• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <functional>
6 
7 #include "src/codegen.h"
8 #include "src/compiler/js-operator.h"
9 #include "src/compiler/node-properties.h"
10 #include "src/compiler/operator-properties.h"
11 #include "test/cctest/types-fuzz.h"
12 #include "test/unittests/compiler/graph-unittest.h"
13 
14 namespace v8 {
15 namespace internal {
16 namespace compiler {
17 
18 // TODO(titzer): generate a large set of deterministic inputs for these tests.
19 class TyperTest : public TypedGraphTest {
20  public:
TyperTest()21   TyperTest()
22       : TypedGraphTest(3),
23         types_(zone(), isolate(), random_number_generator()),
24         javascript_(zone()) {
25     context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start());
26     rng_ = random_number_generator();
27 
28     integers.push_back(0);
29     integers.push_back(0);
30     integers.push_back(-1);
31     integers.push_back(+1);
32     integers.push_back(-V8_INFINITY);
33     integers.push_back(+V8_INFINITY);
34     for (int i = 0; i < 5; ++i) {
35       double x = rng_->NextInt();
36       integers.push_back(x);
37       x *= rng_->NextInt();
38       if (!IsMinusZero(x)) integers.push_back(x);
39     }
40 
41     int32s.push_back(0);
42     int32s.push_back(0);
43     int32s.push_back(-1);
44     int32s.push_back(+1);
45     int32s.push_back(kMinInt);
46     int32s.push_back(kMaxInt);
47     for (int i = 0; i < 10; ++i) {
48       int32s.push_back(rng_->NextInt());
49     }
50   }
51 
52   Types<Type, Type*, Zone> types_;
53   JSOperatorBuilder javascript_;
54   BinaryOperationHints const hints_ = BinaryOperationHints::Any();
55   Node* context_node_;
56   v8::base::RandomNumberGenerator* rng_;
57   std::vector<double> integers;
58   std::vector<double> int32s;
59 
TypeBinaryOp(const Operator * op,Type * lhs,Type * rhs)60   Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) {
61     Node* p0 = Parameter(0);
62     Node* p1 = Parameter(1);
63     NodeProperties::SetType(p0, lhs);
64     NodeProperties::SetType(p1, rhs);
65     std::vector<Node*> inputs;
66     inputs.push_back(p0);
67     inputs.push_back(p1);
68     if (OperatorProperties::HasContextInput(op)) {
69       inputs.push_back(context_node_);
70     }
71     for (int i = 0; i < OperatorProperties::GetFrameStateInputCount(op); i++) {
72       inputs.push_back(EmptyFrameState());
73     }
74     for (int i = 0; i < op->EffectInputCount(); i++) {
75       inputs.push_back(graph()->start());
76     }
77     for (int i = 0; i < op->ControlInputCount(); i++) {
78       inputs.push_back(graph()->start());
79     }
80     Node* n = graph()->NewNode(op, static_cast<int>(inputs.size()),
81                                &(inputs.front()));
82     return NodeProperties::GetType(n);
83   }
84 
RandomRange(bool int32=false)85   Type* RandomRange(bool int32 = false) {
86     std::vector<double>& numbers = int32 ? int32s : integers;
87     double i = numbers[rng_->NextInt(static_cast<int>(numbers.size()))];
88     double j = numbers[rng_->NextInt(static_cast<int>(numbers.size()))];
89     return NewRange(i, j);
90   }
91 
NewRange(double i,double j)92   Type* NewRange(double i, double j) {
93     if (i > j) std::swap(i, j);
94     return Type::Range(i, j, zone());
95   }
96 
RandomInt(double min,double max)97   double RandomInt(double min, double max) {
98     switch (rng_->NextInt(4)) {
99       case 0:
100         return min;
101       case 1:
102         return max;
103       default:
104         break;
105     }
106     if (min == +V8_INFINITY) return +V8_INFINITY;
107     if (max == -V8_INFINITY) return -V8_INFINITY;
108     if (min == -V8_INFINITY && max == +V8_INFINITY) {
109       return rng_->NextInt() * static_cast<double>(rng_->NextInt());
110     }
111     double result = nearbyint(min + (max - min) * rng_->NextDouble());
112     if (IsMinusZero(result)) return 0;
113     if (std::isnan(result)) return rng_->NextInt(2) ? min : max;
114     DCHECK(min <= result && result <= max);
115     return result;
116   }
117 
RandomInt(Type::RangeType * range)118   double RandomInt(Type::RangeType* range) {
119     return RandomInt(range->Min(), range->Max());
120   }
121 
122   // Careful, this function runs O(max_width^5) trials.
