• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /* trees.c -- output deflated data using Huffman coding
2   * Copyright (C) 1995-2012 Jean-loup Gailly
3   * detect_data_type() function provided freely by Cosmin Truta, 2006
4   * For conditions of distribution and use, see copyright notice in zlib.h
5   */
6  
7  /*
8   *  ALGORITHM
9   *
10   *      The "deflation" process uses several Huffman trees. The more
11   *      common source values are represented by shorter bit sequences.
12   *
13   *      Each code tree is stored in a compressed form which is itself
14   * a Huffman encoding of the lengths of all the code strings (in
15   * ascending order by source values).  The actual code strings are
16   * reconstructed from the lengths in the inflate process, as described
17   * in the deflate specification.
18   *
19   *  REFERENCES
20   *
21   *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22   *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23   *
24   *      Storer, James A.
25   *          Data Compression:  Methods and Theory, pp. 49-50.
26   *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27   *
28   *      Sedgewick, R.
29   *          Algorithms, p290.
30   *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31   */
32  
33  /* @(#) $Id$ */
34  
35  /* #define GEN_TREES_H */
36  
37  #include "deflate.h"
38  
39  #ifdef DEBUG
40  #  include <ctype.h>
41  #endif
42  
43  /* ===========================================================================
44   * Constants
45   */
46  
47  #define MAX_BL_BITS 7
48  /* Bit length codes must not exceed MAX_BL_BITS bits */
49  
50  #define END_BLOCK 256
51  /* end of block literal code */
52  
53  #define REP_3_6      16
54  /* repeat previous bit length 3-6 times (2 bits of repeat count) */
55  
56  #define REPZ_3_10    17
57  /* repeat a zero length 3-10 times  (3 bits of repeat count) */
58  
59  #define REPZ_11_138  18
60  /* repeat a zero length 11-138 times  (7 bits of repeat count) */
61  
62  local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63     = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64  
65  local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66     = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67  
68  local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69     = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70  
71  local const uch bl_order[BL_CODES]
72     = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73  /* The lengths of the bit length codes are sent in order of decreasing
74   * probability, to avoid transmitting the lengths for unused bit length codes.
75   */
76  
77  /* ===========================================================================
78   * Local data. These are initialized only once.
79   */
80  
81  #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
82  
83  #if defined(GEN_TREES_H) || !defined(STDC)
84  /* non ANSI compilers may not accept trees.h */
85  
86  local ct_data static_ltree[L_CODES+2];
87  /* The static literal tree. Since the bit lengths are imposed, there is no
88   * need for the L_CODES extra codes used during heap construction. However
89   * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90   * below).
91   */
92  
93  local ct_data static_dtree[D_CODES];
94  /* The static distance tree. (Actually a trivial tree since all codes use
95   * 5 bits.)
96   */
97  
98  uch _dist_code[DIST_CODE_LEN];
99  /* Distance codes. The first 256 values correspond to the distances
100   * 3 .. 258, the last 256 values correspond to the top 8 bits of
101   * the 15 bit distances.
102   */
103  
104  uch _length_code[MAX_MATCH-MIN_MATCH+1];
105  /* length code for each normalized match length (0 == MIN_MATCH) */
106  
107  local int base_length[LENGTH_CODES];
108  /* First normalized length for each code (0 = MIN_MATCH) */
109  
110  local int base_dist[D_CODES];
111  /* First normalized distance for each code (0 = distance of 1) */
112  
113  #else
114  #  include "trees.h"
115  #endif /* GEN_TREES_H */
116  
117  struct static_tree_desc_s {
118      const ct_data *static_tree;  /* static tree or NULL */
119      const intf *extra_bits;      /* extra bits for each code or NULL */
120      int     extra_base;          /* base index for extra_bits */
121      int     elems;               /* max number of elements in the tree */
122      int     max_length;          /* max bit length for the codes */
123  };
124  
125  local static_tree_desc  static_l_desc =
126  {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
127  
128  local static_tree_desc  static_d_desc =
129  {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
130  
131  local static_tree_desc  static_bl_desc =
132  {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
133  
134  /* ===========================================================================
135   * Local (static) routines in this file.
136   */
137  
138  local void tr_static_init OF((void));
139  local void init_block     OF((deflate_state *s));
140  local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
141  local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
142  local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
143  local void build_tree     OF((deflate_state *s, tree_desc *desc));
144  local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
145  local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
146  local int  build_bl_tree  OF((deflate_state *s));
147  local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
148                                int blcodes));
149  local void compress_block OF((deflate_state *s, const ct_data *ltree,
150                                const ct_data *dtree));
151  local int  detect_data_type OF((deflate_state *s));
152  local unsigned bi_reverse OF((unsigned value, int length));
153  local void bi_windup      OF((deflate_state *s));
154  local void bi_flush       OF((deflate_state *s));
155  local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
156                                int header));
157  
158  #ifdef GEN_TREES_H
159  local void gen_trees_header OF((void));
160  #endif
161  
162  #ifndef DEBUG
163  #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
164     /* Send a code of the given tree. c and tree must not have side effects */
165  
166  #else /* DEBUG */
167  #  define send_code(s, c, tree) \
168       { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
169         send_bits(s, tree[c].Code, tree[c].Len); }
170  #endif
171  
172  /* ===========================================================================
173   * Output a short LSB first on the stream.
