• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_FUNCTORS_H
11 #define EIGEN_FUNCTORS_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 // associative functors:
18 
19 /** \internal
20   * \brief Template functor to compute the sum of two scalars
21   *
22   * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum()
23   */
24 template<typename Scalar> struct scalar_sum_op {
EIGEN_EMPTY_STRUCT_CTORscalar_sum_op25   EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
26   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
27   template<typename Packet>
packetOpscalar_sum_op28   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
29   { return internal::padd(a,b); }
30   template<typename Packet>
preduxscalar_sum_op31   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
32   { return internal::predux(a); }
33 };
34 template<typename Scalar>
35 struct functor_traits<scalar_sum_op<Scalar> > {
36   enum {
37     Cost = NumTraits<Scalar>::AddCost,
38     PacketAccess = packet_traits<Scalar>::HasAdd
39   };
40 };
41 
42 /** \internal
43   * \brief Template functor to compute the product of two scalars
44   *
45   * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
46   */
47 template<typename LhsScalar,typename RhsScalar> struct scalar_product_op {
48   enum {
49     // TODO vectorize mixed product
50     Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
51   };
52   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
53   EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
54   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
55   template<typename Packet>
56   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
57   { return internal::pmul(a,b); }
58   template<typename Packet>
59   EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
60   { return internal::predux_mul(a); }
61 };
62 template<typename LhsScalar,typename RhsScalar>
63 struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
64   enum {
65     Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
66     PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable
67   };
68 };
69 
70 /** \internal
71   * \brief Template functor to compute the conjugate product of two scalars
72   *
73   * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
74   */
75 template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op {
76 
77   enum {
78     Conj = NumTraits<LhsScalar>::IsComplex
79   };
80 
81   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
82 
83   EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
84   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
85   { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
86 
87   template<typename Packet>
88   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
89   { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
90 };
91 template<typename LhsScalar,typename RhsScalar>
92 struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
93   enum {
94     Cost = NumTraits<LhsScalar>::MulCost,
95     PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
96   };
97 };
98 
99 /** \internal
100   * \brief Template functor to compute the min of two scalars
101   *
102   * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
103   */
104 template<typename Scalar> struct scalar_min_op {
105   EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
106   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); }
107   template<typename Packet>
108   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
109   { return internal::pmin(a,b); }
110   template<typename Packet>
111   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
112   { return internal::predux_min(a); }
113 };
114 template<typename Scalar>
115 struct functor_traits<scalar_min_op<Scalar> > {
116   enum {
117     Cost = NumTraits<Scalar>::AddCost,
118     PacketAccess = packet_traits<Scalar>::HasMin
119   };
120 };
121 
122 /** \internal
123   * \brief Template functor to compute the max of two scalars
124   *
125   * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
126   */
127 template<typename Scalar> struct scalar_max_op {
128   EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
129   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); }
130   template<typename Packet>
131   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
132   { return internal::pmax(a,b); }
133   template<typename Packet>
134   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
135   { return internal::predux_max(a); }
136 };
137 template<typename Scalar>
138 struct functor_traits<scalar_max_op<Scalar> > {
139   enum {
140     Cost = NumTraits<Scalar>::AddCost,
141     PacketAccess = packet_traits<Scalar>::HasMax
142   };
143 };
144 
145 /** \internal
146   * \brief Template functor to compute the hypot of two scalars
147   *
148   * \sa MatrixBase::stableNorm(), class Redux
149   */
