• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
6 // Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 #include "sparse.h"
13 
sparse_basic(const SparseMatrixType & ref)14 template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
15 {
16   typedef typename SparseMatrixType::Index Index;
17   typedef Matrix<Index,2,1> Vector2;
18 
19   const Index rows = ref.rows();
20   const Index cols = ref.cols();
21   typedef typename SparseMatrixType::Scalar Scalar;
22   enum { Flags = SparseMatrixType::Flags };
23 
24   double density = (std::max)(8./(rows*cols), 0.01);
25   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
26   typedef Matrix<Scalar,Dynamic,1> DenseVector;
27   typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
28   Scalar eps = 1e-6;
29 
30   Scalar s1 = internal::random<Scalar>();
31   {
32     SparseMatrixType m(rows, cols);
33     DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
34     DenseVector vec1 = DenseVector::Random(rows);
35 
36     std::vector<Vector2> zeroCoords;
37     std::vector<Vector2> nonzeroCoords;
38     initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
39 
40     if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
41       return;
42 
43     // test coeff and coeffRef
44     for (int i=0; i<(int)zeroCoords.size(); ++i)
45     {
46       VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
47       if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
48         VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
49     }
50     VERIFY_IS_APPROX(m, refMat);
51 
52     m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
53     refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
54 
55     VERIFY_IS_APPROX(m, refMat);
56 
57       // test InnerIterators and Block expressions
58       for (int t=0; t<10; ++t)
59       {
60         int j = internal::random<int>(0,cols-1);
61         int i = internal::random<int>(0,rows-1);
62         int w = internal::random<int>(1,cols-j-1);
63         int h = internal::random<int>(1,rows-i-1);
64 
65         VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
66         for(int c=0; c<w; c++)
67         {
68           VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
69           for(int r=0; r<h; r++)
70           {
71             VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
72             VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
73           }
74         }
75         for(int r=0; r<h; r++)
76         {
77           VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
78           for(int c=0; c<w; c++)
79           {
80             VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
81             VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
82           }
83         }
84 
85         VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w));
86         VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h));
87         for(int r=0; r<h; r++)
88         {
89           VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r));
90           VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r));
91           for(int c=0; c<w; c++)
92           {
93             VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r));
94             VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c));
95 
96             VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c));
97             VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
98             if(m.middleCols(j,w).coeff(r,c) != Scalar(0))
99             {
100               VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c));
101             }
102             if(m.middleRows(i,h).coeff(r,c) != Scalar(0))
103             {
104               VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
105             }
106           }
107         }
108         for(int c=0; c<w; c++)
109         {
110           VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c));
111           VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c));
112         }
113       }
114 
115       for(int c=0; c<cols; c++)
116       {
117         VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
118         VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
119       }
120 
121       for(int r=0; r<rows; r++)
122       {
123         VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
124         VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
125       }
126 
127 
128       // test assertion
129       VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
130       VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
131     }
132 
133     // test insert (inner random)
134     {
135       DenseMatrix m1(rows,cols);
136       m1.setZero();
137       SparseMatrixType m2(rows,cols);
138       if(internal::random<int>()%2)
139         m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
140       for (Index j=0; j<cols; ++j)
141       {
142         for (Index k=0; k<rows/2; ++k)
143         {
144           Index i = internal::random<Index>(0,rows-1);