174   * IN assertion: there is enough room in pendingBuf.
175   */
176  #define put_short(s, w) { \
177      put_byte(s, (uch)((w) & 0xff)); \
178      put_byte(s, (uch)((ush)(w) >> 8)); \
179  }
180  
181  /* ===========================================================================
182   * Send a value on a given number of bits.
183   * IN assertion: length <= 16 and value fits in length bits.
184   */
185  #ifdef DEBUG
186  local void send_bits      OF((deflate_state *s, int value, int length));
187  
send_bits(s,value,length)188  local void send_bits(s, value, length)
189      deflate_state *s;
190      int value;  /* value to send */
191      int length; /* number of bits */
192  {
193      Tracevv((stderr," l %2d v %4x ", length, value));
194      Assert(length > 0 && length <= 15, "invalid length");
195      s->bits_sent += (ulg)length;
196  
197      /* If not enough room in bi_buf, use (valid) bits from bi_buf and
198       * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
199       * unused bits in value.
200       */
201      if (s->bi_valid > (int)Buf_size - length) {
202          s->bi_buf |= (ush)value << s->bi_valid;
203          put_short(s, s->bi_buf);
204          s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
205          s->bi_valid += length - Buf_size;
206      } else {
207          s->bi_buf |= (ush)value << s->bi_valid;
208          s->bi_valid += length;
209      }
210  }
211  #else /* !DEBUG */
212  
213  #define send_bits(s, value, length) \
214  { int len = length;\
215    if (s->bi_valid > (int)Buf_size - len) {\
216      int val = value;\
217      s->bi_buf |= (ush)val << s->bi_valid;\
218      put_short(s, s->bi_buf);\
219      s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
220      s->bi_valid += len - Buf_size;\
221    } else {\
222      s->bi_buf |= (ush)(value) << s->bi_valid;\
223      s->bi_valid += len;\
224    }\
225  }
226  #endif /* DEBUG */
227  
228  
229  /* the arguments must not have side effects */
230  
231  /* ===========================================================================
232   * Initialize the various 'constant' tables.
233   */
tr_static_init()234  local void tr_static_init()
235  {
236  #if defined(GEN_TREES_H) || !defined(STDC)
237      static int static_init_done = 0;
238      int n;        /* iterates over tree elements */
239      int bits;     /* bit counter */
240      int length;   /* length value */
241      int code;     /* code value */
242      int dist;     /* distance index */
243      ush bl_count[MAX_BITS+1];
244      /* number of codes at each bit length for an optimal tree */
245  
246      if (static_init_done) return;
247  
248      /* For some embedded targets, global variables are not initialized: */
249  #ifdef NO_INIT_GLOBAL_POINTERS
250      static_l_desc.static_tree = static_ltree;
251      static_l_desc.extra_bits = extra_lbits;
252      static_d_desc.static_tree = static_dtree;
253      static_d_desc.extra_bits = extra_dbits;
254      static_bl_desc.extra_bits = extra_blbits;
255  #endif
256  
257      /* Initialize the mapping length (0..255) -> length code (0..28) */
258      length = 0;
259      for (code = 0; code < LENGTH_CODES-1; code++) {
260          base_length[code] = length;
261          for (n = 0; n < (1<<extra_lbits[code]); n++) {
262              _length_code[length++] = (uch)code;
263          }
264      }
265      Assert (length == 256, "tr_static_init: length != 256");
266      /* Note that the length 255 (match length 258) can be represented
267       * in two different ways: code 284 + 5 bits or code 285, so we
268       * overwrite length_code[255] to use the best encoding:
269       */
270      _length_code[length-1] = (uch)code;
271  
272      /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
273      dist = 0;
274      for (code = 0 ; code < 16; code++) {
275          base_dist[code] = dist;
276          for (n = 0; n < (1<<extra_dbits[code]); n++) {
277              _dist_code[dist++] = (uch)code;
278          }
279      }
280      Assert (dist == 256, "tr_static_init: dist != 256");
281      dist >>= 7; /* from now on, all distances are divided by 128 */
282      for ( ; code < D_CODES; code++) {
283          base_dist[code] = dist << 7;
284          for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
285              _dist_code[256 + dist++] = (uch)code;
286          }
287      }
288      Assert (dist == 256, "tr_static_init: 256+dist != 512");
289  
290      /* Construct the codes of the static literal tree */
291      for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
292      n = 0;
293      while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
294      while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
295      while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
296      while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
297      /* Codes 286 and 287 do not exist, but we must include them in the
298       * tree construction to get a canonical Huffman tree (longest code
299       * all ones)
300       */
301      gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
302  
303      /* The static distance tree is trivial: */
304      for (n = 0; n < D_CODES; n++) {
305          static_dtree[n].Len = 5;
306          static_dtree[n].Code = bi_reverse((unsigned)n, 5);
307      }
308      static_init_done = 1;
309  
310  #  ifdef GEN_TREES_H
311      gen_trees_header();
312  #  endif
313  #endif /* defined(GEN_TREES_H) || !defined(STDC) */
314  }
315  
316  /* ===========================================================================
317   * Genererate the file trees.h describing the static trees.