150 template<typename Scalar> struct scalar_hypot_op {
151   EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
152 //   typedef typename NumTraits<Scalar>::Real result_type;
153   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
154   {
155     using std::max;
156     using std::min;
157     using std::sqrt;
158     Scalar p = (max)(_x, _y);
159     Scalar q = (min)(_x, _y);
160     Scalar qp = q/p;
161     return p * sqrt(Scalar(1) + qp*qp);
162   }
163 };
164 template<typename Scalar>
165 struct functor_traits<scalar_hypot_op<Scalar> > {
166   enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
167 };
168 
169 /** \internal
170   * \brief Template functor to compute the pow of two scalars
171   */
172 template<typename Scalar, typename OtherScalar> struct scalar_binary_pow_op {
173   EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op)
174   inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return numext::pow(a, b); }
175 };
176 template<typename Scalar, typename OtherScalar>
177 struct functor_traits<scalar_binary_pow_op<Scalar,OtherScalar> > {
178   enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
179 };
180 
181 // other binary functors:
182 
183 /** \internal
184   * \brief Template functor to compute the difference of two scalars
185   *
186   * \sa class CwiseBinaryOp, MatrixBase::operator-
187   */
188 template<typename Scalar> struct scalar_difference_op {
189   EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
190   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
191   template<typename Packet>
192   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
193   { return internal::psub(a,b); }
194 };
195 template<typename Scalar>
196 struct functor_traits<scalar_difference_op<Scalar> > {
197   enum {
198     Cost = NumTraits<Scalar>::AddCost,
199     PacketAccess = packet_traits<Scalar>::HasSub
200   };
201 };
202 
203 /** \internal
204   * \brief Template functor to compute the quotient of two scalars
205   *
206   * \sa class CwiseBinaryOp, Cwise::operator/()
207   */
208 template<typename LhsScalar,typename RhsScalar> struct scalar_quotient_op {
209   enum {
210     // TODO vectorize mixed product
211     Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasDiv && packet_traits<RhsScalar>::HasDiv
212   };
213   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
214   EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
215   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; }
216   template<typename Packet>
217   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
218   { return internal::pdiv(a,b); }
219 };
220 template<typename LhsScalar,typename RhsScalar>
221 struct functor_traits<scalar_quotient_op<LhsScalar,RhsScalar> > {
222   enum {
223     Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost), // rough estimate!
224     PacketAccess = scalar_quotient_op<LhsScalar,RhsScalar>::Vectorizable
225   };
226 };
227 
228 
229 
230 /** \internal
231   * \brief Template functor to compute the and of two booleans
232   *
233   * \sa class CwiseBinaryOp, ArrayBase::operator&&
234   */
235 struct scalar_boolean_and_op {
236   EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op)
237   EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; }
238 };
239 template<> struct functor_traits<scalar_boolean_and_op> {
240   enum {
241     Cost = NumTraits<bool>::AddCost,
242     PacketAccess = false
243   };
244 };
245 
246 /** \internal
247   * \brief Template functor to compute the or of two booleans
248   *
249   * \sa class CwiseBinaryOp, ArrayBase::operator||
250   */
251 struct scalar_boolean_or_op {
252   EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op)
253   EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; }
254 };
255 template<> struct functor_traits<scalar_boolean_or_op> {
256   enum {
257     Cost = NumTraits<bool>::AddCost,
258     PacketAccess = false
259   };
260 };
261 
262 /** \internal
263   * \brief Template functors for comparison of two scalars
264   * \todo Implement packet-comparisons
265   */
266 template<typename Scalar, ComparisonName cmp> struct scalar_cmp_op;
267 
268 template<typename Scalar, ComparisonName cmp>
269 struct functor_traits<scalar_cmp_op<Scalar, cmp> > {
270   enum {
271     Cost = NumTraits<Scalar>::AddCost,
272     PacketAccess = false
273   };
274 };
275 
276 template<ComparisonName Cmp, typename Scalar>
277 struct result_of<scalar_cmp_op<Scalar, Cmp>(Scalar,Scalar)> {
278   typedef bool type;
279 };
280 
281 
282 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_EQ> {
283   EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
284   EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a==b;}
285 };
286 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_LT> {
287   EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
288   EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<b;}
289 };