145           if (m1.coeff(i,j)==Scalar(0))
146             m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
147         }
148       }
149       m2.finalize();
150       VERIFY_IS_APPROX(m2,m1);
151     }
152 
153     // test insert (fully random)
154     {
155       DenseMatrix m1(rows,cols);
156       m1.setZero();
157       SparseMatrixType m2(rows,cols);
158       if(internal::random<int>()%2)
159         m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
160       for (int k=0; k<rows*cols; ++k)
161       {
162         Index i = internal::random<Index>(0,rows-1);
163         Index j = internal::random<Index>(0,cols-1);
164         if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
165           m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
166         else
167         {
168           Scalar v = internal::random<Scalar>();
169           m2.coeffRef(i,j) += v;
170           m1(i,j) += v;
171         }
172       }
173       VERIFY_IS_APPROX(m2,m1);
174     }
175 
176     // test insert (un-compressed)
177     for(int mode=0;mode<4;++mode)
178     {
179       DenseMatrix m1(rows,cols);
180       m1.setZero();
181       SparseMatrixType m2(rows,cols);
182       VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? m2.innerSize() : std::max<int>(1,m2.innerSize()/8)));
183       m2.reserve(r);
184       for (int k=0; k<rows*cols; ++k)
185       {
186         Index i = internal::random<Index>(0,rows-1);
187         Index j = internal::random<Index>(0,cols-1);
188         if (m1.coeff(i,j)==Scalar(0))
189           m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
190         if(mode==3)
191           m2.reserve(r);
192       }
193       if(internal::random<int>()%2)
194         m2.makeCompressed();
195       VERIFY_IS_APPROX(m2,m1);
196     }
197 
198   // test innerVector()
199   {
200     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
201     SparseMatrixType m2(rows, rows);
202     initSparse<Scalar>(density, refMat2, m2);
203     Index j0 = internal::random<Index>(0,rows-1);
204     Index j1 = internal::random<Index>(0,rows-1);
205     if(SparseMatrixType::IsRowMajor)
206       VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.row(j0));
207     else
208       VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
209 
210     if(SparseMatrixType::IsRowMajor)
211       VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.row(j0)+refMat2.row(j1));
212     else
213       VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
214 
215     SparseMatrixType m3(rows,rows);
216     m3.reserve(VectorXi::Constant(rows,rows/2));
217     for(Index j=0; j<rows; ++j)
218       for(Index k=0; k<j; ++k)
219         m3.insertByOuterInner(j,k) = k+1;
220     for(Index j=0; j<rows; ++j)
221     {
222       VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
223       if(j>0)
224         VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
225     }
226     m3.makeCompressed();
227     for(Index j=0; j<rows; ++j)
228     {
229       VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
230       if(j>0)
231         VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
232     }
233 
234     //m2.innerVector(j0) = 2*m2.innerVector(j1);
235     //refMat2.col(j0) = 2*refMat2.col(j1);
236     //VERIFY_IS_APPROX(m2, refMat2);
237   }
238 
239   // test innerVectors()
240   {
241     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
242     SparseMatrixType m2(rows, rows);
243     initSparse<Scalar>(density, refMat2, m2);
244     if(internal::random<float>(0,1)>0.5) m2.makeCompressed();
245 
246     Index j0 = internal::random<Index>(0,rows-2);
247     Index j1 = internal::random<Index>(0,rows-2);
248     Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1));
249     if(SparseMatrixType::IsRowMajor)
250       VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols));
251     else
252       VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
253     if(SparseMatrixType::IsRowMajor)
254       VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
255                        refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0));
256     else
257       VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
258                       refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
259 
260     VERIFY_IS_APPROX(m2, refMat2);
261 
262     m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
263     if(SparseMatrixType::IsRowMajor)
264       refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval();
265     else
266       refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval();
267 
268     VERIFY_IS_APPROX(m2, refMat2);
269 
270   }
271 
272   // test basic computations
273   {
274     DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
275     DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
276     DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
277     DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
278     SparseMatrixType m1(rows, rows);
279     SparseMatrixType m2(rows, rows);
