• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // This file is an internal atomic implementation, use atomicops.h instead.
6 //
7 // LinuxKernelCmpxchg and Barrier_AtomicIncrement are from Google Gears.
8 
9 #ifndef V8_BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_
10 #define V8_BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_
11 
12 #if defined(__QNXNTO__)
13 #include <sys/cpuinline.h>
14 #endif
15 
16 namespace v8 {
17 namespace base {
18 
19 // Memory barriers on ARM are funky, but the kernel is here to help:
20 //
21 // * ARMv5 didn't support SMP, there is no memory barrier instruction at
22 //   all on this architecture, or when targeting its machine code.
23 //
24 // * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by
25 //   writing a random value to a very specific coprocessor register.
26 //
27 // * On ARMv7, the "dmb" instruction is used to perform a full memory
28 //   barrier (though writing to the co-processor will still work).
29 //   However, on single core devices (e.g. Nexus One, or Nexus S),
30 //   this instruction will take up to 200 ns, which is huge, even though
31 //   it's completely un-needed on these devices.
32 //
33 // * There is no easy way to determine at runtime if the device is
34 //   single or multi-core. However, the kernel provides a useful helper
35 //   function at a fixed memory address (0xffff0fa0), which will always
36 //   perform a memory barrier in the most efficient way. I.e. on single
37 //   core devices, this is an empty function that exits immediately.
38 //   On multi-core devices, it implements a full memory barrier.
39 //
40 // * This source could be compiled to ARMv5 machine code that runs on a
41 //   multi-core ARMv6 or ARMv7 device. In this case, memory barriers
42 //   are needed for correct execution. Always call the kernel helper, even
43 //   when targeting ARMv5TE.
44 //
45 
MemoryBarrier()46 inline void MemoryBarrier() {
47 #if defined(__linux__) || defined(__ANDROID__)
48   // Note: This is a function call, which is also an implicit compiler barrier.
49   typedef void (*KernelMemoryBarrierFunc)();
50   ((KernelMemoryBarrierFunc)0xffff0fa0)();
51 #elif defined(__QNXNTO__)
52   __cpu_membarrier();
53 #else
54 #error MemoryBarrier() is not implemented on this platform.
55 #endif
56 }
57 
58 // An ARM toolchain would only define one of these depending on which
59 // variant of the target architecture is being used. This tests against
60 // any known ARMv6 or ARMv7 variant, where it is possible to directly
61 // use ldrex/strex instructions to implement fast atomic operations.
62 #if defined(__ARM_ARCH_8A__) || \
63     defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) ||  \
64     defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \
65     defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) ||  \
66     defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
67     defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__)
68 
NoBarrier_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)69 inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
70                                          Atomic32 old_value,
71                                          Atomic32 new_value) {
72   Atomic32 prev_value;
73   int reloop;
74   do {
75     // The following is equivalent to:
76     //
77     //   prev_value = LDREX(ptr)
78     //   reloop = 0
79     //   if (prev_value != old_value)
80     //      reloop = STREX(ptr, new_value)
81     __asm__ __volatile__("    ldrex %0, [%3]\n"
82                          "    mov %1, #0\n"
83                          "    cmp %0, %4\n"
84 #ifdef __thumb2__
85                          "    it eq\n"
86 #endif
87                          "    strexeq %1, %5, [%3]\n"
88                          : "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr)
89                          : "r"(ptr), "r"(old_value), "r"(new_value)
90                          : "cc", "memory");
91   } while (reloop != 0);
92   return prev_value;
93 }
94 
Acquire_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)95 inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
96                                        Atomic32 old_value,
97                                        Atomic32 new_value) {
98   Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
99   MemoryBarrier();
100   return result;
101 }
102 
Release_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)103 inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
104                                        Atomic32 old_value,
105                                        Atomic32 new_value) {
106   MemoryBarrier();
107   return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
108 }
109 
NoBarrier_AtomicIncrement(volatile Atomic32 * ptr,Atomic32 increment)110 inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
111                                           Atomic32 increment) {
112   Atomic32 value;
113   int reloop;
114   do {
115     // Equivalent to:
116     //
117     //  value = LDREX(ptr)
118     //  value += increment
119     //  reloop = STREX(ptr, value)
120     //
121     __asm__ __volatile__("    ldrex %0, [%3]\n"
122                          "    add %0, %0, %4\n"
123                          "    strex %1, %0, [%3]\n"
124                          : "=&r"(value), "=&r"(reloop), "+m"(*ptr)
125                          : "r"(ptr), "r"(increment)
126                          : "cc", "memory");
127   } while (reloop);
128   return value;
129 }
130 
Barrier_AtomicIncrement(volatile Atomic32 * ptr,Atomic32 increment)131 inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
132                                         Atomic32 increment) {
133   // TODO(digit): Investigate if it's possible to implement this with
134   // a single MemoryBarrier() operation between the LDREX and STREX.
135   // See http://crbug.com/246514
136   MemoryBarrier();
137   Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment);
138   MemoryBarrier();
139   return result;
140 }
141 
NoBarrier_AtomicExchange(volatile Atomic32 * ptr,Atomic32 new_value)142 inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
143                                          Atomic32 new_value) {
144   Atomic32 old_value;
145   int reloop;
146   do {
147     // old_value = LDREX(ptr)
148     // reloop = STREX(ptr, new_value)
149     __asm__ __volatile__("   ldrex %0, [%3]\n"
150                          "   strex %1, %4, [%3]\n"
151                          : "=&r"(old_value), "=&r"(reloop), "+m"(*ptr)
152                          : "r"(ptr), "r"(new_value)
153                          : "cc", "memory");
154   } while (reloop != 0);
155   return old_value;
156 }
157 
158 // This tests against any known ARMv5 variant.