290 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_LE> {
291   EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
292   EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<=b;}
293 };
294 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_UNORD> {
295   EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
296   EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return !(a<=b || b<=a);}
297 };
298 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_NEQ> {
299   EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
300   EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a!=b;}
301 };
302 
303 // unary functors:
304 
305 /** \internal
306   * \brief Template functor to compute the opposite of a scalar
307   *
308   * \sa class CwiseUnaryOp, MatrixBase::operator-
309   */
310 template<typename Scalar> struct scalar_opposite_op {
311   EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
312   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
313   template<typename Packet>
314   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
315   { return internal::pnegate(a); }
316 };
317 template<typename Scalar>
318 struct functor_traits<scalar_opposite_op<Scalar> >
319 { enum {
320     Cost = NumTraits<Scalar>::AddCost,
321     PacketAccess = packet_traits<Scalar>::HasNegate };
322 };
323 
324 /** \internal
325   * \brief Template functor to compute the absolute value of a scalar
326   *
327   * \sa class CwiseUnaryOp, Cwise::abs
328   */
329 template<typename Scalar> struct scalar_abs_op {
330   EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
331   typedef typename NumTraits<Scalar>::Real result_type;
332   EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using std::abs; return abs(a); }
333   template<typename Packet>
334   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
335   { return internal::pabs(a); }
336 };
337 template<typename Scalar>
338 struct functor_traits<scalar_abs_op<Scalar> >
339 {
340   enum {
341     Cost = NumTraits<Scalar>::AddCost,
342     PacketAccess = packet_traits<Scalar>::HasAbs
343   };
344 };
345 
346 /** \internal
347   * \brief Template functor to compute the squared absolute value of a scalar
348   *
349   * \sa class CwiseUnaryOp, Cwise::abs2
350   */
351 template<typename Scalar> struct scalar_abs2_op {
352   EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
353   typedef typename NumTraits<Scalar>::Real result_type;
354   EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); }
355   template<typename Packet>
356   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
357   { return internal::pmul(a,a); }
358 };
359 template<typename Scalar>
360 struct functor_traits<scalar_abs2_op<Scalar> >
361 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
362 
363 /** \internal
364   * \brief Template functor to compute the conjugate of a complex value
365   *
366   * \sa class CwiseUnaryOp, MatrixBase::conjugate()
367   */
368 template<typename Scalar> struct scalar_conjugate_op {
369   EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
370   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); }
371   template<typename Packet>
372   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
373 };
374 template<typename Scalar>
375 struct functor_traits<scalar_conjugate_op<Scalar> >
376 {
377   enum {
378     Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
379     PacketAccess = packet_traits<Scalar>::HasConj
380   };
381 };
382 
383 /** \internal
384   * \brief Template functor to cast a scalar to another type
385   *
386   * \sa class CwiseUnaryOp, MatrixBase::cast()
387   */
388 template<typename Scalar, typename NewType>
389 struct scalar_cast_op {
390   EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
391   typedef NewType result_type;
392   EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
393 };
394 template<typename Scalar, typename NewType>
395 struct functor_traits<scalar_cast_op<Scalar,NewType> >
396 { enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
397 
398 /** \internal
399   * \brief Template functor to extract the real part of a complex
400   *
401   * \sa class CwiseUnaryOp, MatrixBase::real()
402   */
403 template<typename Scalar>
404 struct scalar_real_op {
405   EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
406   typedef typename NumTraits<Scalar>::Real result_type;
407   EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); }
408 };
409 template<typename Scalar>
410 struct functor_traits<scalar_real_op<Scalar> >
411 { enum { Cost = 0, PacketAccess = false }; };
412 
413 /** \internal
414   * \brief Template functor to extract the imaginary part of a complex
415   *
416   * \sa class CwiseUnaryOp, MatrixBase::imag()
417   */
418 template<typename Scalar>
419 struct scalar_imag_op {
420   EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
