• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ====================================================================
2  * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    openssl-core@openssl.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ====================================================================
48  *
49  * This product includes cryptographic software written by Eric Young
50  * (eay@cryptsoft.com).  This product includes software written by Tim
51  * Hudson (tjh@cryptsoft.com). */
52 
53 #include <assert.h>
54 #include <string.h>
55 
56 #include <openssl/digest.h>
57 #include <openssl/obj.h>
58 #include <openssl/sha.h>
59 
60 #include "../internal.h"
61 
62 
63 /* TODO(davidben): unsigned should be size_t. The various constant_time
64  * functions need to be switched to size_t. */
65 
66 /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
67  * field. (SHA-384/512 have 128-bit length.) */
68 #define MAX_HASH_BIT_COUNT_BYTES 16
69 
70 /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
71  * Currently SHA-384/512 has a 128-byte block size and that's the largest
72  * supported by TLS.) */
73 #define MAX_HASH_BLOCK_SIZE 128
74 
EVP_tls_cbc_remove_padding(unsigned * out_len,const uint8_t * in,unsigned in_len,unsigned block_size,unsigned mac_size)75 int EVP_tls_cbc_remove_padding(unsigned *out_len,
76                                const uint8_t *in, unsigned in_len,
77                                unsigned block_size, unsigned mac_size) {
78   unsigned padding_length, good, to_check, i;
79   const unsigned overhead = 1 /* padding length byte */ + mac_size;
80 
81   /* These lengths are all public so we can test them in non-constant time. */
82   if (overhead > in_len) {
83     return 0;
84   }
85 
86   padding_length = in[in_len - 1];
87 
88   good = constant_time_ge(in_len, overhead + padding_length);
89   /* The padding consists of a length byte at the end of the record and
90    * then that many bytes of padding, all with the same value as the
91    * length byte. Thus, with the length byte included, there are i+1
92    * bytes of padding.
93    *
94    * We can't check just |padding_length+1| bytes because that leaks
95    * decrypted information. Therefore we always have to check the maximum
96    * amount of padding possible. (Again, the length of the record is
97    * public information so we can use it.) */
98   to_check = 256; /* maximum amount of padding, inc length byte. */
99   if (to_check > in_len) {
100     to_check = in_len;
101   }
102 
103   for (i = 0; i < to_check; i++) {
104     uint8_t mask = constant_time_ge_8(padding_length, i);
105     uint8_t b = in[in_len - 1 - i];
106     /* The final |padding_length+1| bytes should all have the value
107      * |padding_length|. Therefore the XOR should be zero. */
108     good &= ~(mask & (padding_length ^ b));
109   }
110 
111   /* If any of the final |padding_length+1| bytes had the wrong value,
112    * one or more of the lower eight bits of |good| will be cleared. */
113   good = constant_time_eq(0xff, good & 0xff);
114 
115   /* Always treat |padding_length| as zero on error. If, assuming block size of
116    * 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16
117    * and returned -1, distinguishing good MAC and bad padding from bad MAC and
118    * bad padding would give POODLE's padding oracle. */
119   padding_length = good & (padding_length + 1);
120   *out_len = in_len - padding_length;
121 
122   return constant_time_select_int(good, 1, -1);
123 }
124 
125 /* If CBC_MAC_ROTATE_IN_PLACE is defined then EVP_tls_cbc_copy_mac is performed
126  * with variable accesses in a 64-byte-aligned buffer. Assuming that this fits
127  * into a single or pair of cache-lines, then the variable memory accesses don't
