• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2014, Intel Corporation.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 /* Developers and authors:
16  * Shay Gueron (1, 2), and Vlad Krasnov (1)
17  * (1) Intel Corporation, Israel Development Center
18  * (2) University of Haifa
19  * Reference:
20  * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
21  *                          256 Bit Primes" */
22 
23 #include <openssl/ec.h>
24 
25 #include <assert.h>
26 #include <stdint.h>
27 #include <string.h>
28 
29 #include <openssl/bn.h>
30 #include <openssl/crypto.h>
31 #include <openssl/err.h>
32 
33 #include "../bn/internal.h"
34 #include "../ec/internal.h"
35 #include "../internal.h"
36 
37 
38 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
39     !defined(OPENSSL_SMALL)
40 
41 
42 #if defined(__GNUC__)
43 #define ALIGN(x) __attribute((aligned(x)))
44 #elif defined(_MSC_VER)
45 #define ALIGN(x) __declspec(align(x))
46 #else
47 #define ALIGN(x)
48 #endif
49 
50 #define ALIGNPTR(p, N) ((uint8_t *)p + N - (size_t)p % N)
51 #define P256_LIMBS (256 / BN_BITS2)
52 
53 typedef struct {
54   BN_ULONG X[P256_LIMBS];
55   BN_ULONG Y[P256_LIMBS];
56   BN_ULONG Z[P256_LIMBS];
57 } P256_POINT;
58 
59 typedef struct {
60   BN_ULONG X[P256_LIMBS];
61   BN_ULONG Y[P256_LIMBS];
62 } P256_POINT_AFFINE;
63 
64 typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
65 
66 /* Functions implemented in assembly */
67 
68 /* Modular neg: res = -a mod P */
69 void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
70 /* Montgomery mul: res = a*b*2^-256 mod P */
71 void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
72                            const BN_ULONG a[P256_LIMBS],
73                            const BN_ULONG b[P256_LIMBS]);
74 /* Montgomery sqr: res = a*a*2^-256 mod P */
75 void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
76                            const BN_ULONG a[P256_LIMBS]);
77 /* Convert a number from Montgomery domain, by multiplying with 1 */
78 void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
79                             const BN_ULONG in[P256_LIMBS]);
80 /* Functions that perform constant time access to the precomputed tables */
81 void ecp_nistz256_select_w5(P256_POINT *val, const P256_POINT *in_t, int index);
82 void ecp_nistz256_select_w7(P256_POINT_AFFINE *val,
83                             const P256_POINT_AFFINE *in_t, int index);
84 
85 /* One converted into the Montgomery domain */
86 static const BN_ULONG ONE[P256_LIMBS] = {
87     TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
88     TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
89 };
90 
91 /* Precomputed tables for the default generator */
92 #include "p256-x86_64-table.h"
93 
94 /* Recode window to a signed digit, see ecp_nistputil.c for details */
booth_recode_w5(unsigned in)95 static unsigned booth_recode_w5(unsigned in) {
96   unsigned s, d;
97 
98   s = ~((in >> 5) - 1);
99   d = (1 << 6) - in - 1;
100   d = (d & s) | (in & ~s);
101   d = (d >> 1) + (d & 1);
102 
103   return (d << 1) + (s & 1);
104 }
105 
booth_recode_w7(unsigned in)106 static unsigned booth_recode_w7(unsigned in) {
107   unsigned s, d;
108 
109   s = ~((in >> 7) - 1);
110   d = (1 << 8) - in - 1;
111   d = (d & s) | (in & ~s);
112   d = (d >> 1) + (d & 1);
113 
114   return (d << 1) + (s & 1);
115 }
116 
copy_conditional(BN_ULONG dst[P256_LIMBS],const BN_ULONG src[P256_LIMBS],BN_ULONG move)117 static void copy_conditional(BN_ULONG dst[P256_LIMBS],
118                              const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
119   BN_ULONG mask1 = ((BN_ULONG)0) - move;
120   BN_ULONG mask2 = ~mask1;
121 
122   dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
123   dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
124   dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
125   dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