421   typedef typename NumTraits<Scalar>::Real result_type;
422   EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); }
423 };
424 template<typename Scalar>
425 struct functor_traits<scalar_imag_op<Scalar> >
426 { enum { Cost = 0, PacketAccess = false }; };
427 
428 /** \internal
429   * \brief Template functor to extract the real part of a complex as a reference
430   *
431   * \sa class CwiseUnaryOp, MatrixBase::real()
432   */
433 template<typename Scalar>
434 struct scalar_real_ref_op {
435   EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
436   typedef typename NumTraits<Scalar>::Real result_type;
437   EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast<Scalar*>(&a)); }
438 };
439 template<typename Scalar>
440 struct functor_traits<scalar_real_ref_op<Scalar> >
441 { enum { Cost = 0, PacketAccess = false }; };
442 
443 /** \internal
444   * \brief Template functor to extract the imaginary part of a complex as a reference
445   *
446   * \sa class CwiseUnaryOp, MatrixBase::imag()
447   */
448 template<typename Scalar>
449 struct scalar_imag_ref_op {
450   EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
451   typedef typename NumTraits<Scalar>::Real result_type;
452   EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast<Scalar*>(&a)); }
453 };
454 template<typename Scalar>
455 struct functor_traits<scalar_imag_ref_op<Scalar> >
456 { enum { Cost = 0, PacketAccess = false }; };
457 
458 /** \internal
459   *
460   * \brief Template functor to compute the exponential of a scalar
461   *
462   * \sa class CwiseUnaryOp, Cwise::exp()
463   */
464 template<typename Scalar> struct scalar_exp_op {
465   EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
466   inline const Scalar operator() (const Scalar& a) const { using std::exp; return exp(a); }
467   typedef typename packet_traits<Scalar>::type Packet;
468   inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
469 };
470 template<typename Scalar>
471 struct functor_traits<scalar_exp_op<Scalar> >
472 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; };
473 
474 /** \internal
475   *
476   * \brief Template functor to compute the logarithm of a scalar
477   *
478   * \sa class CwiseUnaryOp, Cwise::log()
479   */
480 template<typename Scalar> struct scalar_log_op {
481   EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
482   inline const Scalar operator() (const Scalar& a) const { using std::log; return log(a); }
483   typedef typename packet_traits<Scalar>::type Packet;
484   inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
485 };
486 template<typename Scalar>
487 struct functor_traits<scalar_log_op<Scalar> >
488 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; };
489 
490 /** \internal
491   * \brief Template functor to multiply a scalar by a fixed other one
492   *
493   * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
494   */
495 /* NOTE why doing the pset1() in packetOp *is* an optimization ?
496  * indeed it seems better to declare m_other as a Packet and do the pset1() once
497  * in the constructor. However, in practice:
498  *  - GCC does not like m_other as a Packet and generate a load every time it needs it
499  *  - on the other hand GCC is able to moves the pset1() outside the loop :)
500  *  - simpler code ;)
501  * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
502  */
503 template<typename Scalar>
504 struct scalar_multiple_op {
505   typedef typename packet_traits<Scalar>::type Packet;
506   // FIXME default copy constructors seems bugged with std::complex<>
507   EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { }
508   EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { }
509   EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
510   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
511   { return internal::pmul(a, pset1<Packet>(m_other)); }
512   typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
513 };
514 template<typename Scalar>
515 struct functor_traits<scalar_multiple_op<Scalar> >
516 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
517 
518 template<typename Scalar1, typename Scalar2>
519 struct scalar_multiple2_op {
520   typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
521   EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { }
522   EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
523   EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
524   typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other;
525 };
526 template<typename Scalar1,typename Scalar2>
527 struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> >
528 { enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };
529 
530 /** \internal
531   * \brief Template functor to divide a scalar by a fixed other one
532   *
533   * This functor is used to implement the quotient of a matrix by
534   * a scalar where the scalar type is not necessarily a floating point type.