128  * actually affect the timing. CPUs with smaller cache-lines [if any] are not
129  * multi-core and are not considered vulnerable to cache-timing attacks. */
130 #define CBC_MAC_ROTATE_IN_PLACE
131 
EVP_tls_cbc_copy_mac(uint8_t * out,unsigned md_size,const uint8_t * in,unsigned in_len,unsigned orig_len)132 void EVP_tls_cbc_copy_mac(uint8_t *out, unsigned md_size,
133                           const uint8_t *in, unsigned in_len,
134                           unsigned orig_len) {
135 #if defined(CBC_MAC_ROTATE_IN_PLACE)
136   uint8_t rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
137   uint8_t *rotated_mac;
138 #else
139   uint8_t rotated_mac[EVP_MAX_MD_SIZE];
140 #endif
141 
142   /* mac_end is the index of |in| just after the end of the MAC. */
143   unsigned mac_end = in_len;
144   unsigned mac_start = mac_end - md_size;
145   /* scan_start contains the number of bytes that we can ignore because
146    * the MAC's position can only vary by 255 bytes. */
147   unsigned scan_start = 0;
148   unsigned i, j;
149   unsigned div_spoiler;
150   unsigned rotate_offset;
151 
152   assert(orig_len >= in_len);
153   assert(in_len >= md_size);
154   assert(md_size <= EVP_MAX_MD_SIZE);
155 
156 #if defined(CBC_MAC_ROTATE_IN_PLACE)
157   rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63);
158 #endif
159 
160   /* This information is public so it's safe to branch based on it. */
161   if (orig_len > md_size + 255 + 1) {
162     scan_start = orig_len - (md_size + 255 + 1);
163   }
164   /* div_spoiler contains a multiple of md_size that is used to cause the
165    * modulo operation to be constant time. Without this, the time varies
166    * based on the amount of padding when running on Intel chips at least.
167    *
168    * The aim of right-shifting md_size is so that the compiler doesn't
169    * figure out that it can remove div_spoiler as that would require it
170    * to prove that md_size is always even, which I hope is beyond it. */
171   div_spoiler = md_size >> 1;
172   div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
173   rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
174 
175   memset(rotated_mac, 0, md_size);
176   for (i = scan_start, j = 0; i < orig_len; i++) {
177     uint8_t mac_started = constant_time_ge_8(i, mac_start);
178     uint8_t mac_ended = constant_time_ge_8(i, mac_end);
179     uint8_t b = in[i];
180     rotated_mac[j++] |= b & mac_started & ~mac_ended;
181     j &= constant_time_lt(j, md_size);
182   }
183 
184 /* Now rotate the MAC */
185 #if defined(CBC_MAC_ROTATE_IN_PLACE)
186   j = 0;
187   for (i = 0; i < md_size; i++) {
188     /* in case cache-line is 32 bytes, touch second line */
189     ((volatile uint8_t *)rotated_mac)[rotate_offset ^ 32];
190     out[j++] = rotated_mac[rotate_offset++];
191     rotate_offset &= constant_time_lt(rotate_offset, md_size);
192   }
193 #else
194   memset(out, 0, md_size);
195   rotate_offset = md_size - rotate_offset;
196   rotate_offset &= constant_time_lt(rotate_offset, md_size);
197   for (i = 0; i < md_size; i++) {
198     for (j = 0; j < md_size; j++) {
199       out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
200     }
201     rotate_offset++;
202     rotate_offset &= constant_time_lt(rotate_offset, md_size);
203   }
204 #endif
205 }
206 
207 /* u32toBE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
208  * big-endian order. The value of p is advanced by four. */
209 #define u32toBE(n, p) \
210   (*((p)++)=(uint8_t)(n>>24), \
211    *((p)++)=(uint8_t)(n>>16), \
212    *((p)++)=(uint8_t)(n>>8), \
213    *((p)++)=(uint8_t)(n))
214 
215 /* u64toBE serialises an unsigned, 64-bit number (n) as eight bytes at (p) in
216  * big-endian order. The value of p is advanced by eight. */
