector::Create(arena, 0, /* expandable */ true, kArenaAllocCodeGenerator);
849
850 stack_map_stream_.BeginStackMapEntry(dex_pc,
851 native_pc,
852 register_mask,
853 stack_mask,
854 num_vregs,
855 inlining_depth);
856
857 HInstruction* current_phi = block->GetFirstPhi();
858 for (size_t vreg = 0; vreg < num_vregs; ++vreg) {
859 while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
860 HInstruction* next_phi = current_phi->GetNext();
861 DCHECK(next_phi == nullptr ||
862 current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
863 << "Phis need to be sorted by vreg number to keep this a linear-time loop.";
864 current_phi = next_phi;
865 }
866
867 if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
868 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
869 } else {
870 Location location = current_phi->GetLiveInterval()->ToLocation();
871 switch (location.GetKind()) {
872 case Location::kStackSlot: {
873 stack_map_stream_.AddDexRegisterEntry(
874 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
875 break;
876 }
877 case Location::kDoubleStackSlot: {
878 stack_map_stream_.AddDexRegisterEntry(
879 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
880 stack_map_stream_.AddDexRegisterEntry(
881 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
882 ++vreg;
883 DCHECK_LT(vreg, num_vregs);
884 break;
885 }
886 default: {
887 // All catch phis must be allocated to a stack slot.
888 LOG(FATAL) << "Unexpected kind " << location.GetKind();
889 UNREACHABLE();
890 }
891 }
892 }
893 }
894
895 stack_map_stream_.EndStackMapEntry();
896 }
897 }
898
EmitEnvironment(HEnvironment * environment,SlowPathCode * slow_path)899 void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) {
900 if (environment == nullptr) return;
901
902 if (environment->GetParent() != nullptr) {
903 // We emit the parent environment first.
904 EmitEnvironment(environment->GetParent(), slow_path);
905 stack_map_stream_.BeginInlineInfoEntry(environment->GetMethodIdx(),
906 environment->GetDexPc(),
907 environment->GetInvokeType(),
908 environment->Size());
909 }
910
911 // Walk over the environment, and record the location of dex registers.
912 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
913 HInstruction* current = environment->GetInstructionAt(i);
914 if (current == nullptr) {
915 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
916 continue;
917 }
918
919 Location location = environment->GetLocationAt(i);
920 switch (location.GetKind()) {
921 case Location::kConstant: {
922 DCHECK_EQ(current, location.GetConstant());
923 if (current->IsLongConstant()) {
924 int64_t value = current->AsLongConstant()->GetValue();
925 stack_map_stream_.AddDexRegisterEntry(
926 DexRegisterLocation::Kind::kConstant, Low32Bits(value));
927 stack_map_stream_.AddDexRegisterEntry(
928 DexRegisterLocation::Kind::kConstant, High32Bits(value));
929 ++i;
930 DCHECK_LT(i, environment_size);
931 } else if (current->IsDoubleConstant()) {
932 int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
933 stack_map_stream_.AddDexRegisterEntry(
934 DexRegisterLocation::Kind::kConstant, Low32Bits(value));
935 stack_map_stream_.AddDexRegisterEntry(
936 DexRegisterLocation::Kind::kConstant, High32Bits(value));
937 ++i;
938 DCHECK_LT(i, environment_size);
939 } else if (current->IsIntConstant()) {
940 int32_t value = current->AsIntConstant()->GetValue();
941 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
942 } else if (current->IsNullConstant()) {
943 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, 0);
944 } else {
945 DCHECK(current->IsFloatConstant()) << current->DebugName();
946 int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
947 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
948 }
949 break;
950 }
951
952 case Location::kStackSlot: {
953 stack_map_stream_.AddDexRegisterEntry(
954 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
955 break;
956 }
957
958 case Location::kDoubleStackSlot: {
959 stack_map_stream_.AddDexRegisterEntry(
960 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
961 stack_map_stream_.AddDexRegisterEntry(
962 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
963 ++i;
964 DCHECK_LT(i, environment_size);
965 break;
966 }
967
968 case Location::kRegister : {
969 int id = location.reg();
970 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
971 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
972 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
973 if (current->GetType() == Primitive::kPrimLong) {
974 stack_map_stream_.AddDexRegisterEntry(
975 DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
976 ++i;
977 DCHECK_LT(i, environment_size);
978 }
979 } else {
980 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id);
981 if (current->GetType() == Primitive::kPrimLong) {
982 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegisterHigh, id);
983 ++i;
984 DCHECK_LT(i, environment_size);
985 }
986 }
987 break;
988 }
989
990 case Location::kFpuRegister : {
991 int id = location.reg();
992 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
993 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
994 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
995 if (current->GetType() == Primitive::kPrimDouble) {
996 stack_map_stream_.AddDexRegisterEntry(
997 DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
998 ++i;
999 DCHECK_LT(i, environment_size);
1000 }
1001 } else {
1002 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id);
1003 if (current->GetType() == Primitive::kPrimDouble) {
1004 stack_map_stream_.AddDexRegisterEntry(
1005 DexRegisterLocation::Kind::kInFpuRegisterHigh, id);
1006 ++i;
1007 DCHECK_LT(i, environment_size);
1008 }
1009 }
1010 break;
1011 }
1012
1013 case Location::kFpuRegisterPair : {