280     SparseMatrixType m3(rows, rows);
281     SparseMatrixType m4(rows, rows);
282     initSparse<Scalar>(density, refM1, m1);
283     initSparse<Scalar>(density, refM2, m2);
284     initSparse<Scalar>(density, refM3, m3);
285     initSparse<Scalar>(density, refM4, m4);
286 
287     VERIFY_IS_APPROX(m1+m2, refM1+refM2);
288     VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
289     VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
290     VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
291 
292     VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
293     VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
294 
295     VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
296     VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
297 
298     if(SparseMatrixType::IsRowMajor)
299       VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
300     else
301       VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0)));
302 
303     VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
304     VERIFY_IS_APPROX(m1.real(), refM1.real());
305 
306     refM4.setRandom();
307     // sparse cwise* dense
308     VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
309 //     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
310 
311     // test aliasing
312     VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
313     VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
314     VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
315     VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
316   }
317 
318   // test transpose
319   {
320     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
321     SparseMatrixType m2(rows, rows);
322     initSparse<Scalar>(density, refMat2, m2);
323     VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
324     VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
325 
326     VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
327   }
328 
329 
330 
331   // test generic blocks
332   {
333     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
334     SparseMatrixType m2(rows, rows);
335     initSparse<Scalar>(density, refMat2, m2);
336     Index j0 = internal::random<Index>(0,rows-2);
337     Index j1 = internal::random<Index>(0,rows-2);
338     Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1));
339     if(SparseMatrixType::IsRowMajor)
340       VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols));
341     else
342       VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0));
343 
344     if(SparseMatrixType::IsRowMajor)
345       VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols),
346                       refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols));
347     else
348       VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0),
349                       refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
350 
351     Index i = internal::random<Index>(0,m2.outerSize()-1);
352     if(SparseMatrixType::IsRowMajor) {
353       m2.innerVector(i) = m2.innerVector(i) * s1;
354       refMat2.row(i) = refMat2.row(i) * s1;
355       VERIFY_IS_APPROX(m2,refMat2);
356     } else {
357       m2.innerVector(i) = m2.innerVector(i) * s1;
358       refMat2.col(i) = refMat2.col(i) * s1;
359       VERIFY_IS_APPROX(m2,refMat2);
360     }
361 
362     VERIFY_IS_APPROX(DenseVector(m2.col(j0)), refMat2.col(j0));
363     VERIFY_IS_APPROX(m2.col(j0), refMat2.col(j0));
364 
365     VERIFY_IS_APPROX(RowDenseVector(m2.row(j0)), refMat2.row(j0));
366     VERIFY_IS_APPROX(m2.row(j0), refMat2.row(j0));
367 
368     VERIFY_IS_APPROX(m2.block(j0,j1,n0,n0), refMat2.block(j0,j1,n0,n0));
369     VERIFY_IS_APPROX((2*m2).block(j0,j1,n0,n0), (2*refMat2).block(j0,j1,n0,n0));
370   }
371 
372   // test prune
373   {
374     SparseMatrixType m2(rows, rows);
375     DenseMatrix refM2(rows, rows);
376     refM2.setZero();
377     int countFalseNonZero = 0;
378     int countTrueNonZero = 0;
379     for (Index j=0; j<m2.outerSize(); ++j)
380     {
381       m2.startVec(j);
382       for (Index i=0; i<m2.innerSize(); ++i)
383       {
384         float x = internal::random<float>(0,1);
385         if (x<0.1)
386         {
387           // do nothing
388         }
389         else if (x<0.5)
390         {
391           countFalseNonZero++;
392           m2.insertBackByOuterInner(j,i) = Scalar(0);
393         }
394         else
395         {
396           countTrueNonZero++;
397           m2.insertBackByOuterInner(j,i) = Scalar(1);
398           if(SparseMatrixType::IsRowMajor)
399             refM2(j,i) = Scalar(1);
400           else
401             refM2(i,j) = Scalar(1);
402         }
403       }
404     }
405     m2.finalize();
406     VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
407     VERIFY_IS_APPROX(m2, refM2);
408     m2.prune(Scalar(1));
409     VERIFY(countTrueNonZero==m2.nonZeros());
410     VERIFY_IS_APPROX(m2, refM2);
411   }
412 
413   // test setFromTriplets
414   {
415     typedef Triplet<Scalar,Index> TripletType;
416     std::vector<TripletType> triplets;
