1 2 /*--------------------------------------------------------------------*/ 3 /*--- Machine-related stuff. pub_tool_machine.h ---*/ 4 /*--------------------------------------------------------------------*/ 5 6 /* 7 This file is part of Valgrind, a dynamic binary instrumentation 8 framework. 9 10 Copyright (C) 2000-2015 Julian Seward 11 jseward@acm.org 12 13 This program is free software; you can redistribute it and/or 14 modify it under the terms of the GNU General Public License as 15 published by the Free Software Foundation; either version 2 of the 16 License, or (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, but 19 WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 26 02111-1307, USA. 27 28 The GNU General Public License is contained in the file COPYING. 29 */ 30 31 #ifndef __PUB_TOOL_MACHINE_H 32 #define __PUB_TOOL_MACHINE_H 33 34 #include "pub_tool_basics.h" // ThreadID 35 #include "libvex.h" // VexArchInfo 36 37 #if defined(VGP_x86_linux) || defined(VGP_x86_solaris) 38 # define VG_MIN_INSTR_SZB 1 // min length of native instruction 39 # define VG_MAX_INSTR_SZB 16 // max length of native instruction 40 # define VG_CLREQ_SZB 14 // length of a client request, may 41 // be larger than VG_MAX_INSTR_SZB 42 # define VG_STACK_REDZONE_SZB 0 // number of addressable bytes below %RSP 43 44 #elif defined(VGP_amd64_linux) || defined(VGP_amd64_solaris) 45 # define VG_MIN_INSTR_SZB 1 46 # define VG_MAX_INSTR_SZB 16 47 # define VG_CLREQ_SZB 19 48 # define VG_STACK_REDZONE_SZB 128 49 50 #elif defined(VGP_ppc32_linux) 51 # define VG_MIN_INSTR_SZB 4 52 # define VG_MAX_INSTR_SZB 4 53 # define VG_CLREQ_SZB 20 54 # define VG_STACK_REDZONE_SZB 0 55 56 #elif defined(VGP_ppc64be_linux) || defined(VGP_ppc64le_linux) 57 # define VG_MIN_INSTR_SZB 4 58 # define VG_MAX_INSTR_SZB 4 59 # define VG_CLREQ_SZB 20 60 # define VG_STACK_REDZONE_SZB 288 // number of addressable bytes below R1 61 // from 64-bit PowerPC ELF ABI 62 // Supplement 1.7 63 64 #elif defined(VGP_arm_linux) 65 # define VG_MIN_INSTR_SZB 2 66 # define VG_MAX_INSTR_SZB 4 67 # define VG_CLREQ_SZB 20 68 # define VG_STACK_REDZONE_SZB 0 69 70 #elif defined(VGP_arm64_linux) 71 # define VG_MIN_INSTR_SZB 4 72 # define VG_MAX_INSTR_SZB 4 73 # define VG_CLREQ_SZB 20 74 # define VG_STACK_REDZONE_SZB 0 75 76 #elif defined(VGP_s390x_linux) 77 # define VG_MIN_INSTR_SZB 2 78 # define VG_MAX_INSTR_SZB 6 79 # define VG_CLREQ_SZB 10 80 # define VG_STACK_REDZONE_SZB 0 // s390 has no redzone 81 82 #elif defined(VGP_x86_darwin) 83 # define VG_MIN_INSTR_SZB 1 // min length of native instruction 84 # define VG_MAX_INSTR_SZB 16 // max length of native instruction 85 # define VG_CLREQ_SZB 14 // length of a client request, may 86 // be larger than VG_MAX_INSTR_SZB 87 # define VG_STACK_REDZONE_SZB 0 // number of addressable bytes below %RSP 88 89 #elif defined(VGP_amd64_darwin) 90 # define VG_MIN_INSTR_SZB 1 91 # define VG_MAX_INSTR_SZB 16 92 # define VG_CLREQ_SZB 19 93 # define VG_STACK_REDZONE_SZB 128 94 95 #elif defined(VGP_mips32_linux) 96 # define VG_MIN_INSTR_SZB 4 97 # define VG_MAX_INSTR_SZB 4 98 # define VG_CLREQ_SZB 20 99 # define VG_STACK_REDZONE_SZB 0 100 101 #elif defined(VGP_mips64_linux) 102 # define VG_MIN_INSTR_SZB 4 103 # define VG_MAX_INSTR_SZB 4 104 # define VG_CLREQ_SZB 20 105 # define VG_STACK_REDZONE_SZB 0 106 107 #elif defined(VGP_tilegx_linux) 108 # define VG_MIN_INSTR_SZB 8 109 # define VG_MAX_INSTR_SZB 8 110 # define VG_CLREQ_SZB 24 111 # define VG_STACK_REDZONE_SZB 0 112 113 #else 114 # error Unknown platform 115 #endif 116 117 // Guest state accessors 118 // Are mostly in the core_ header. 