1014 int low = location.low();
1015 int high = location.high();
1016 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
1017 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
1018 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1019 } else {
1020 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, low);
1021 }
1022 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
1023 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
1024 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1025 ++i;
1026 } else {
1027 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, high);
1028 ++i;
1029 }
1030 DCHECK_LT(i, environment_size);
1031 break;
1032 }
1033
1034 case Location::kRegisterPair : {
1035 int low = location.low();
1036 int high = location.high();
1037 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
1038 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
1039 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1040 } else {
1041 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, low);
1042 }
1043 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
1044 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
1045 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1046 } else {
1047 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, high);
1048 }
1049 ++i;
1050 DCHECK_LT(i, environment_size);
1051 break;
1052 }
1053
1054 case Location::kInvalid: {
1055 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1056 break;
1057 }
1058
1059 default:
1060 LOG(FATAL) << "Unexpected kind " << location.GetKind();
1061 }
1062 }
1063
1064 if (environment->GetParent() != nullptr) {
1065 stack_map_stream_.EndInlineInfoEntry();
1066 }
1067 }
1068
IsImplicitNullCheckAllowed(HNullCheck * null_check) const1069 bool CodeGenerator::IsImplicitNullCheckAllowed(HNullCheck* null_check) const {
1070 return compiler_options_.GetImplicitNullChecks() &&
1071 // Null checks which might throw into a catch block need to save live
1072 // registers and therefore cannot be done implicitly.
1073 !null_check->CanThrowIntoCatchBlock();
1074 }
1075
CanMoveNullCheckToUser(HNullCheck * null_check)1076 bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
1077 HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves();
1078
1079 return (first_next_not_move != nullptr)
1080 && first_next_not_move->CanDoImplicitNullCheckOn(null_check->InputAt(0));
1081 }
1082
MaybeRecordImplicitNullCheck(HInstruction * instr)1083 void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
1084 // If we are from a static path don't record the pc as we can't throw NPE.
1085 // NB: having the checks here makes the code much less verbose in the arch
1086 // specific code generators.
1087 if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) {
1088 return;
1089 }
1090
1091 if (!instr->CanDoImplicitNullCheckOn(instr->InputAt(0))) {
1092 return;
1093 }
1094
1095 // Find the first previous instruction which is not a move.
1096 HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves();
1097
1098 // If the instruction is a null check it means that `instr` is the first user
1099 // and needs to record the pc.
1100 if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) {
1101 HNullCheck* null_check = first_prev_not_move->AsNullCheck();
1102 if (IsImplicitNullCheckAllowed(null_check)) {
1103 // TODO: The parallel moves modify the environment. Their changes need to be
1104 // reverted otherwise the stack maps at the throw point will not be correct.
1105 RecordPcInfo(null_check, null_check->GetDexPc());
1106 }
1107 }
1108 }
1109
GenerateNullCheck(HNullCheck * instruction)1110 void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
1111 if (IsImplicitNullCheckAllowed(instruction)) {
1112 MaybeRecordStat(kImplicitNullCheckGenerated);
1113 GenerateImplicitNullCheck(instruction);
1114 } else {
1115 MaybeRecordStat(kExplicitNullCheckGenerated);
1116 GenerateExplicitNullCheck(instruction);
1117 }
1118 }
1119
ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck * suspend_check) const1120 void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const {
1121 LocationSummary* locations = suspend_check->GetLocations();
1122 HBasicBlock* block = suspend_check->GetBlock();
1123 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
1124 DCHECK(block->IsLoopHeader());
1125
1126 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1127 HInstruction* current = it.Current();
1128 LiveInterval* interval = current->GetLiveInterval();
1129 // We only need to clear bits of loop phis containing objects and allocated in register.
1130 // Loop phis allocated on stack already have the object in the stack.
1131 if (current->GetType() == Primitive::kPrimNot
1132 && interval->HasRegister()
1133 && interval->HasSpillSlot()) {
1134 locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize);
1135 }
1136 }
1137 }
1138
EmitParallelMoves(Location from1,Location to1,Primitive::Type type1,Location from2,Location to2,Primitive::Type type2)1139 void CodeGenerator::EmitParallelMoves(Location from1,
1140 Location to1,
1141 Primitive::Type type1,
1142 Location from2,
1143 Location to2,
1144 Primitive::Type type2) {
1145 HParallelMove parallel_move(GetGraph()->GetArena());
1146 parallel_move.AddMove(from1, to1, type1, nullptr);
1147 parallel_move.AddMove(from2, to2, type2, nullptr);
1148 GetMoveResolver()->EmitNativeCode(¶llel_move);
1149 }
1150
ValidateInvokeRuntime(HInstruction * instruction,SlowPathCode * slow_path)1151 void CodeGenerator::ValidateInvokeRuntime(HInstruction* instruction, SlowPathCode* slow_path) {
1152 // Ensure that the call kind indication given to the register allocator is
1153 // coherent with the runtime call generated, and that the GC side effect is
1154 // set when required.