318   */
319  #ifdef GEN_TREES_H
320  #  ifndef DEBUG
321  #    include <stdio.h>
322  #  endif
323  
324  #  define SEPARATOR(i, last, width) \
325        ((i) == (last)? "\n};\n\n" :    \
326         ((i) % (width) == (width)-1 ? ",\n" : ", "))
327  
gen_trees_header()328  void gen_trees_header()
329  {
330      FILE *header = fopen("trees.h", "w");
331      int i;
332  
333      Assert (header != NULL, "Can't open trees.h");
334      fprintf(header,
335              "/* header created automatically with -DGEN_TREES_H */\n\n");
336  
337      fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
338      for (i = 0; i < L_CODES+2; i++) {
339          fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
340                  static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
341      }
342  
343      fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
344      for (i = 0; i < D_CODES; i++) {
345          fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
346                  static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
347      }
348  
349      fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
350      for (i = 0; i < DIST_CODE_LEN; i++) {
351          fprintf(header, "%2u%s", _dist_code[i],
352                  SEPARATOR(i, DIST_CODE_LEN-1, 20));
353      }
354  
355      fprintf(header,
356          "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
357      for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
358          fprintf(header, "%2u%s", _length_code[i],
359                  SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
360      }
361  
362      fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
363      for (i = 0; i < LENGTH_CODES; i++) {
364          fprintf(header, "%1u%s", base_length[i],
365                  SEPARATOR(i, LENGTH_CODES-1, 20));
366      }
367  
368      fprintf(header, "local const int base_dist[D_CODES] = {\n");
369      for (i = 0; i < D_CODES; i++) {
370          fprintf(header, "%5u%s", base_dist[i],
371                  SEPARATOR(i, D_CODES-1, 10));
372      }
373  
374      fclose(header);
375  }
376  #endif /* GEN_TREES_H */
377  
378  /* ===========================================================================
379   * Initialize the tree data structures for a new zlib stream.
380   */
_tr_init(s)381  void ZLIB_INTERNAL _tr_init(s)
382      deflate_state *s;
383  {
384      tr_static_init();
385  
386      s->l_desc.dyn_tree = s->dyn_ltree;
387      s->l_desc.stat_desc = &static_l_desc;
388  
389      s->d_desc.dyn_tree = s->dyn_dtree;
390      s->d_desc.stat_desc = &static_d_desc;
391  
392      s->bl_desc.dyn_tree = s->bl_tree;
393      s->bl_desc.stat_desc = &static_bl_desc;
394  
395      s->bi_buf = 0;
396      s->bi_valid = 0;
397  #ifdef DEBUG
398      s->compressed_len = 0L;
399      s->bits_sent = 0L;
400  #endif
401  
402      /* Initialize the first block of the first file: */
403      init_block(s);
404  }
405  
406  /* ===========================================================================
407   * Initialize a new block.
408   */
init_block(s)409  local void init_block(s)
410      deflate_state *s;
411  {
412      int n; /* iterates over tree elements */
413  
414      /* Initialize the trees. */
415      for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
416      for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
417      for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
418  
419      s->dyn_ltree[END_BLOCK].Freq = 1;
420      s->opt_len = s->static_len = 0L;
421      s->last_lit = s->matches = 0;
422  }
423  
424  #define SMALLEST 1
425  /* Index within the heap array of least frequent node in the Huffman tree */
426  
427  
428  /* ===========================================================================
429   * Remove the smallest element from the heap and recreate the heap with
430   * one less element. Updates heap and heap_len.
431   */
432  #define pqremove(s, tree, top) \
433  {\
434      top = s->heap[SMALLEST]; \
435      s->heap[SMALLEST] = s->heap[s->heap_len--]; \
436      pqdownheap(s, tree, SMALLEST); \
437  }
438  
439  /* ===========================================================================
440   * Compares to subtrees, using the tree depth as tie breaker when
441   * the subtrees have equal frequency. This minimizes the worst case length.
442   */
443  #define smaller(tree, n, m, depth) \
444     (tree[n].Freq < tree[m].Freq || \
445     (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
446  
447  /* ===========================================================================
448   * Restore the heap property by moving down the tree starting at node k,
449   * exchanging a node with the smallest of its two sons if necessary, stopping
450   * when the heap property is re-established (each father smaller than its
451   * two sons).
452   */
pqdownheap(s,tree,k)453  local void pqdownheap(s, tree, k)
454      deflate_state *s;
455      ct_data *tree;  /* the tree to restore */
456      int k;               /* node to move down */
457  {
458      int v = s->heap[k];
459      int j = k << 1;  /* left son of k */
460      while (j <= s->heap_len) {
461          /* Set j to the smallest of the two sons: */
462          if (j < s->heap_len &&
463              smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
464              j++;
465          }
466          /* Exit if v is smaller than both sons */
467          if (smaller(tree, v, s->heap[j], s->depth)) break;
468  
469          /* Exchange v with the smallest son */
470          s->heap[k] = s->heap[j];  k = j;
471  
472          /* And continue down the tree, setting j to the left son of k */
473          j <<= 1;
474      }
475      s->heap[k] = v;
476  }
477  
478  /* ===========================================================================
479   * Compute the optimal bit lengths for a tree and update the total bit length
480   * for the current block.
481   * IN assertion: the fields freq and dad are set, heap[heap_max] and
482   *    above are the tree nodes sorted by increasing frequency.