535   *
536   * \sa class CwiseUnaryOp, MatrixBase::operator/
537   */
538 template<typename Scalar>
539 struct scalar_quotient1_op {
540   typedef typename packet_traits<Scalar>::type Packet;
541   // FIXME default copy constructors seems bugged with std::complex<>
542   EIGEN_STRONG_INLINE scalar_quotient1_op(const scalar_quotient1_op& other) : m_other(other.m_other) { }
543   EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : m_other(other) {}
544   EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
545   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
546   { return internal::pdiv(a, pset1<Packet>(m_other)); }
547   typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
548 };
549 template<typename Scalar>
550 struct functor_traits<scalar_quotient1_op<Scalar> >
551 { enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
552 
553 // nullary functors
554 
555 template<typename Scalar>
556 struct scalar_constant_op {
557   typedef typename packet_traits<Scalar>::type Packet;
558   EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
559   EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
560   template<typename Index>
561   EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
562   template<typename Index>
563   EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); }
564   const Scalar m_other;
565 };
566 template<typename Scalar>
567 struct functor_traits<scalar_constant_op<Scalar> >
568 // FIXME replace this packet test by a safe one
569 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
570 
571 template<typename Scalar> struct scalar_identity_op {
572   EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
573   template<typename Index>
574   EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
575 };
576 template<typename Scalar>
577 struct functor_traits<scalar_identity_op<Scalar> >
578 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
579 
580 template <typename Scalar, bool RandomAccess> struct linspaced_op_impl;
581 
582 // linear access for packet ops:
583 // 1) initialization
584 //   base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
585 // 2) each step (where size is 1 for coeff access or PacketSize for packet access)
586 //   base += [size*step, ..., size*step]
587 //
588 // TODO: Perhaps it's better to initialize lazily (so not in the constructor but in packetOp)
589 //       in order to avoid the padd() in operator() ?
590 template <typename Scalar>
591 struct linspaced_op_impl<Scalar,false>
592 {
593   typedef typename packet_traits<Scalar>::type Packet;
594 
595   linspaced_op_impl(const Scalar& low, const Scalar& step) :
596   m_low(low), m_step(step),
597   m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)),
598   m_base(padd(pset1<Packet>(low), pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {}
599 
600   template<typename Index>
601   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const
602   {
603     m_base = padd(m_base, pset1<Packet>(m_step));
604     return m_low+Scalar(i)*m_step;
605   }
606 
607   template<typename Index>
608   EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); }
609 
610   const Scalar m_low;
611   const Scalar m_step;
612   const Packet m_packetStep;
613   mutable Packet m_base;
614 };
615 
616 // random access for packet ops:
617 // 1) each step
618 //   [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
619 template <typename Scalar>
620 struct linspaced_op_impl<Scalar,true>
621 {
622   typedef typename packet_traits<Scalar>::type Packet;
623 
624   linspaced_op_impl(const Scalar& low, const Scalar& step) :
625   m_low(low), m_step(step),
626   m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {}
627 
628   template<typename Index>
629   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
630 
631   template<typename Index>
632   EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
633   { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); }
634 
635   const Scalar m_low;
636   const Scalar m_step;
637   const Packet m_lowPacket;
638   const Packet m_stepPacket;
639   const Packet m_interPacket;
640 };
641 
642 // ----- Linspace functor ----------------------------------------------------------------
643 
644 // Forward declaration (we default to random access which does not really give
645 // us a speed gain when using packet access but it allows to use the functor in
646 // nested expressions).
647 template <typename Scalar, bool RandomAccess = true> struct linspaced_op;
648 template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> >
649 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; };
650 template <typename Scalar, bool RandomAccess> struct linspaced_op
651 {
652   typedef typename packet_traits<Scalar>::type Packet;
653   linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {}
654 
655   template<typename Index>
656   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
657 
658   // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
659   // there row==0 and col is used for the actual iteration.
660   template<typename Index>
661   EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const
662   {
663     eigen_assert(col==0 || row==0);
664     return impl(col + row);
665   }
666 
667   template<typename Index>
668   EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }
669 
670   // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
671   // there row==0 and col is used for the actual iteration.
672   template<typename Index>
673   EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
674   {
675     eigen_assert(col==0 || row==0);
676     return impl.packetOp(col + row);
677   }
678 
679   // This proxy object handles the actual required temporaries, the different
680   // implementations (random vs. sequential access) as well as the
681   // correct piping to size 2/4 packet operations.
682   const linspaced_op_impl<Scalar,RandomAccess> impl;
683 };
684 
685 // all functors allow linear access, except scalar_identity_op. So we fix here a quick meta
686 // to indicate whether a functor allows linear access, just always answering 'yes' except for
687 // scalar_identity_op.