1155 if (slow_path == nullptr) {
1156 DCHECK(instruction->GetLocations()->WillCall())
1157 << "instruction->DebugName()=" << instruction->DebugName();
1158 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
1159 << "instruction->DebugName()=" << instruction->DebugName()
1160 << " instruction->GetSideEffects().ToString()=" << instruction->GetSideEffects().ToString();
1161 } else {
1162 DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath() || slow_path->IsFatal())
1163 << "instruction->DebugName()=" << instruction->DebugName()
1164 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1165 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
1166 // When read barriers are enabled, some instructions use a
1167 // slow path to emit a read barrier, which does not trigger
1168 // GC, is not fatal, nor is emitted by HDeoptimize
1169 // instructions.
1170 (kEmitCompilerReadBarrier &&
1171 (instruction->IsInstanceFieldGet() ||
1172 instruction->IsStaticFieldGet() ||
1173 instruction->IsArraySet() ||
1174 instruction->IsArrayGet() ||
1175 instruction->IsLoadClass() ||
1176 instruction->IsLoadString() ||
1177 instruction->IsInstanceOf() ||
1178 instruction->IsCheckCast())))
1179 << "instruction->DebugName()=" << instruction->DebugName()
1180 << " instruction->GetSideEffects().ToString()=" << instruction->GetSideEffects().ToString()
1181 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1182 }
1183
1184 // Check the coherency of leaf information.
1185 DCHECK(instruction->IsSuspendCheck()
1186 || ((slow_path != nullptr) && slow_path->IsFatal())
1187 || instruction->GetLocations()->CanCall()
1188 || !IsLeafMethod())
1189 << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
1190 }
1191
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1192 void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1193 RegisterSet* live_registers = locations->GetLiveRegisters();
1194 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1195
1196 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
1197 if (!codegen->IsCoreCalleeSaveRegister(i)) {
1198 if (live_registers->ContainsCoreRegister(i)) {
1199 // If the register holds an object, update the stack mask.
1200 if (locations->RegisterContainsObject(i)) {
1201 locations->SetStackBit(stack_offset / kVRegSize);
1202 }
1203 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1204 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1205 saved_core_stack_offsets_[i] = stack_offset;
1206 stack_offset += codegen->SaveCoreRegister(stack_offset, i);
1207 }
1208 }
1209 }
1210
1211 for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) {
1212 if (!codegen->IsFloatingPointCalleeSaveRegister(i)) {
1213 if (live_registers->ContainsFloatingPointRegister(i)) {
1214 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1215 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1216 saved_fpu_stack_offsets_[i] = stack_offset;
1217 stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
1218 }
1219 }
1220 }
1221 }
1222
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1223 void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1224 RegisterSet* live_registers = locations->GetLiveRegisters();
1225 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1226
1227 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
1228 if (!codegen->IsCoreCalleeSaveRegister(i)) {
1229 if (live_registers->ContainsCoreRegister(i)) {
1230 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1231 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1232 stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
1233 }
1234 }
1235 }
1236
1237 for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) {
1238 if (!codegen->IsFloatingPointCalleeSaveRegister(i)) {
1239 if (live_registers->ContainsFloatingPointRegister(i)) {
1240 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1241 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1242 stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
1243 }
1244 }
1245 }
1246 }
1247
CreateSystemArrayCopyLocationSummary(HInvoke * invoke)1248 void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) {
1249 // Check to see if we have known failures that will cause us to have to bail out
1250 // to the runtime, and just generate the runtime call directly.
1251 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
1252 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
1253
1254 // The positions must be non-negative.
1255 if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
1256 (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
1257 // We will have to fail anyways.
1258 return;
1259 }
1260
1261 // The length must be >= 0.
1262 HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
1263 if (length != nullptr) {
1264 int32_t len = length->GetValue();
1265 if (len < 0) {
1266 // Just call as normal.
1267 return;
1268 }
1269 }
1270
1271 SystemArrayCopyOptimizations optimizations(invoke);
1272
1273 if (optimizations.GetDestinationIsSource()) {
1274 if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
1275 // We only support backward copying if source and destination are the same.
1276 return;
1277 }
1278 }
1279
1280 if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
1281 // We currently don't intrinsify primitive copying.
1282 return;
1283 }
1284
1285 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena();
1286 LocationSummary* locations = new (allocator) LocationSummary(invoke,
1287 LocationSummary::kCallOnSlowPath,
1288 kIntrinsified);
1289 // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
1290 locations->SetInAt(0, Location::RequiresRegister());
1291 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1292 locations->SetInAt(2, Location::RequiresRegister());
1293 locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
1294 locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
1295
1296 locations->AddTemp(Location::RequiresRegister());
1297 locations->AddTemp(Location::RequiresRegister());
1298 locations->AddTemp(Location::RequiresRegister());
1299 }
1300
1301 } // namespace art
1302