217 #define u64toBE(n, p) \
218   (*((p)++)=(uint8_t)(n>>56), \
219    *((p)++)=(uint8_t)(n>>48), \
220    *((p)++)=(uint8_t)(n>>40), \
221    *((p)++)=(uint8_t)(n>>32), \
222    *((p)++)=(uint8_t)(n>>24), \
223    *((p)++)=(uint8_t)(n>>16), \
224    *((p)++)=(uint8_t)(n>>8), \
225    *((p)++)=(uint8_t)(n))
226 
227 /* These functions serialize the state of a hash and thus perform the standard
228  * "final" operation without adding the padding and length that such a function
229  * typically does. */
tls1_sha1_final_raw(void * ctx,uint8_t * md_out)230 static void tls1_sha1_final_raw(void *ctx, uint8_t *md_out) {
231   SHA_CTX *sha1 = ctx;
232   u32toBE(sha1->h[0], md_out);
233   u32toBE(sha1->h[1], md_out);
234   u32toBE(sha1->h[2], md_out);
235   u32toBE(sha1->h[3], md_out);
236   u32toBE(sha1->h[4], md_out);
237 }
238 #define LARGEST_DIGEST_CTX SHA_CTX
239 
tls1_sha256_final_raw(void * ctx,uint8_t * md_out)240 static void tls1_sha256_final_raw(void *ctx, uint8_t *md_out) {
241   SHA256_CTX *sha256 = ctx;
242   unsigned i;
243 
244   for (i = 0; i < 8; i++) {
245     u32toBE(sha256->h[i], md_out);
246   }
247 }
248 #undef  LARGEST_DIGEST_CTX
249 #define LARGEST_DIGEST_CTX SHA256_CTX
250 
tls1_sha512_final_raw(void * ctx,uint8_t * md_out)251 static void tls1_sha512_final_raw(void *ctx, uint8_t *md_out) {
252   SHA512_CTX *sha512 = ctx;
253   unsigned i;
254 
255   for (i = 0; i < 8; i++) {
256     u64toBE(sha512->h[i], md_out);
257   }
258 }
259 #undef  LARGEST_DIGEST_CTX
260 #define LARGEST_DIGEST_CTX SHA512_CTX
261 
EVP_tls_cbc_record_digest_supported(const EVP_MD * md)262 int EVP_tls_cbc_record_digest_supported(const EVP_MD *md) {
263   switch (EVP_MD_type(md)) {
264     case NID_sha1:
265     case NID_sha256:
266     case NID_sha384:
267       return 1;
268 
269     default:
270       return 0;
271   }
272 }
273 
EVP_tls_cbc_digest_record(const EVP_MD * md,uint8_t * md_out,size_t * md_out_size,const uint8_t header[13],const uint8_t * data,size_t data_plus_mac_size,size_t data_plus_mac_plus_padding_size,const uint8_t * mac_secret,unsigned mac_secret_length)274 int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out,
275                               size_t *md_out_size, const uint8_t header[13],
276                               const uint8_t *data, size_t data_plus_mac_size,
277                               size_t data_plus_mac_plus_padding_size,
278                               const uint8_t *mac_secret,
279                               unsigned mac_secret_length) {
280   union {
281     double align;
282     uint8_t c[sizeof(LARGEST_DIGEST_CTX)];
283   } md_state;
284   void (*md_final_raw)(void *ctx, uint8_t *md_out);
285   void (*md_transform)(void *ctx, const uint8_t *block);
286   unsigned md_size, md_block_size = 64;
287   unsigned len, max_mac_bytes, num_blocks, num_starting_blocks, k,
288            mac_end_offset, c, index_a, index_b;
289   unsigned int bits; /* at most 18 bits */
290   uint8_t length_bytes[MAX_HASH_BIT_COUNT_BYTES];
291   /* hmac_pad is the masked HMAC key. */
292   uint8_t hmac_pad[MAX_HASH_BLOCK_SIZE];
293   uint8_t first_block[MAX_HASH_BLOCK_SIZE];
294   uint8_t mac_out[EVP_MAX_MD_SIZE];
295   unsigned i, j, md_out_size_u;
296   EVP_MD_CTX md_ctx;
297   /* mdLengthSize is the number of bytes in the length field that terminates
298   * the hash. */
299   unsigned md_length_size = 8;
300 
301   /* This is a, hopefully redundant, check that allows us to forget about
302    * many possible overflows later in this function. */
303   assert(data_plus_mac_plus_padding_size < 1024 * 1024);
304 
305   switch (EVP_MD_type(md)) {
306     case NID_sha1:
307       SHA1_Init((SHA_CTX *)md_state.c);
308       md_final_raw = tls1_sha1_final_raw;
309       md_transform =