126   if (P256_LIMBS == 8) {
127     dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
128     dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
129     dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
130     dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
131   }
132 }
133 
134 void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
135 void ecp_nistz256_point_add(P256_POINT *r, const P256_POINT *a,
136                             const P256_POINT *b);
137 void ecp_nistz256_point_add_affine(P256_POINT *r, const P256_POINT *a,
138                                    const P256_POINT_AFFINE *b);
139 
140 /* r = in^-1 mod p */
ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],const BN_ULONG in[P256_LIMBS])141 static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
142                                      const BN_ULONG in[P256_LIMBS]) {
143   /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff
144      ffffffff
145      We use FLT and used poly-2 as exponent */
146   BN_ULONG p2[P256_LIMBS];
147   BN_ULONG p4[P256_LIMBS];
148   BN_ULONG p8[P256_LIMBS];
149   BN_ULONG p16[P256_LIMBS];
150   BN_ULONG p32[P256_LIMBS];
151   BN_ULONG res[P256_LIMBS];
152   int i;
153 
154   ecp_nistz256_sqr_mont(res, in);
155   ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
156 
157   ecp_nistz256_sqr_mont(res, p2);
158   ecp_nistz256_sqr_mont(res, res);
159   ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
160 
161   ecp_nistz256_sqr_mont(res, p4);
162   ecp_nistz256_sqr_mont(res, res);
163   ecp_nistz256_sqr_mont(res, res);
164   ecp_nistz256_sqr_mont(res, res);
165   ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
166 
167   ecp_nistz256_sqr_mont(res, p8);
168   for (i = 0; i < 7; i++) {
169     ecp_nistz256_sqr_mont(res, res);
170   }
171   ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
172 
173   ecp_nistz256_sqr_mont(res, p16);
174   for (i = 0; i < 15; i++) {
175     ecp_nistz256_sqr_mont(res, res);
176   }
177   ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
178 
179   ecp_nistz256_sqr_mont(res, p32);
180   for (i = 0; i < 31; i++) {
181     ecp_nistz256_sqr_mont(res, res);
182   }
183   ecp_nistz256_mul_mont(res, res, in);
184 
185   for (i = 0; i < 32 * 4; i++) {
186     ecp_nistz256_sqr_mont(res, res);
187   }
188   ecp_nistz256_mul_mont(res, res, p32);
189 
190   for (i = 0; i < 32; i++) {
191     ecp_nistz256_sqr_mont(res, res);
192   }
193   ecp_nistz256_mul_mont(res, res, p32);
194 
195   for (i = 0; i < 16; i++) {
196     ecp_nistz256_sqr_mont(res, res);
197   }
198   ecp_nistz256_mul_mont(res, res, p16);
199 
200   for (i = 0; i < 8; i++) {
201     ecp_nistz256_sqr_mont(res, res);
202   }
203   ecp_nistz256_mul_mont(res, res, p8);
204 
205   ecp_nistz256_sqr_mont(res, res);
206   ecp_nistz256_sqr_mont(res, res);
207   ecp_nistz256_sqr_mont(res, res);
208   ecp_nistz256_sqr_mont(res, res);
209   ecp_nistz256_mul_mont(res, res, p4);
210 
211   ecp_nistz256_sqr_mont(res, res);
212   ecp_nistz256_sqr_mont(res, res);
213   ecp_nistz256_mul_mont(res, res, p2);
214 
215   ecp_nistz256_sqr_mont(res, res);
216   ecp_nistz256_sqr_mont(res, res);
217   ecp_nistz256_mul_mont(res, res, in);
218 
219   memcpy(r, res, sizeof(res));
220 }
221 
222 /* ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
223  * returns one if it fits. Otherwise it returns zero. */
ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],const BIGNUM * in)224 static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
225                                              const BIGNUM *in) {
226   if (in->top > P256_LIMBS) {
227     return 0;
228   }
229 
230   memset(out, 0, sizeof(BN_ULONG) * P256_LIMBS);
231   memcpy(out, in->d, sizeof(BN_ULONG) * in->top);
232   return 1;
233 }
234 
235 /* r = p * p_scalar */
ecp_nistz256_windowed_mul(const EC_GROUP * group,P256_POINT * r,const EC_POINT * p,const BIGNUM * p_scalar,BN_CTX * ctx)236 static int ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