483   * OUT assertions: the field len is set to the optimal bit length, the
484   *     array bl_count contains the frequencies for each bit length.
485   *     The length opt_len is updated; static_len is also updated if stree is
486   *     not null.
487   */
gen_bitlen(s,desc)488  local void gen_bitlen(s, desc)
489      deflate_state *s;
490      tree_desc *desc;    /* the tree descriptor */
491  {
492      ct_data *tree        = desc->dyn_tree;
493      int max_code         = desc->max_code;
494      const ct_data *stree = desc->stat_desc->static_tree;
495      const intf *extra    = desc->stat_desc->extra_bits;
496      int base             = desc->stat_desc->extra_base;
497      int max_length       = desc->stat_desc->max_length;
498      int h;              /* heap index */
499      int n, m;           /* iterate over the tree elements */
500      int bits;           /* bit length */
501      int xbits;          /* extra bits */
502      ush f;              /* frequency */
503      int overflow = 0;   /* number of elements with bit length too large */
504  
505      for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
506  
507      /* In a first pass, compute the optimal bit lengths (which may
508       * overflow in the case of the bit length tree).
509       */
510      tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
511  
512      for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
513          n = s->heap[h];
514          bits = tree[tree[n].Dad].Len + 1;
515          if (bits > max_length) bits = max_length, overflow++;
516          tree[n].Len = (ush)bits;
517          /* We overwrite tree[n].Dad which is no longer needed */
518  
519          if (n > max_code) continue; /* not a leaf node */
520  
521          s->bl_count[bits]++;
522          xbits = 0;
523          if (n >= base) xbits = extra[n-base];
524          f = tree[n].Freq;
525          s->opt_len += (ulg)f * (bits + xbits);
526          if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
527      }
528      if (overflow == 0) return;
529  
530      Trace((stderr,"\nbit length overflow\n"));
531      /* This happens for example on obj2 and pic of the Calgary corpus */
532  
533      /* Find the first bit length which could increase: */
534      do {
535          bits = max_length-1;
536          while (s->bl_count[bits] == 0) bits--;
537          s->bl_count[bits]--;      /* move one leaf down the tree */
538          s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
539          s->bl_count[max_length]--;
540          /* The brother of the overflow item also moves one step up,
541           * but this does not affect bl_count[max_length]
542           */
543          overflow -= 2;
544      } while (overflow > 0);
545  
546      /* Now recompute all bit lengths, scanning in increasing frequency.
547       * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
548       * lengths instead of fixing only the wrong ones. This idea is taken
549       * from 'ar' written by Haruhiko Okumura.)
550       */
551      for (bits = max_length; bits != 0; bits--) {
552          n = s->bl_count[bits];
553          while (n != 0) {
554              m = s->heap[--h];
555              if (m > max_code) continue;
556              if ((unsigned) tree[m].Len != (unsigned) bits) {
557                  Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
558                  s->opt_len += ((long)bits - (long)tree[m].Len)
559                                *(long)tree[m].Freq;
560                  tree[m].Len = (ush)bits;
561              }
562              n--;
563          }
564      }
565  }
566  
567  /* ===========================================================================
568   * Generate the codes for a given tree and bit counts (which need not be
569   * optimal).
570   * IN assertion: the array bl_count contains the bit length statistics for
571   * the given tree and the field len is set for all tree elements.
572   * OUT assertion: the field code is set for all tree elements of non
573   *     zero code length.
574   */
gen_codes(tree,max_code,bl_count)575  local void gen_codes (tree, max_code, bl_count)
576      ct_data *tree;             /* the tree to decorate */
577      int max_code;              /* largest code with non zero frequency */
578      ushf *bl_count;            /* number of codes at each bit length */
579  {
580      ush next_code[MAX_BITS+1]; /* next code value for each bit length */
581      ush code = 0;              /* running code value */
582      int bits;                  /* bit index */
583      int n;                     /* code index */
584  
585      /* The distribution counts are first used to generate the code values
586       * without bit reversal.
587       */
588      for (bits = 1; bits <= MAX_BITS; bits++) {
589          next_code[bits] = code = (code + bl_count[bits-1]) << 1;
590      }
591      /* Check that the bit counts in bl_count are consistent. The last code
592       * must be all ones.
593       */
594      Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
595              "inconsistent bit counts");
596      Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
597  
598      for (n = 0;  n <= max_code; n++) {
599          int len = tree[n].Len;
600          if (len == 0) continue;
601          /* Now reverse the bits */
602          tree[n].Code = bi_reverse(next_code[len]++, len);
603  
604          Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
605               n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
606      }
607  }
608  
609  /* ===========================================================================
610   * Construct one Huffman tree and assigns the code bit strings and lengths.
611   * Update the total bit length for the current block.
612   * IN assertion: the field freq is set for all tree elements.
613   * OUT assertions: the fields len and code are set to the optimal bit length
614   *     and corresponding code. The length opt_len is updated; static_len is
615   *     also updated if stree is not null. The field max_code is set.
616   */
build_tree(s,desc)617  local void build_tree(s, desc)
618      deflate_state *s;
619      tree_desc *desc; /* the tree descriptor */
620  {
621      ct_data *tree         = desc->dyn_tree;
622      const ct_data *stree  = desc->stat_desc->static_tree;
623      int elems             = desc->stat_desc->elems;
624      int n, m;          /* iterate over heap elements */
625      int max_code = -1; /* largest code with non zero frequency */
626      int node;          /* new node being created */
627  
628      /* Construct the initial heap, with least frequent element in
629       * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
630       * heap[0] is not used.