310           (void (*)(void *ctx, const uint8_t *block))SHA1_Transform;
311       md_size = 20;
312       break;
313 
314     case NID_sha256:
315       SHA256_Init((SHA256_CTX *)md_state.c);
316       md_final_raw = tls1_sha256_final_raw;
317       md_transform =
318           (void (*)(void *ctx, const uint8_t *block))SHA256_Transform;
319       md_size = 32;
320       break;
321 
322     case NID_sha384:
323       SHA384_Init((SHA512_CTX *)md_state.c);
324       md_final_raw = tls1_sha512_final_raw;
325       md_transform =
326           (void (*)(void *ctx, const uint8_t *block))SHA512_Transform;
327       md_size = 384 / 8;
328       md_block_size = 128;
329       md_length_size = 16;
330       break;
331 
332     default:
333       /* EVP_tls_cbc_record_digest_supported should have been called first to
334        * check that the hash function is supported. */
335       assert(0);
336       *md_out_size = 0;
337       return 0;
338   }
339 
340   assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
341   assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
342   assert(md_size <= EVP_MAX_MD_SIZE);
343 
344   static const unsigned kHeaderLength = 13;
345 
346   /* kVarianceBlocks is the number of blocks of the hash that we have to
347    * calculate in constant time because they could be altered by the
348    * padding value.
349    *
350    * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
351    * required to be minimal. Therefore we say that the final six blocks
352    * can vary based on the padding. */
353   static const unsigned kVarianceBlocks = 6;
354 
355   /* From now on we're dealing with the MAC, which conceptually has 13
356    * bytes of `header' before the start of the data. */
357   len = data_plus_mac_plus_padding_size + kHeaderLength;
358   /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
359   * |header|, assuming that there's no padding. */
360   max_mac_bytes = len - md_size - 1;
361   /* num_blocks is the maximum number of hash blocks. */
362   num_blocks =
363       (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
364   /* In order to calculate the MAC in constant time we have to handle
365    * the final blocks specially because the padding value could cause the
366    * end to appear somewhere in the final |kVarianceBlocks| blocks and we
367    * can't leak where. However, |num_starting_blocks| worth of data can
368    * be hashed right away because no padding value can affect whether
369    * they are plaintext. */
370   num_starting_blocks = 0;
371   /* k is the starting byte offset into the conceptual header||data where
372    * we start processing. */
373   k = 0;
374   /* mac_end_offset is the index just past the end of the data to be
375    * MACed. */
376   mac_end_offset = data_plus_mac_size + kHeaderLength - md_size;
377   /* c is the index of the 0x80 byte in the final hash block that
378    * contains application data. */
379   c = mac_end_offset % md_block_size;
380   /* index_a is the hash block number that contains the 0x80 terminating
381    * value. */
382   index_a = mac_end_offset / md_block_size;
383   /* index_b is the hash block number that contains the 64-bit hash
384    * length, in bits. */
385   index_b = (mac_end_offset + md_length_size) / md_block_size;
386   /* bits is the hash-length in bits. It includes the additional hash
387    * block for the masked HMAC key. */
388 
389   if (num_blocks > kVarianceBlocks) {
390     num_starting_blocks = num_blocks - kVarianceBlocks;
391     k = md_block_size * num_starting_blocks;
392   }
393 
394   bits = 8 * mac_end_offset;
395 
396   /* Compute the initial HMAC block. */
397   bits += 8 * md_block_size;
398   memset(hmac_pad, 0, md_block_size);
399   assert(mac_secret_length <= sizeof(hmac_pad));