688 // FIXME move this to functor_traits adding a functor_default
689 template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
690 template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };
691 
692 // In Eigen, any binary op (Product, CwiseBinaryOp) require the Lhs and Rhs to have the same scalar type, except for multiplication
693 // where the mixing of different types is handled by scalar_product_traits
694 // In particular, real * complex<real> is allowed.
695 // FIXME move this to functor_traits adding a functor_default
696 template<typename Functor> struct functor_is_product_like { enum { ret = 0 }; };
697 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
698 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
699 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_quotient_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
700 
701 
702 /** \internal
703   * \brief Template functor to add a scalar to a fixed other one
704   * \sa class CwiseUnaryOp, Array::operator+
705   */
706 /* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */
707 template<typename Scalar>
708 struct scalar_add_op {
709   typedef typename packet_traits<Scalar>::type Packet;
710   // FIXME default copy constructors seems bugged with std::complex<>
711   inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { }
712   inline scalar_add_op(const Scalar& other) : m_other(other) { }
713   inline Scalar operator() (const Scalar& a) const { return a + m_other; }
714   inline const Packet packetOp(const Packet& a) const
715   { return internal::padd(a, pset1<Packet>(m_other)); }
716   const Scalar m_other;
717 };
718 template<typename Scalar>
719 struct functor_traits<scalar_add_op<Scalar> >
720 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; };
721 
722 /** \internal
723   * \brief Template functor to compute the square root of a scalar
724   * \sa class CwiseUnaryOp, Cwise::sqrt()
725   */
726 template<typename Scalar> struct scalar_sqrt_op {
727   EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
728   inline const Scalar operator() (const Scalar& a) const { using std::sqrt; return sqrt(a); }
729   typedef typename packet_traits<Scalar>::type Packet;
730   inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
731 };
732 template<typename Scalar>
733 struct functor_traits<scalar_sqrt_op<Scalar> >
734 { enum {
735     Cost = 5 * NumTraits<Scalar>::MulCost,
736     PacketAccess = packet_traits<Scalar>::HasSqrt
737   };
738 };
739 
740 /** \internal
741   * \brief Template functor to compute the cosine of a scalar
742   * \sa class CwiseUnaryOp, ArrayBase::cos()
743   */
744 template<typename Scalar> struct scalar_cos_op {
745   EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
746   inline Scalar operator() (const Scalar& a) const { using std::cos; return cos(a); }
747   typedef typename packet_traits<Scalar>::type Packet;
748   inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
749 };
750 template<typename Scalar>
751 struct functor_traits<scalar_cos_op<Scalar> >
752 {
753   enum {
754     Cost = 5 * NumTraits<Scalar>::MulCost,
755     PacketAccess = packet_traits<Scalar>::HasCos
756   };
757 };
758 
759 /** \internal
760   * \brief Template functor to compute the sine of a scalar
761   * \sa class CwiseUnaryOp, ArrayBase::sin()
762   */
763 template<typename Scalar> struct scalar_sin_op {
764   EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
765   inline const Scalar operator() (const Scalar& a) const { using std::sin; return sin(a); }
766   typedef typename packet_traits<Scalar>::type Packet;
767   inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
768 };
769 template<typename Scalar>
770 struct functor_traits<scalar_sin_op<Scalar> >
771 {
772   enum {
773     Cost = 5 * NumTraits<Scalar>::MulCost,
774     PacketAccess = packet_traits<Scalar>::HasSin
775   };
776 };
777 
778 
779 /** \internal
780   * \brief Template functor to compute the tan of a scalar
781   * \sa class CwiseUnaryOp, ArrayBase::tan()
782   */
783 template<typename Scalar> struct scalar_tan_op {
784   EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
785   inline const Scalar operator() (const Scalar& a) const { using std::tan; return tan(a); }
786   typedef typename packet_traits<Scalar>::type Packet;