237                                      const EC_POINT *p, const BIGNUM *p_scalar,
238                                      BN_CTX *ctx) {
239   assert(p != NULL);
240   assert(p_scalar != NULL);
241 
242   static const unsigned kWindowSize = 5;
243   static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
244 
245   /* A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
246    * add no more than 63 bytes of overhead. Thus, |table| should require
247    * ~1599 ((96 * 16) + 63) bytes of stack space. */
248   ALIGN(64) P256_POINT table[16];
249   uint8_t p_str[33];
250 
251 
252   int ret = 0;
253   BN_CTX *new_ctx = NULL;
254   int ctx_started = 0;
255 
256   if (BN_num_bits(p_scalar) > 256 || BN_is_negative(p_scalar)) {
257     if (ctx == NULL) {
258       new_ctx = BN_CTX_new();
259       if (new_ctx == NULL) {
260         OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
261         goto err;
262       }
263       ctx = new_ctx;
264     }
265     BN_CTX_start(ctx);
266     ctx_started = 1;
267     BIGNUM *mod = BN_CTX_get(ctx);
268     if (mod == NULL) {
269       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
270       goto err;
271     }
272     if (!BN_nnmod(mod, p_scalar, &group->order, ctx)) {
273       OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
274       goto err;
275     }
276     p_scalar = mod;
277   }
278 
279   int j;
280   for (j = 0; j < p_scalar->top * BN_BYTES; j += BN_BYTES) {
281     BN_ULONG d = p_scalar->d[j / BN_BYTES];
282 
283     p_str[j + 0] = d & 0xff;
284     p_str[j + 1] = (d >> 8) & 0xff;
285     p_str[j + 2] = (d >> 16) & 0xff;
286     p_str[j + 3] = (d >>= 24) & 0xff;
287     if (BN_BYTES == 8) {
288       d >>= 8;
289       p_str[j + 4] = d & 0xff;
290       p_str[j + 5] = (d >> 8) & 0xff;
291       p_str[j + 6] = (d >> 16) & 0xff;
292       p_str[j + 7] = (d >> 24) & 0xff;
293     }
294   }
295 
296   for (; j < 33; j++) {
297     p_str[j] = 0;
298   }
299 
300   /* table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
301    * not stored. All other values are actually stored with an offset of -1 in
302    * table. */
303   P256_POINT *row = table;
304 
305   if (!ecp_nistz256_bignum_to_field_elem(row[1 - 1].X, &p->X) ||
306       !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Y, &p->Y) ||
307       !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Z, &p->Z)) {
308     OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
309     goto err;
310   }
311 
312   ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
313   ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
314   ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
315   ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
316   ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
317   ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
318   ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
319   ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
320   ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
321   ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
322   ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
323   ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
324   ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
325   ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
326   ecp_nistz256_point_add(&row[16 - 1], &row[15 - 1], &row[1 - 1]);
327 
328   BN_ULONG tmp[P256_LIMBS];
329   ALIGN(32) P256_POINT h;
330   unsigned index = 255;
331   unsigned wvalue = p_str[(index - 1) / 8];
332   wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
333 
334   ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
335 
336   while (index >= 5) {
337     if (index != 255) {
338       unsigned off = (index - 1) / 8;
339 
340       wvalue = p_str[off] | p_str[off + 1] << 8;
341       wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