417     int ntriplets = rows*cols;
418     triplets.reserve(ntriplets);
419     DenseMatrix refMat(rows,cols);
420     refMat.setZero();
421     for(int i=0;i<ntriplets;++i)
422     {
423       Index r = internal::random<Index>(0,rows-1);
424       Index c = internal::random<Index>(0,cols-1);
425       Scalar v = internal::random<Scalar>();
426       triplets.push_back(TripletType(r,c,v));
427       refMat(r,c) += v;
428     }
429     SparseMatrixType m(rows,cols);
430     m.setFromTriplets(triplets.begin(), triplets.end());
431     VERIFY_IS_APPROX(m, refMat);
432   }
433 
434   // test triangularView
435   {
436     DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
437     SparseMatrixType m2(rows, rows), m3(rows, rows);
438     initSparse<Scalar>(density, refMat2, m2);
439     refMat3 = refMat2.template triangularView<Lower>();
440     m3 = m2.template triangularView<Lower>();
441     VERIFY_IS_APPROX(m3, refMat3);
442 
443     refMat3 = refMat2.template triangularView<Upper>();
444     m3 = m2.template triangularView<Upper>();
445     VERIFY_IS_APPROX(m3, refMat3);
446 
447     refMat3 = refMat2.template triangularView<UnitUpper>();
448     m3 = m2.template triangularView<UnitUpper>();
449     VERIFY_IS_APPROX(m3, refMat3);
450 
451     refMat3 = refMat2.template triangularView<UnitLower>();
452     m3 = m2.template triangularView<UnitLower>();
453     VERIFY_IS_APPROX(m3, refMat3);
454 
455     refMat3 = refMat2.template triangularView<StrictlyUpper>();
456     m3 = m2.template triangularView<StrictlyUpper>();
457     VERIFY_IS_APPROX(m3, refMat3);
458 
459     refMat3 = refMat2.template triangularView<StrictlyLower>();
460     m3 = m2.template triangularView<StrictlyLower>();
461     VERIFY_IS_APPROX(m3, refMat3);
462   }
463 
464   // test selfadjointView
465   if(!SparseMatrixType::IsRowMajor)
466   {
467     DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
468     SparseMatrixType m2(rows, rows), m3(rows, rows);
469     initSparse<Scalar>(density, refMat2, m2);
470     refMat3 = refMat2.template selfadjointView<Lower>();
471     m3 = m2.template selfadjointView<Lower>();
472     VERIFY_IS_APPROX(m3, refMat3);
473   }
474 
475   // test sparseView
476   {
477     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
478     SparseMatrixType m2(rows, rows);
479     initSparse<Scalar>(density, refMat2, m2);
480     VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
481   }
482 
483   // test diagonal
484   {
485     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
486     SparseMatrixType m2(rows, rows);
487     initSparse<Scalar>(density, refMat2, m2);
488     VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
489   }
490 
491   // test conservative resize
492   {
493       std::vector< std::pair<Index,Index> > inc;
494       inc.push_back(std::pair<Index,Index>(-3,-2));
495       inc.push_back(std::pair<Index,Index>(0,0));
496       inc.push_back(std::pair<Index,Index>(3,2));
497       inc.push_back(std::pair<Index,Index>(3,0));
498       inc.push_back(std::pair<Index,Index>(0,3));
499 
500       for(size_t i = 0; i< inc.size(); i++) {
501         Index incRows = inc[i].first;
502         Index incCols = inc[i].second;
503         SparseMatrixType m1(rows, cols);
504         DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
505         initSparse<Scalar>(density, refMat1, m1);
506 
507         m1.conservativeResize(rows+incRows, cols+incCols);
508         refMat1.conservativeResize(rows+incRows, cols+incCols);
509         if (incRows > 0) refMat1.bottomRows(incRows).setZero();
510         if (incCols > 0) refMat1.rightCols(incCols).setZero();
511 
512         VERIFY_IS_APPROX(m1, refMat1);
513 
514         // Insert new values
515         if (incRows > 0)
516           m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
517         if (incCols > 0)
518           m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
519 
520         VERIFY_IS_APPROX(m1, refMat1);
521 
522 
523       }
524   }
525 
526   // test Identity matrix
527   {
528     DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
529     SparseMatrixType m1(rows, rows);
530     m1.setIdentity();
531     VERIFY_IS_APPROX(m1, refMat1);
532   }
533 }
534 
test_sparse_basic()535 void test_sparse_basic()
536 {
537   for(int i = 0; i < g_repeat; i++) {
538     int s = Eigen::internal::random<int>(1,50);
539     EIGEN_UNUSED_VARIABLE(s);
540     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
541     CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(s, s)) ));
542     CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(s, s)) ));
543     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(s, s)) ));
544     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,long int>(s, s)) ));
545     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,long int>(s, s)) ));
546 
547     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(s), short(s))) ));
548     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(s), short(s))) ));
549   }
550 }
551