631       */
632      s->heap_len = 0, s->heap_max = HEAP_SIZE;
633  
634      for (n = 0; n < elems; n++) {
635          if (tree[n].Freq != 0) {
636              s->heap[++(s->heap_len)] = max_code = n;
637              s->depth[n] = 0;
638          } else {
639              tree[n].Len = 0;
640          }
641      }
642  
643      /* The pkzip format requires that at least one distance code exists,
644       * and that at least one bit should be sent even if there is only one
645       * possible code. So to avoid special checks later on we force at least
646       * two codes of non zero frequency.
647       */
648      while (s->heap_len < 2) {
649          node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
650          tree[node].Freq = 1;
651          s->depth[node] = 0;
652          s->opt_len--; if (stree) s->static_len -= stree[node].Len;
653          /* node is 0 or 1 so it does not have extra bits */
654      }
655      desc->max_code = max_code;
656  
657      /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
658       * establish sub-heaps of increasing lengths:
659       */
660      for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
661  
662      /* Construct the Huffman tree by repeatedly combining the least two
663       * frequent nodes.
664       */
665      node = elems;              /* next internal node of the tree */
666      do {
667          pqremove(s, tree, n);  /* n = node of least frequency */
668          m = s->heap[SMALLEST]; /* m = node of next least frequency */
669  
670          s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
671          s->heap[--(s->heap_max)] = m;
672  
673          /* Create a new node father of n and m */
674          tree[node].Freq = tree[n].Freq + tree[m].Freq;
675          s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
676                                  s->depth[n] : s->depth[m]) + 1);
677          tree[n].Dad = tree[m].Dad = (ush)node;
678  #ifdef DUMP_BL_TREE
679          if (tree == s->bl_tree) {
680              fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
681                      node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
682          }
683  #endif
684          /* and insert the new node in the heap */
685          s->heap[SMALLEST] = node++;
686          pqdownheap(s, tree, SMALLEST);
687  
688      } while (s->heap_len >= 2);
689  
690      s->heap[--(s->heap_max)] = s->heap[SMALLEST];
691  
692      /* At this point, the fields freq and dad are set. We can now
693       * generate the bit lengths.
694       */
695      gen_bitlen(s, (tree_desc *)desc);
696  
697      /* The field len is now set, we can generate the bit codes */
698      gen_codes ((ct_data *)tree, max_code, s->bl_count);
699  }
700  
701  /* ===========================================================================
702   * Scan a literal or distance tree to determine the frequencies of the codes
703   * in the bit length tree.
704   */
scan_tree(s,tree,max_code)705  local void scan_tree (s, tree, max_code)
706      deflate_state *s;
707      ct_data *tree;   /* the tree to be scanned */
708      int max_code;    /* and its largest code of non zero frequency */
709  {
710      int n;                     /* iterates over all tree elements */
711      int prevlen = -1;          /* last emitted length */
712      int curlen;                /* length of current code */
713      int nextlen = tree[0].Len; /* length of next code */
714      int count = 0;             /* repeat count of the current code */
715      int max_count = 7;         /* max repeat count */
716      int min_count = 4;         /* min repeat count */
717  
718      if (nextlen == 0) max_count = 138, min_count = 3;
719      tree[max_code+1].Len = (ush)0xffff; /* guard */
720  
721      for (n = 0; n <= max_code; n++) {
722          curlen = nextlen; nextlen = tree[n+1].Len;
723          if (++count < max_count && curlen == nextlen) {
724              continue;
725          } else if (count < min_count) {
726              s->bl_tree[curlen].Freq += count;
727          } else if (curlen != 0) {
728              if (curlen != prevlen) s->bl_tree[curlen].Freq++;
729              s->bl_tree[REP_3_6].Freq++;
730          } else if (count <= 10) {
731              s->bl_tree[REPZ_3_10].Freq++;
732          } else {
733              s->bl_tree[REPZ_11_138].Freq++;
734          }
735          count = 0; prevlen = curlen;
736          if (nextlen == 0) {
737              max_count = 138, min_count = 3;
738          } else if (curlen == nextlen) {
739              max_count = 6, min_count = 3;
740          } else {
741              max_count = 7, min_count = 4;
742          }
743      }
744  }
745  
746  /* ===========================================================================
747   * Send a literal or distance tree in compressed form, using the codes in
748   * bl_tree.