787   inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
788 };
789 template<typename Scalar>
790 struct functor_traits<scalar_tan_op<Scalar> >
791 {
792   enum {
793     Cost = 5 * NumTraits<Scalar>::MulCost,
794     PacketAccess = packet_traits<Scalar>::HasTan
795   };
796 };
797 
798 /** \internal
799   * \brief Template functor to compute the arc cosine of a scalar
800   * \sa class CwiseUnaryOp, ArrayBase::acos()
801   */
802 template<typename Scalar> struct scalar_acos_op {
803   EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
804   inline const Scalar operator() (const Scalar& a) const { using std::acos; return acos(a); }
805   typedef typename packet_traits<Scalar>::type Packet;
806   inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
807 };
808 template<typename Scalar>
809 struct functor_traits<scalar_acos_op<Scalar> >
810 {
811   enum {
812     Cost = 5 * NumTraits<Scalar>::MulCost,
813     PacketAccess = packet_traits<Scalar>::HasACos
814   };
815 };
816 
817 /** \internal
818   * \brief Template functor to compute the arc sine of a scalar
819   * \sa class CwiseUnaryOp, ArrayBase::asin()
820   */
821 template<typename Scalar> struct scalar_asin_op {
822   EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
823   inline const Scalar operator() (const Scalar& a) const { using std::asin; return asin(a); }
824   typedef typename packet_traits<Scalar>::type Packet;
825   inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
826 };
827 template<typename Scalar>
828 struct functor_traits<scalar_asin_op<Scalar> >
829 {
830   enum {
831     Cost = 5 * NumTraits<Scalar>::MulCost,
832     PacketAccess = packet_traits<Scalar>::HasASin
833   };
834 };
835 
836 /** \internal
837   * \brief Template functor to raise a scalar to a power
838   * \sa class CwiseUnaryOp, Cwise::pow
839   */
840 template<typename Scalar>
841 struct scalar_pow_op {
842   // FIXME default copy constructors seems bugged with std::complex<>
843   inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { }
844   inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
845   inline Scalar operator() (const Scalar& a) const { return numext::pow(a, m_exponent); }
846   const Scalar m_exponent;
847 };
848 template<typename Scalar>
849 struct functor_traits<scalar_pow_op<Scalar> >
850 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
851 
852 /** \internal
853   * \brief Template functor to compute the quotient between a scalar and array entries.
854   * \sa class CwiseUnaryOp, Cwise::inverse()
855   */
856 template<typename Scalar>
857 struct scalar_inverse_mult_op {
858   scalar_inverse_mult_op(const Scalar& other) : m_other(other) {}
859   inline Scalar operator() (const Scalar& a) const { return m_other / a; }
860   template<typename Packet>
861   inline const Packet packetOp(const Packet& a) const
862   { return internal::pdiv(pset1<Packet>(m_other),a); }
863   Scalar m_other;
864 };
865 
866 /** \internal
867   * \brief Template functor to compute the inverse of a scalar
868   * \sa class CwiseUnaryOp, Cwise::inverse()
869   */
870 template<typename Scalar>
871 struct scalar_inverse_op {
872   EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
873   inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
874   template<typename Packet>
875   inline const Packet packetOp(const Packet& a) const
876   { return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
877 };
878 template<typename Scalar>
879 struct functor_traits<scalar_inverse_op<Scalar> >
880 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
881 
882 /** \internal
883   * \brief Template functor to compute the square of a scalar
884   * \sa class CwiseUnaryOp, Cwise::square()
885   */
886 template<typename Scalar>
887 struct scalar_square_op {
888   EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
889   inline Scalar operator() (const Scalar& a) const { return a*a; }
890   template<typename Packet>
891   inline const Packet packetOp(const Packet& a) const
892   { return internal::pmul(a,a); }
893 };
894 template<typename Scalar>
895 struct functor_traits<scalar_square_op<Scalar> >
896 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
897 
898 /** \internal
899   * \brief Template functor to compute the cube of a scalar