159 #elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \
160       defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__)
161 
162 // The kernel also provides a helper function to perform an atomic
163 // compare-and-swap operation at the hard-wired address 0xffff0fc0.
164 // On ARMv5, this is implemented by a special code path that the kernel
165 // detects and treats specially when thread pre-emption happens.
166 // On ARMv6 and higher, it uses LDREX/STREX instructions instead.
167 //
168 // Note that this always perform a full memory barrier, there is no
169 // need to add calls MemoryBarrier() before or after it. It also
170 // returns 0 on success, and 1 on exit.
171 //
172 // Available and reliable since Linux 2.6.24. Both Android and ChromeOS
173 // use newer kernel revisions, so this should not be a concern.
174 namespace {
175 
LinuxKernelCmpxchg(Atomic32 old_value,Atomic32 new_value,volatile Atomic32 * ptr)176 inline int LinuxKernelCmpxchg(Atomic32 old_value,
177                               Atomic32 new_value,
178                               volatile Atomic32* ptr) {
179   typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*);
180   return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr);
181 }
182 
183 }  // namespace
184 
NoBarrier_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)185 inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
186                                          Atomic32 old_value,
187                                          Atomic32 new_value) {
188   Atomic32 prev_value;
189   for (;;) {
190     prev_value = *ptr;
191     if (prev_value != old_value)
192       return prev_value;
193     if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
194       return old_value;
195   }
196 }
197 
NoBarrier_AtomicExchange(volatile Atomic32 * ptr,Atomic32 new_value)198 inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
199                                          Atomic32 new_value) {
200   Atomic32 old_value;
201   do {
202     old_value = *ptr;
203   } while (LinuxKernelCmpxchg(old_value, new_value, ptr));
204   return old_value;
205 }
206 
NoBarrier_AtomicIncrement(volatile Atomic32 * ptr,Atomic32 increment)207 inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
208                                           Atomic32 increment) {
209   return Barrier_AtomicIncrement(ptr, increment);
210 }
211 
Barrier_AtomicIncrement(volatile Atomic32 * ptr,Atomic32 increment)212 inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
213                                         Atomic32 increment) {
214   for (;;) {
215     // Atomic exchange the old value with an incremented one.
216     Atomic32 old_value = *ptr;
217     Atomic32 new_value = old_value + increment;
218     if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) {
219       // The exchange took place as expected.
220       return new_value;
221     }
222     // Otherwise, *ptr changed mid-loop and we need to retry.
223   }
224 }
225 
Acquire_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)226 inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
227                                        Atomic32 old_value,
228                                        Atomic32 new_value) {
229   Atomic32 prev_value;
230   for (;;) {
231     prev_value = *ptr;
232     if (prev_value != old_value) {
233       // Always ensure acquire semantics.
234       MemoryBarrier();
235       return prev_value;
236     }
237     if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
238       return old_value;
239   }
240 }
241 
Release_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)242 inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
243                                        Atomic32 old_value,
244                                        Atomic32 new_value) {
245   // This could be implemented as:
246   //    MemoryBarrier();
247   //    return NoBarrier_CompareAndSwap();
248   //
249   // But would use 3 barriers per succesful CAS. To save performance,
250   // use Acquire_CompareAndSwap(). Its implementation guarantees that:
251   // - A succesful swap uses only 2 barriers (in the kernel helper).
252   // - An early return due to (prev_value != old_value) performs
253   //   a memory barrier with no store, which is equivalent to the
254   //   generic implementation above.
255   return Acquire_CompareAndSwap(ptr, old_value, new_value);
256 }
257 
258 #else
259 #  error "Your CPU's ARM architecture is not supported yet"
260 #endif
261 
262 // NOTE: Atomicity of the following load and store operations is only
263 // guaranteed in case of 32-bit alignement of |ptr| values.
264 
NoBarrier_Store(volatile Atomic32 * ptr,Atomic32 value)265 inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
266   *ptr = value;
267 }
268 
Acquire_Store(volatile Atomic32 * ptr,Atomic32 value)269 inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
270   *ptr = value;
271   MemoryBarrier();
272 }
273 
Release_Store(volatile Atomic32 * ptr,Atomic32 value)274 inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
275   MemoryBarrier();
276   *ptr = value;
277 }
278 
NoBarrier_Load(volatile const Atomic32 * ptr)279 inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; }
280 
Acquire_Load(volatile const Atomic32 * ptr)281 inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
282   Atomic32 value = *ptr;
283   MemoryBarrier();
284   return value;
285 }
286 
Release_Load(volatile const Atomic32 * ptr)287 inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
288   MemoryBarrier();
289   return *ptr;
290 }
291 
292 // Byte accessors.
293 
NoBarrier_Store(volatile Atomic8 * ptr,Atomic8 value)294 inline void NoBarrier_Store(volatile Atomic8* ptr, Atomic8 value) {
295   *ptr = value;
296 }
297 
NoBarrier_Load(volatile const Atomic8 * ptr)298 inline Atomic8 NoBarrier_Load(volatile const Atomic8* ptr) { return *ptr; }
299 
300 }  // namespace base
301 }  // namespace v8
302 
303 #endif  // V8_BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_
304