749   */
send_tree(s,tree,max_code)750  local void send_tree (s, tree, max_code)
751      deflate_state *s;
752      ct_data *tree; /* the tree to be scanned */
753      int max_code;       /* and its largest code of non zero frequency */
754  {
755      int n;                     /* iterates over all tree elements */
756      int prevlen = -1;          /* last emitted length */
757      int curlen;                /* length of current code */
758      int nextlen = tree[0].Len; /* length of next code */
759      int count = 0;             /* repeat count of the current code */
760      int max_count = 7;         /* max repeat count */
761      int min_count = 4;         /* min repeat count */
762  
763      /* tree[max_code+1].Len = -1; */  /* guard already set */
764      if (nextlen == 0) max_count = 138, min_count = 3;
765  
766      for (n = 0; n <= max_code; n++) {
767          curlen = nextlen; nextlen = tree[n+1].Len;
768          if (++count < max_count && curlen == nextlen) {
769              continue;
770          } else if (count < min_count) {
771              do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
772  
773          } else if (curlen != 0) {
774              if (curlen != prevlen) {
775                  send_code(s, curlen, s->bl_tree); count--;
776              }
777              Assert(count >= 3 && count <= 6, " 3_6?");
778              send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
779  
780          } else if (count <= 10) {
781              send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
782  
783          } else {
784              send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
785          }
786          count = 0; prevlen = curlen;
787          if (nextlen == 0) {
788              max_count = 138, min_count = 3;
789          } else if (curlen == nextlen) {
790              max_count = 6, min_count = 3;
791          } else {
792              max_count = 7, min_count = 4;
793          }
794      }
795  }
796  
797  /* ===========================================================================
798   * Construct the Huffman tree for the bit lengths and return the index in
799   * bl_order of the last bit length code to send.
800   */
build_bl_tree(s)801  local int build_bl_tree(s)
802      deflate_state *s;
803  {
804      int max_blindex;  /* index of last bit length code of non zero freq */
805  
806      /* Determine the bit length frequencies for literal and distance trees */
807      scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
808      scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
809  
810      /* Build the bit length tree: */
811      build_tree(s, (tree_desc *)(&(s->bl_desc)));
812      /* opt_len now includes the length of the tree representations, except
813       * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
814       */
815  
816      /* Determine the number of bit length codes to send. The pkzip format
817       * requires that at least 4 bit length codes be sent. (appnote.txt says
818       * 3 but the actual value used is 4.)
819       */
820      for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
821          if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
822      }
823      /* Update opt_len to include the bit length tree and counts */
824      s->opt_len += 3*(max_blindex+1) + 5+5+4;
825      Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
826              s->opt_len, s->static_len));
827  
828      return max_blindex;
829  }
830  
831  /* ===========================================================================
832   * Send the header for a block using dynamic Huffman trees: the counts, the
833   * lengths of the bit length codes, the literal tree and the distance tree.
834   * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
835   */
send_all_trees(s,lcodes,dcodes,blcodes)836  local void send_all_trees(s, lcodes, dcodes, blcodes)
837      deflate_state *s;
838      int lcodes, dcodes, blcodes; /* number of codes for each tree */
839  {
840      int rank;                    /* index in bl_order */
841  
842      Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
843      Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
844              "too many codes");
845      Tracev((stderr, "\nbl counts: "));
846      send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
847      send_bits(s, dcodes-1,   5);
848      send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
849      for (rank = 0; rank < blcodes; rank++) {
850          Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
851          send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
852      }
853      Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
854  
855      send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
856      Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
857  
858      send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
859      Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
860  }
861  
862  /* ===========================================================================
863   * Send a stored block
864   */
_tr_stored_block(s,buf,stored_len,last)865  void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
866      deflate_state *s;
867      charf *buf;       /* input block */
868      ulg stored_len;   /* length of input block */
869      int last;         /* one if this is the last block for a file */
870  {
871      send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
872  #ifdef DEBUG
873      s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
874      s->compressed_len += (stored_len + 4) << 3;
875  #endif
876      copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
877  }
878  
879  /* ===========================================================================
880   * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
881   */
_tr_flush_bits(s)882  void ZLIB_INTERNAL _tr_flush_bits(s)
883      deflate_state *s;
884  {
885      bi_flush(s);
886  }
887  
888  /* ===========================================================================
889   * Send one empty static block to give enough lookahead for inflate.
890   * This takes 10 bits, of which 7 may remain in the bit buffer.
891   */
_tr_align(s)892  void ZLIB_INTERNAL _tr_align(s)
893      deflate_state *s;
894  {
895      send_bits(s, STATIC_TREES<<1, 3);
896      send_code(s, END_BLOCK, static_ltree);
897  #ifdef DEBUG
898      s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
899  #endif
900      bi_flush(s);
901  }
902  
903  /* ===========================================================================
904   * Determine the best encoding for the current block: dynamic trees, static
905   * trees or store, and output the encoded block to the zip file.
906   */
_tr_flush_block(s,buf,stored_len,last)907  void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
908      deflate_state *s;
909      charf *buf;       /* input block, or NULL if too old */
910      ulg stored_len;   /* length of input block */
911      int last;         /* one if this is the last block for a file */
912  {
913      ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
914      int max_blindex = 0;  /* index of last bit length code of non zero freq */
915  
916      /* Build the Huffman trees unless a stored block is forced */
917      if (s->level > 0) {
918  
919          /* Check if the file is binary or text */
920          if (s->strm->data_type == Z_UNKNOWN)
921              s->strm->data_type = detect_data_type(s);
922  
923          /* Construct the literal and distance trees */
924          build_tree(s, (tree_desc *)(&(s->l_desc)));
925          Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
926                  s->static_len));
927  
928          build_tree(s, (tree_desc *)(&(s->d_desc)));
929          Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
930                  s->static_len));
931          /* At this point, opt_len and static_len are the total bit lengths of
932           * the compressed block data, excluding the tree representations.