342 
343       wvalue = booth_recode_w5(wvalue);
344 
345       ecp_nistz256_select_w5(&h, table, wvalue >> 1);
346 
347       ecp_nistz256_neg(tmp, h.Y);
348       copy_conditional(h.Y, tmp, (wvalue & 1));
349 
350       ecp_nistz256_point_add(r, r, &h);
351     }
352 
353     index -= kWindowSize;
354 
355     ecp_nistz256_point_double(r, r);
356     ecp_nistz256_point_double(r, r);
357     ecp_nistz256_point_double(r, r);
358     ecp_nistz256_point_double(r, r);
359     ecp_nistz256_point_double(r, r);
360   }
361 
362   /* Final window */
363   wvalue = p_str[0];
364   wvalue = (wvalue << 1) & kMask;
365 
366   wvalue = booth_recode_w5(wvalue);
367 
368   ecp_nistz256_select_w5(&h, table, wvalue >> 1);
369 
370   ecp_nistz256_neg(tmp, h.Y);
371   copy_conditional(h.Y, tmp, wvalue & 1);
372 
373   ecp_nistz256_point_add(r, r, &h);
374 
375   ret = 1;
376 
377 err:
378   if (ctx_started) {
379     BN_CTX_end(ctx);
380   }
381   BN_CTX_free(new_ctx);
382   return ret;
383 }
384 
ecp_nistz256_points_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * g_scalar,const EC_POINT * p_,const BIGNUM * p_scalar,BN_CTX * ctx)385 static int ecp_nistz256_points_mul(
386     const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
387     const EC_POINT *p_, const BIGNUM *p_scalar, BN_CTX *ctx) {
388   assert((p_ != NULL) == (p_scalar != NULL));
389 
390   static const unsigned kWindowSize = 7;
391   static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
392 
393   ALIGN(32) union {
394     P256_POINT p;
395     P256_POINT_AFFINE a;
396   } t, p;
397 
398   int ret = 0;
399   BN_CTX *new_ctx = NULL;
400   int ctx_started = 0;
401 
402   /* Need 256 bits for space for all coordinates. */
403   if (bn_wexpand(&r->X, P256_LIMBS) == NULL ||
404       bn_wexpand(&r->Y, P256_LIMBS) == NULL ||
405       bn_wexpand(&r->Z, P256_LIMBS) == NULL) {
406     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
407     goto err;
408   }
409   r->X.top = P256_LIMBS;
410   r->Y.top = P256_LIMBS;
411   r->Z.top = P256_LIMBS;
412 
413   if (g_scalar != NULL) {
414     if (BN_num_bits(g_scalar) > 256 || BN_is_negative(g_scalar)) {
415       if (ctx == NULL) {
416         new_ctx = BN_CTX_new();
417         if (new_ctx == NULL) {
418           goto err;
419         }
420         ctx = new_ctx;
421       }
422       BN_CTX_start(ctx);
423       ctx_started = 1;
424       BIGNUM *tmp_scalar = BN_CTX_get(ctx);
425       if (tmp_scalar == NULL) {
426         goto err;
427       }
428 
429       if (!BN_nnmod(tmp_scalar, g_scalar, &group->order, ctx)) {
430         OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
431         goto err;
432       }
433       g_scalar = tmp_scalar;
434     }
435 
436     uint8_t p_str[33] = {0};
437     int i;
438     for (i = 0; i < g_scalar->top * BN_BYTES; i += BN_BYTES) {
439       BN_ULONG d = g_scalar->d[i / BN_BYTES];
440 
441       p_str[i + 0] = d & 0xff;
442       p_str[i + 1] = (d >> 8) & 0xff;
443       p_str[i + 2] = (d >> 16) & 0xff;
444       p_str[i + 3] = (d >>= 24) & 0xff;
445       if (BN_BYTES == 8) {
446         d >>= 8;
447         p_str[i + 4] = d & 0xff;
448         p_str[i + 5] = (d >> 8) & 0xff;
449         p_str[i + 6] = (d >> 16) & 0xff;
450         p_str[i + 7] = (d >> 24) & 0xff;
451       }
452     }
453 
454     for (; i < (int) sizeof(p_str); i++) {
455       p_str[i] = 0;
456     }
457 
458     /* First window */
459     unsigned wvalue = (p_str[0] << 1) & kMask;
460     unsigned index = kWindowSize;
461 
462     wvalue = booth_recode_w7(wvalue);
463 
464     const PRECOMP256_ROW *const precomputed_table =
465         (const PRECOMP256_ROW *)ecp_nistz256_precomputed;
466     ecp_nistz256_select_w7(&p.a, precomputed_table[0], wvalue >> 1);
467 
468     ecp_nistz256_neg(p.p.Z, p.p.Y);
469     copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
470 
471     memcpy(p.p.Z, ONE, sizeof(ONE));
472 