900   * \sa class CwiseUnaryOp, Cwise::cube()
901   */
902 template<typename Scalar>
903 struct scalar_cube_op {
904   EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
905   inline Scalar operator() (const Scalar& a) const { return a*a*a; }
906   template<typename Packet>
907   inline const Packet packetOp(const Packet& a) const
908   { return internal::pmul(a,pmul(a,a)); }
909 };
910 template<typename Scalar>
911 struct functor_traits<scalar_cube_op<Scalar> >
912 { enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
913 
914 // default functor traits for STL functors:
915 
916 template<typename T>
917 struct functor_traits<std::multiplies<T> >
918 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
919 
920 template<typename T>
921 struct functor_traits<std::divides<T> >
922 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
923 
924 template<typename T>
925 struct functor_traits<std::plus<T> >
926 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
927 
928 template<typename T>
929 struct functor_traits<std::minus<T> >
930 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
931 
932 template<typename T>
933 struct functor_traits<std::negate<T> >
934 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
935 
936 template<typename T>
937 struct functor_traits<std::logical_or<T> >
938 { enum { Cost = 1, PacketAccess = false }; };
939 
940 template<typename T>
941 struct functor_traits<std::logical_and<T> >
942 { enum { Cost = 1, PacketAccess = false }; };
943 
944 template<typename T>
945 struct functor_traits<std::logical_not<T> >
946 { enum { Cost = 1, PacketAccess = false }; };
947 
948 template<typename T>
949 struct functor_traits<std::greater<T> >
950 { enum { Cost = 1, PacketAccess = false }; };
951 
952 template<typename T>
953 struct functor_traits<std::less<T> >
954 { enum { Cost = 1, PacketAccess = false }; };
955 
956 template<typename T>
957 struct functor_traits<std::greater_equal<T> >
958 { enum { Cost = 1, PacketAccess = false }; };
959 
960 template<typename T>
961 struct functor_traits<std::less_equal<T> >
962 { enum { Cost = 1, PacketAccess = false }; };
963 
964 template<typename T>
965 struct functor_traits<std::equal_to<T> >
966 { enum { Cost = 1, PacketAccess = false }; };
967 
968 template<typename T>
969 struct functor_traits<std::not_equal_to<T> >
970 { enum { Cost = 1, PacketAccess = false }; };
971 
972 template<typename T>
973 struct functor_traits<std::binder2nd<T> >
974 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
975 
976 template<typename T>
977 struct functor_traits<std::binder1st<T> >
978 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
979 
980 template<typename T>
981 struct functor_traits<std::unary_negate<T> >
982 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
983 
984 template<typename T>
985 struct functor_traits<std::binary_negate<T> >
986 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
987 
988 #ifdef EIGEN_STDEXT_SUPPORT
989 
990 template<typename T0,typename T1>
991 struct functor_traits<std::project1st<T0,T1> >
992 { enum { Cost = 0, PacketAccess = false }; };
993 
994 template<typename T0,typename T1>
995 struct functor_traits<std::project2nd<T0,T1> >
996 { enum { Cost = 0, PacketAccess = false }; };
997 
998 template<typename T0,typename T1>
999 struct functor_traits<std::select2nd<std::pair<T0,T1> > >
1000 { enum { Cost = 0, PacketAccess = false }; };
1001 
1002 template<typename T0,typename T1>
1003 struct functor_traits<std::select1st<std::pair<T0,T1> > >
1004 { enum { Cost = 0, PacketAccess = false }; };
1005 
1006 template<typename T0,typename T1>
1007 struct functor_traits<std::unary_compose<T0,T1> >
1008 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
1009 
1010 template<typename T0,typename T1,typename T2>
1011 struct functor_traits<std::binary_compose<T0,T1,T2> >
1012 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
1013 
1014 #endif // EIGEN_STDEXT_SUPPORT
1015 
1016 // allow to add new functors and specializations of functor_traits from outside Eigen.
1017 // this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
1018 #ifdef EIGEN_FUNCTORS_PLUGIN
1019 #include EIGEN_FUNCTORS_PLUGIN
1020 #endif
1021 
1022 } // end namespace internal
1023 
1024 } // end namespace Eigen
1025 
1026 #endif // EIGEN_FUNCTORS_H
1027