933           */
934  
935          /* Build the bit length tree for the above two trees, and get the index
936           * in bl_order of the last bit length code to send.
937           */
938          max_blindex = build_bl_tree(s);
939  
940          /* Determine the best encoding. Compute the block lengths in bytes. */
941          opt_lenb = (s->opt_len+3+7)>>3;
942          static_lenb = (s->static_len+3+7)>>3;
943  
944          Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
945                  opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
946                  s->last_lit));
947  
948          if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
949  
950      } else {
951          Assert(buf != (char*)0, "lost buf");
952          opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
953      }
954  
955  #ifdef FORCE_STORED
956      if (buf != (char*)0) { /* force stored block */
957  #else
958      if (stored_len+4 <= opt_lenb && buf != (char*)0) {
959                         /* 4: two words for the lengths */
960  #endif
961          /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
962           * Otherwise we can't have processed more than WSIZE input bytes since
963           * the last block flush, because compression would have been
964           * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
965           * transform a block into a stored block.
966           */
967          _tr_stored_block(s, buf, stored_len, last);
968  
969  #ifdef FORCE_STATIC
970      } else if (static_lenb >= 0) { /* force static trees */
971  #else
972      } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
973  #endif
974          send_bits(s, (STATIC_TREES<<1)+last, 3);
975          compress_block(s, (const ct_data *)static_ltree,
976                         (const ct_data *)static_dtree);
977  #ifdef DEBUG
978          s->compressed_len += 3 + s->static_len;
979  #endif
980      } else {
981          send_bits(s, (DYN_TREES<<1)+last, 3);
982          send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
983                         max_blindex+1);
984          compress_block(s, (const ct_data *)s->dyn_ltree,
985                         (const ct_data *)s->dyn_dtree);
986  #ifdef DEBUG
987          s->compressed_len += 3 + s->opt_len;
988  #endif
989      }
990      Assert (s->compressed_len == s->bits_sent, "bad compressed size");
991      /* The above check is made mod 2^32, for files larger than 512 MB
992       * and uLong implemented on 32 bits.
993       */
994      init_block(s);
995  
996      if (last) {
997          bi_windup(s);
998  #ifdef DEBUG
999          s->compressed_len += 7;  /* align on byte boundary */
1000  #endif
1001      }
1002      Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1003             s->compressed_len-7*last));
1004  }
1005  
1006  /* ===========================================================================
1007   * Save the match info and tally the frequency counts. Return true if
1008   * the current block must be flushed.
1009   */
_tr_tally(s,dist,lc)1010  int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1011      deflate_state *s;
1012      unsigned dist;  /* distance of matched string */
1013      unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1014  {
1015      s->d_buf[s->last_lit] = (ush)dist;
1016      s->l_buf[s->last_lit++] = (uch)lc;
1017      if (dist == 0) {
1018          /* lc is the unmatched char */
1019          s->dyn_ltree[lc].Freq++;
1020      } else {
1021          s->matches++;
1022          /* Here, lc is the match length - MIN_MATCH */
1023          dist--;             /* dist = match distance - 1 */
1024          Assert((ush)dist < (ush)MAX_DIST(s) &&
1025                 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1026                 (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1027  
1028          s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1029          s->dyn_dtree[d_code(dist)].Freq++;
1030      }
1031  
1032  #ifdef TRUNCATE_BLOCK
1033      /* Try to guess if it is profitable to stop the current block here */
1034      if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1035          /* Compute an upper bound for the compressed length */
1036          ulg out_length = (ulg)s->last_lit*8L;
1037          ulg in_length = (ulg)((long)s->strstart - s->block_start);
1038          int dcode;
1039          for (dcode = 0; dcode < D_CODES; dcode++) {
1040              out_length += (ulg)s->dyn_dtree[dcode].Freq *
1041                  (5L+extra_dbits[dcode]);
1042          }
1043          out_length >>= 3;
1044          Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1045                 s->last_lit, in_length, out_length,
1046                 100L - out_length*100L/in_length));
1047          if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1048      }
1049  #endif
1050      return (s->last_lit == s->lit_bufsize-1);
1051      /* We avoid equality with lit_bufsize because of wraparound at 64K
1052       * on 16 bit machines and because stored blocks are restricted to
1053       * 64K-1 bytes.
