/external/ceres-solver/internal/ceres/ |
D | symmetric_linear_solver_test.cc | 93 double* Ax = A->mutable_values(); in TEST() local 102 Ax[0] = 2.; in TEST() 103 Ax[1] = -1.; in TEST() 104 Ax[2] = 0; in TEST() 105 Ax[3] = -1.; in TEST() 106 Ax[4] = 2; in TEST() 107 Ax[5] = -1; in TEST() 108 Ax[6] = 0; in TEST() 109 Ax[7] = -1; in TEST() 110 Ax[8] = 2; in TEST()
|
D | linear_least_squares_problems.cc | 95 double* Ax = A->mutable_values(); in LinearLeastSquaresProblem0() local 106 Ax[0] = 1.; in LinearLeastSquaresProblem0() 107 Ax[1] = 2.; in LinearLeastSquaresProblem0() 108 Ax[2] = 3.; in LinearLeastSquaresProblem0() 109 Ax[3] = 4.; in LinearLeastSquaresProblem0() 110 Ax[4] = 6; in LinearLeastSquaresProblem0() 111 Ax[5] = -10; in LinearLeastSquaresProblem0()
|
/external/eigen/Eigen/src/UmfPackSupport/ |
D | UmfPackSupport.h | 32 const int Ap[], const int Ai[], const double Ax[], void **Symbolic, in umfpack_symbolic() argument 35 return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info); in umfpack_symbolic() 39 … const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic, in umfpack_symbolic() argument 42 return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info); in umfpack_symbolic() 45 inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[], in umfpack_numeric() argument 49 return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info); in umfpack_numeric() 52 inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[], in umfpack_numeric() argument 56 return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info); in umfpack_numeric() 59 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[], in umfpack_solve() argument 63 return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info); in umfpack_solve() [all …]
|
/external/eigen/bench/ |
D | sparse_setter.cpp | 304 const Values Ax, in coo_tocsr() argument 330 Bx[dest] = Ax[n]; in coo_tocsr() 354 T Ax[]) in csr_sort_indices() argument 365 temp.push_back(std::make_pair(Aj[jj],Ax[jj])); in csr_sort_indices() 372 Ax[jj] = temp[n].second; in csr_sort_indices() 382 T Ax[]) in csr_sum_duplicates() argument 391 T x = Ax[jj]; in csr_sum_duplicates() 394 x += Ax[jj]; in csr_sum_duplicates() 398 Ax[nnz] = x; in csr_sum_duplicates()
|
/external/v8/test/mjsunit/harmony/ |
D | module-resolution.js | 49 let Ax = A.x variable 67 let Ax = A.x
|
/external/skia/src/core/ |
D | SkGeometry.cpp | 255 SkScalar Ax = src[1].fX - src[0].fX; in SkFindQuadMaxCurvature() local 261 (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t); in SkFindQuadMaxCurvature() 544 SkScalar Ax = src[1].fX - src[0].fX; in SkFindCubicInflections() local 552 Ax*Cy - Ay*Cx, in SkFindCubicInflections() 553 Ax*By - Ay*Bx, in SkFindCubicInflections()
|
/external/skia/src/pathops/ |
D | SkPathOpsCubic.cpp | 492 double Ax = fPts[1].fX - fPts[0].fX; in findInflections() local 498 return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues); in findInflections()
|
/external/pdfium/third_party/freetype/src/raster/ |
D | ftraster.c | 1005 Long Ix, Rx, Ax; in Line_Up() local 1087 Ax = -Dy; in Line_Up() 1095 Ax += Rx; in Line_Up() 1096 if ( Ax >= 0 ) in Line_Up() 1098 Ax -= Dy; in Line_Up()
|
/external/freetype/src/raster/ |
D | ftraster.c | 1005 Long Ix, Rx, Ax; in Line_Up() local 1087 Ax = -Dy; in Line_Up() 1095 Ax += Rx; in Line_Up() 1096 if ( Ax >= 0 ) in Line_Up() 1098 Ax -= Dy; in Line_Up()
|
/external/svox/pico_resources/tools/LingwareBuilding/PicoLingware_source_files/pkb/en-GB/ |
D | en-GB_kdt_posd.pkb | 62 @Axx2Hk<̠fj�ŗ9 �4����xzd� �!��.l_& 202 …tŎ/B�7sl�!����|H���n���-�/8��x h��@� BP %�B!+K�E���AxԼ�^^/5��K�Sd���zI�_…
|
/external/vboot_reference/utility/ |
D | dev_debug_vboot | 369 loghead od -Ax -tx1 "${kfile}"
|
/external/eigen/unsupported/Eigen/ |
D | MPRealSupport | 51 // Solve Ax=b using LU
|
/external/eigen/doc/ |
D | AsciiQuickReference.txt | 189 // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
|
D | TutorialLinearAlgebra.dox | 14 \f[ Ax \: = \: b \f]
|
D | SparseLinearSystems.dox | 62 // solve Ax = b
|
D | TutorialSparse.dox | 87 Such problem can be mathematically expressed as a linear problem of the form \f$ Ax=b \f$ where \f$…
|
/external/chromium-trace/catapult/third_party/gsutil/third_party/httplib2/python2/httplib2/ |
D | cacerts.txt | 339 qsGgtG7rL+VXxbErQHDbWk2hjh+9Ax/YA9SPTJlxvOKCzFjomDqG04Y48wApHwID
|
/external/chromium-trace/catapult/third_party/gsutil/third_party/httplib2/python3/httplib2/ |
D | cacerts.txt | 339 qsGgtG7rL+VXxbErQHDbWk2hjh+9Ax/YA9SPTJlxvOKCzFjomDqG04Y48wApHwID
|
/external/svox/pico_resources/tools/LingwareBuilding/PicoLingware_source_files/pkb/fr-FR/ |
D | fr-FR_kdt_posp.pkb | 71 (&H+��(���A�Cp�ć��Ɓ�I�H�9�<oq5R@AR=��F(6�f�Kq���Ax��c���p 8Hy������…
|
/external/svox/pico_resources/tools/LingwareBuilding/PicoLingware_source_files/pkb/de-DE/ |
D | de-DE_kdt_g2p.pkb | 10 …B�p%Q9�`�`Gm�c�à �sV�&o@�* ����_1��mX��A>z�D ���r@Ax���Z���A�vW&P����p…
|
/external/chromium-trace/catapult/third_party/gsutil/gslib/data/ |
D | cacerts.txt | 339 qsGgtG7rL+VXxbErQHDbWk2hjh+9Ax/YA9SPTJlxvOKCzFjomDqG04Y48wApHwID
|
/external/icu/icu4j/main/tests/collate/src/com/ibm/icu/dev/data/ |
D | collationtest.txt | 894 <3 Ax
|
/external/icu/icu4c/source/test/testdata/ |
D | collationtest.txt | 894 <3 Ax
|
/external/icu/android_icu4j/src/main/tests/android/icu/dev/data/ |
D | collationtest.txt | 894 <3 Ax
|
/external/ceres-solver/docs/source/ |
D | solving.rst | 674 *preconditioned* system. Given a linear system, :math:`Ax =b` and a 676 :math:`M^{-1}Ax = M^{-1}b`. The resulting algorithm is known as
|