473     for (i = 1; i < 37; i++) {
474       unsigned off = (index - 1) / 8;
475       wvalue = p_str[off] | p_str[off + 1] << 8;
476       wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
477       index += kWindowSize;
478 
479       wvalue = booth_recode_w7(wvalue);
480 
481       ecp_nistz256_select_w7(&t.a, precomputed_table[i], wvalue >> 1);
482 
483       ecp_nistz256_neg(t.p.Z, t.a.Y);
484       copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
485 
486       ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
487     }
488   }
489 
490   const int p_is_infinity = g_scalar == NULL;
491   if (p_scalar != NULL) {
492     P256_POINT *out = &t.p;
493     if (p_is_infinity) {
494       out = &p.p;
495     }
496 
497     if (!ecp_nistz256_windowed_mul(group, out, p_, p_scalar, ctx)) {
498       goto err;
499     }
500 
501     if (!p_is_infinity) {
502       ecp_nistz256_point_add(&p.p, &p.p, out);
503     }
504   }
505 
506   memcpy(r->X.d, p.p.X, sizeof(p.p.X));
507   memcpy(r->Y.d, p.p.Y, sizeof(p.p.Y));
508   memcpy(r->Z.d, p.p.Z, sizeof(p.p.Z));
509 
510   /* Not constant-time, but we're only operating on the public output. */
511   bn_correct_top(&r->X);
512   bn_correct_top(&r->Y);
513   bn_correct_top(&r->Z);
514   r->Z_is_one = BN_is_one(&r->Z);
515 
516   ret = 1;
517 
518 err:
519   if (ctx_started) {
520     BN_CTX_end(ctx);
521   }
522   BN_CTX_free(new_ctx);
523   return ret;
524 }
525 
ecp_nistz256_get_affine(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)526 static int ecp_nistz256_get_affine(const EC_GROUP *group, const EC_POINT *point,
527                                    BIGNUM *x, BIGNUM *y, BN_CTX *ctx) {
528   BN_ULONG z_inv2[P256_LIMBS];
529   BN_ULONG z_inv3[P256_LIMBS];
530   BN_ULONG x_aff[P256_LIMBS];
531   BN_ULONG y_aff[P256_LIMBS];
532   BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
533 
534   if (EC_POINT_is_at_infinity(group, point)) {
535     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
536     return 0;
537   }
538 
539   if (!ecp_nistz256_bignum_to_field_elem(point_x, &point->X) ||
540       !ecp_nistz256_bignum_to_field_elem(point_y, &point->Y) ||
541       !ecp_nistz256_bignum_to_field_elem(point_z, &point->Z)) {
542     OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
543     return 0;
544   }
545 
546   ecp_nistz256_mod_inverse(z_inv3, point_z);
547   ecp_nistz256_sqr_mont(z_inv2, z_inv3);
548   ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
549 
550   if (x != NULL) {
551     if (bn_wexpand(x, P256_LIMBS) == NULL) {
552       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
553       return 0;
554     }
555     x->top = P256_LIMBS;
556     ecp_nistz256_from_mont(x->d, x_aff);
557     bn_correct_top(x);
558   }
559 
560   if (y != NULL) {
561     ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
562     ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
563     if (bn_wexpand(y, P256_LIMBS) == NULL) {
564       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
565       return 0;
566     }
567     y->top = P256_LIMBS;
568     ecp_nistz256_from_mont(y->d, y_aff);
569     bn_correct_top(y);
570   }
571 
572   return 1;
573 }
574 
EC_GFp_nistz256_method(void)575 const EC_METHOD *EC_GFp_nistz256_method(void) {
576   static const EC_METHOD ret = {
577       ec_GFp_mont_group_init,
578       ec_GFp_mont_group_finish,
579       ec_GFp_mont_group_clear_finish,
580       ec_GFp_mont_group_copy,
581       ec_GFp_mont_group_set_curve,
582       ecp_nistz256_get_affine,
583       ecp_nistz256_points_mul,
584       0 /* check_pub_key_order */,
585       ec_GFp_mont_field_mul,
586       ec_GFp_mont_field_sqr,
587       ec_GFp_mont_field_encode,
588       ec_GFp_mont_field_decode,
589       ec_GFp_mont_field_set_to_one,
590   };
591 
592   return &ret;
593 }
594 
595 #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
596           !defined(OPENSSL_SMALL) */
597