1054       */
1055  }
1056  
1057  /* ===========================================================================
1058   * Send the block data compressed using the given Huffman trees
1059   */
compress_block(s,ltree,dtree)1060  local void compress_block(s, ltree, dtree)
1061      deflate_state *s;
1062      const ct_data *ltree; /* literal tree */
1063      const ct_data *dtree; /* distance tree */
1064  {
1065      unsigned dist;      /* distance of matched string */
1066      int lc;             /* match length or unmatched char (if dist == 0) */
1067      unsigned lx = 0;    /* running index in l_buf */
1068      unsigned code;      /* the code to send */
1069      int extra;          /* number of extra bits to send */
1070  
1071      if (s->last_lit != 0) do {
1072          dist = s->d_buf[lx];
1073          lc = s->l_buf[lx++];
1074          if (dist == 0) {
1075              send_code(s, lc, ltree); /* send a literal byte */
1076              Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1077          } else {
1078              /* Here, lc is the match length - MIN_MATCH */
1079              code = _length_code[lc];
1080              send_code(s, code+LITERALS+1, ltree); /* send the length code */
1081              extra = extra_lbits[code];
1082              if (extra != 0) {
1083                  lc -= base_length[code];
1084                  send_bits(s, lc, extra);       /* send the extra length bits */
1085              }
1086              dist--; /* dist is now the match distance - 1 */
1087              code = d_code(dist);
1088              Assert (code < D_CODES, "bad d_code");
1089  
1090              send_code(s, code, dtree);       /* send the distance code */
1091              extra = extra_dbits[code];
1092              if (extra != 0) {
1093                  dist -= base_dist[code];
1094                  send_bits(s, dist, extra);   /* send the extra distance bits */
1095              }
1096          } /* literal or match pair ? */
1097  
1098          /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1099          Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1100                 "pendingBuf overflow");
1101  
1102      } while (lx < s->last_lit);
1103  
1104      send_code(s, END_BLOCK, ltree);
1105  }
1106  
1107  /* ===========================================================================
1108   * Check if the data type is TEXT or BINARY, using the following algorithm:
1109   * - TEXT if the two conditions below are satisfied:
1110   *    a) There are no non-portable control characters belonging to the
1111   *       "black list" (0..6, 14..25, 28..31).
1112   *    b) There is at least one printable character belonging to the
1113   *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1114   * - BINARY otherwise.
1115   * - The following partially-portable control characters form a
1116   *   "gray list" that is ignored in this detection algorithm:
1117   *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1118   * IN assertion: the fields Freq of dyn_ltree are set.
1119   */
detect_data_type(s)1120  local int detect_data_type(s)
1121      deflate_state *s;
1122  {
1123      /* black_mask is the bit mask of black-listed bytes
1124       * set bits 0..6, 14..25, and 28..31
1125       * 0xf3ffc07f = binary 11110011111111111100000001111111
1126       */
1127      unsigned long black_mask = 0xf3ffc07fUL;
1128      int n;
1129  
1130      /* Check for non-textual ("black-listed") bytes. */
1131      for (n = 0; n <= 31; n++, black_mask >>= 1)
1132          if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1133              return Z_BINARY;
1134  
1135      /* Check for textual ("white-listed") bytes. */
1136      if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1137              || s->dyn_ltree[13].Freq != 0)
1138          return Z_TEXT;
1139      for (n = 32; n < LITERALS; n++)
1140          if (s->dyn_ltree[n].Freq != 0)
1141              return Z_TEXT;
1142  
1143      /* There are no "black-listed" or "white-listed" bytes:
1144       * this stream either is empty or has tolerated ("gray-listed") bytes only.
1145       */
1146      return Z_BINARY;
1147  }
1148  
1149  /* ===========================================================================
1150   * Reverse the first len bits of a code, using straightforward code (a faster
1151   * method would use a table)
1152   * IN assertion: 1 <= len <= 15
1153   */
bi_reverse(code,len)1154  local unsigned bi_reverse(code, len)
1155      unsigned code; /* the value to invert */
1156      int len;       /* its bit length */
1157  {
1158      register unsigned res = 0;
1159      do {
1160          res |= code & 1;
1161          code >>= 1, res <<= 1;
1162      } while (--len > 0);
1163      return res >> 1;
1164  }
1165  
1166  /* ===========================================================================
1167   * Flush the bit buffer, keeping at most 7 bits in it.
1168   */
bi_flush(s)1169  local void bi_flush(s)
1170      deflate_state *s;
1171  {
1172      if (s->bi_valid == 16) {
1173          put_short(s, s->bi_buf);
1174          s->bi_buf = 0;
1175          s->bi_valid = 0;
1176      } else if (s->bi_valid >= 8) {
1177          put_byte(s, (Byte)s->bi_buf);
1178          s->bi_buf >>= 8;
1179          s->bi_valid -= 8;
1180      }
1181  }
1182  
1183  /* ===========================================================================
1184   * Flush the bit buffer and align the output on a byte boundary
1185   */
bi_windup(s)1186  local void bi_windup(s)
1187      deflate_state *s;
1188  {
1189      if (s->bi_valid > 8) {
1190          put_short(s, s->bi_buf);
1191      } else if (s->bi_valid > 0) {
1192          put_byte(s, (Byte)s->bi_buf);
1193      }
1194      s->bi_buf = 0;
1195      s->bi_valid = 0;
1196  #ifdef DEBUG
1197      s->bits_sent = (s->bits_sent+7) & ~7;
1198  #endif
1199  }
1200  
1201  /* ===========================================================================
1202   * Copy a stored block, storing first the length and its
1203   * one's complement if requested.
1204   */
copy_block(s,buf,len,header)1205  local void copy_block(s, buf, len, header)
1206      deflate_state *s;
1207      charf    *buf;    /* the input data */
1208      unsigned len;     /* its length */
1209      int      header;  /* true if block header must be written */
1210  {
1211      bi_windup(s);        /* align on byte boundary */
1212  
1213      if (header) {
1214          put_short(s, (ush)len);
1215          put_short(s, (ush)~len);
1216  #ifdef DEBUG
1217          s->bits_sent += 2*16;
1218  #endif
1219      }
1220  #ifdef DEBUG
1221      s->bits_sent += (ulg)len<<3;
1222  #endif
1223      while (len--) {
1224          put_byte(s, *buf++);
1225      }
1226  }
1227