119 // Only these two are available to tools. 120 Addr VG_(get_IP) ( ThreadId tid ); 121 Addr VG_(get_SP) ( ThreadId tid ); 122 123 124 // For get/set, 'area' is where the asked-for guest state will be copied 125 // into/from. If shadowNo == 0, the real (non-shadow) guest state is 126 // accessed. If shadowNo == 1, the first shadow area is accessed, and 127 // if shadowNo == 2, the second shadow area is accessed. This gives a 128 // completely general way to read/modify a thread's guest register state 129 // providing you know the offsets you need. 130 void 131 VG_(get_shadow_regs_area) ( ThreadId tid, 132 /*DST*/UChar* dst, 133 /*SRC*/Int shadowNo, PtrdiffT offset, SizeT size ); 134 void 135 VG_(set_shadow_regs_area) ( ThreadId tid, 136 /*DST*/Int shadowNo, PtrdiffT offset, SizeT size, 137 /*SRC*/const UChar* src ); 138 139 // Apply a function 'f' to all the general purpose registers in all the 140 // current threads. This is all live threads, or (when the process is exiting) 141 // all threads that were instructed to die by the thread calling exit. 142 // This is very Memcheck-specific -- it's used to find the roots when 143 // doing leak checking. 144 extern void VG_(apply_to_GP_regs)(void (*f)(ThreadId tid, 145 const HChar* regname, UWord val)); 146 147 // This iterator lets you inspect each live thread's stack bounds. 148 // Returns False at the end. 'tid' is the iterator and you can only 149 // safely change it by making calls to these functions. 150 extern void VG_(thread_stack_reset_iter) ( /*OUT*/ThreadId* tid ); 151 // stack_min is the address of the lowest stack byte, 152 // stack_max is the address of the highest stack byte. 153 // In other words, the live stack is [stack_min, stack_max]. 154 extern Bool VG_(thread_stack_next) ( /*MOD*/ThreadId* tid, 155 /*OUT*/Addr* stack_min, 156 /*OUT*/Addr* stack_max ); 157 158 // Returns .client_stack_highest_byte for the given thread 159 // i.e. the highest addressable byte of the stack. 160 extern Addr VG_(thread_get_stack_max) ( ThreadId tid ); 161 162 // Returns how many bytes have been allocated for the stack of the given thread 163 extern SizeT VG_(thread_get_stack_size) ( ThreadId tid ); 164 165 // Returns the lowest address of the alternate signal stack. 166 // See also the man page of sigaltstack(). 167 extern Addr VG_(thread_get_altstack_min) ( ThreadId tid ); 168 169 // Returns how many bytes have been allocated for the alternate signal stack. 170 // See also the man page of sigaltstack(). 171 extern SizeT VG_(thread_get_altstack_size) ( ThreadId tid ); 172 173 // Given a pointer to a function as obtained by "& functionname" in C, 174 // produce a pointer to the actual entry point for the function. For 175 // most platforms it's the identity function. Unfortunately, on 176 // ppc64-linux it isn't (sigh). 177 extern void* VG_(fnptr_to_fnentry)( void* ); 178 179 /* Returns the size of the largest guest register that we will 180 simulate in this run. This depends on both the guest architecture 181 and on the specific capabilities we are simulating for that guest 182 (eg, AVX or non-AVX ?, for amd64). */ 183 extern Int VG_(machine_get_size_of_largest_guest_register) ( void ); 184 185 /* Return host cpu info. */ 186 extern void VG_(machine_get_VexArchInfo)( /*OUT*/VexArch*, 187 /*OUT*/VexArchInfo* ); 188 189 #endif // __PUB_TOOL_MACHINE_H 190 191 /*--------------------------------------------------------------------*/ 192 /*--- end ---*/ 193 /*--------------------------------------------------------------------*/ 194