400   memcpy(hmac_pad, mac_secret, mac_secret_length);
401   for (i = 0; i < md_block_size; i++) {
402     hmac_pad[i] ^= 0x36;
403   }
404 
405   md_transform(md_state.c, hmac_pad);
406 
407   memset(length_bytes, 0, md_length_size - 4);
408   length_bytes[md_length_size - 4] = (uint8_t)(bits >> 24);
409   length_bytes[md_length_size - 3] = (uint8_t)(bits >> 16);
410   length_bytes[md_length_size - 2] = (uint8_t)(bits >> 8);
411   length_bytes[md_length_size - 1] = (uint8_t)bits;
412 
413   if (k > 0) {
414     /* k is a multiple of md_block_size. */
415     memcpy(first_block, header, 13);
416     memcpy(first_block + 13, data, md_block_size - 13);
417     md_transform(md_state.c, first_block);
418     for (i = 1; i < k / md_block_size; i++) {
419       md_transform(md_state.c, data + md_block_size * i - 13);
420     }
421   }
422 
423   memset(mac_out, 0, sizeof(mac_out));
424 
425   /* We now process the final hash blocks. For each block, we construct
426    * it in constant time. If the |i==index_a| then we'll include the 0x80
427    * bytes and zero pad etc. For each block we selectively copy it, in
428    * constant time, to |mac_out|. */
429   for (i = num_starting_blocks; i <= num_starting_blocks + kVarianceBlocks;
430        i++) {
431     uint8_t block[MAX_HASH_BLOCK_SIZE];
432     uint8_t is_block_a = constant_time_eq_8(i, index_a);
433     uint8_t is_block_b = constant_time_eq_8(i, index_b);
434     for (j = 0; j < md_block_size; j++) {
435       uint8_t b = 0, is_past_c, is_past_cp1;
436       if (k < kHeaderLength) {
437         b = header[k];
438       } else if (k < data_plus_mac_plus_padding_size + kHeaderLength) {
439         b = data[k - kHeaderLength];
440       }
441       k++;
442 
443       is_past_c = is_block_a & constant_time_ge_8(j, c);
444       is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
445       /* If this is the block containing the end of the
446        * application data, and we are at the offset for the
447        * 0x80 value, then overwrite b with 0x80. */
448       b = constant_time_select_8(is_past_c, 0x80, b);
449       /* If this the the block containing the end of the
450        * application data and we're past the 0x80 value then
451        * just write zero. */
452       b = b & ~is_past_cp1;
453       /* If this is index_b (the final block), but not
454        * index_a (the end of the data), then the 64-bit
455        * length didn't fit into index_a and we're having to
456        * add an extra block of zeros. */
457       b &= ~is_block_b | is_block_a;
458 
459       /* The final bytes of one of the blocks contains the
460        * length. */
461       if (j >= md_block_size - md_length_size) {
462         /* If this is index_b, write a length byte. */
463         b = constant_time_select_8(
464             is_block_b, length_bytes[j - (md_block_size - md_length_size)], b);
465       }
466       block[j] = b;
467     }
468 
469     md_transform(md_state.c, block);
470     md_final_raw(md_state.c, block);
471     /* If this is index_b, copy the hash value to |mac_out|. */
472     for (j = 0; j < md_size; j++) {
473       mac_out[j] |= block[j] & is_block_b;
474     }
475   }
476 
477   EVP_MD_CTX_init(&md_ctx);
478   if (!EVP_DigestInit_ex(&md_ctx, md, NULL /* engine */)) {
479     EVP_MD_CTX_cleanup(&md_ctx);
480     return 0;
481   }
482 
483   /* Complete the HMAC in the standard manner. */
484   for (i = 0; i < md_block_size; i++) {
485     hmac_pad[i] ^= 0x6a;
486   }
487 
488   EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
489   EVP_DigestUpdate(&md_ctx, mac_out, md_size);
490   EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
491   *md_out_size = md_out_size_u;
492   EVP_MD_CTX_cleanup(&md_ctx);
493 
494   return 1;
495 }
496