123   template <class BinaryFunction>
TestBinaryArithOpCloseToZero(const Operator * op,BinaryFunction opfun,int max_width)124   void TestBinaryArithOpCloseToZero(const Operator* op, BinaryFunction opfun,
125                                     int max_width) {
126     const int min_min = -2 - max_width / 2;
127     const int max_min = 2 + max_width / 2;
128     for (int width = 0; width < max_width; width++) {
129       for (int lmin = min_min; lmin <= max_min; lmin++) {
130         for (int rmin = min_min; rmin <= max_min; rmin++) {
131           Type* r1 = NewRange(lmin, lmin + width);
132           Type* r2 = NewRange(rmin, rmin + width);
133           Type* expected_type = TypeBinaryOp(op, r1, r2);
134 
135           for (int x1 = lmin; x1 < lmin + width; x1++) {
136             for (int x2 = rmin; x2 < rmin + width; x2++) {
137               double result_value = opfun(x1, x2);
138               Type* result_type = Type::Constant(
139                   isolate()->factory()->NewNumber(result_value), zone());
140               EXPECT_TRUE(result_type->Is(expected_type));
141             }
142           }
143         }
144       }
145     }
146   }
147 
148   template <class BinaryFunction>
TestBinaryArithOp(const Operator * op,BinaryFunction opfun)149   void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) {
150     TestBinaryArithOpCloseToZero(op, opfun, 8);
151     for (int i = 0; i < 100; ++i) {
152       Type::RangeType* r1 = RandomRange()->AsRange();
153       Type::RangeType* r2 = RandomRange()->AsRange();
154       Type* expected_type = TypeBinaryOp(op, r1, r2);
155       for (int i = 0; i < 10; i++) {
156         double x1 = RandomInt(r1);
157         double x2 = RandomInt(r2);
158         double result_value = opfun(x1, x2);
159         Type* result_type = Type::Constant(
160             isolate()->factory()->NewNumber(result_value), zone());
161         EXPECT_TRUE(result_type->Is(expected_type));
162       }
163     }
164   }
165 
166   template <class BinaryFunction>
TestBinaryCompareOp(const Operator * op,BinaryFunction opfun)167   void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) {
168     for (int i = 0; i < 100; ++i) {
169       Type::RangeType* r1 = RandomRange()->AsRange();
170       Type::RangeType* r2 = RandomRange()->AsRange();
171       Type* expected_type = TypeBinaryOp(op, r1, r2);
172       for (int i = 0; i < 10; i++) {
173         double x1 = RandomInt(r1);
174         double x2 = RandomInt(r2);
175         bool result_value = opfun(x1, x2);
176         Type* result_type =
177             Type::Constant(result_value ? isolate()->factory()->true_value()
178                                         : isolate()->factory()->false_value(),
179                            zone());
180         EXPECT_TRUE(result_type->Is(expected_type));
181       }
182     }
183   }
184 
185   template <class BinaryFunction>
TestBinaryBitOp(const Operator * op,BinaryFunction opfun)186   void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) {
187     for (int i = 0; i < 100; ++i) {
188       Type::RangeType* r1 = RandomRange(true)->AsRange();
189       Type::RangeType* r2 = RandomRange(true)->AsRange();
190       Type* expected_type = TypeBinaryOp(op, r1, r2);
191       for (int i = 0; i < 10; i++) {
192         int32_t x1 = static_cast<int32_t>(RandomInt(r1));
193         int32_t x2 = static_cast<int32_t>(RandomInt(r2));
194         double result_value = opfun(x1, x2);
195         Type* result_type = Type::Constant(
196             isolate()->factory()->NewNumber(result_value), zone());
197         EXPECT_TRUE(result_type->Is(expected_type));
198       }
199     }
200   }
201 
RandomSubtype(Type * type)202   Type* RandomSubtype(Type* type) {
203     Type* subtype;
204     do {
205       subtype = types_.Fuzz();
206     } while (!subtype->Is(type));
207     return subtype;
208   }
209 
TestBinaryMonotonicity(const Operator * op)210   void TestBinaryMonotonicity(const Operator* op) {
211     for (int i = 0; i < 50; ++i) {
212       Type* type1 = types_.Fuzz();
213       Type* type2 = types_.Fuzz();
214       Type* type = TypeBinaryOp(op, type1, type2);
215       Type* subtype1 = RandomSubtype(type1);
216       Type* subtype2 = RandomSubtype(type2);
217       Type* subtype = TypeBinaryOp(op, subtype1, subtype2);
218       EXPECT_TRUE(subtype->Is(type));
219     }
220   }
221 };
222 
223 
224 namespace {
225 
shift_left(int32_t x,int32_t y)226 int32_t shift_left(int32_t x, int32_t y) { return x << y; }
shift_right(int32_t x,int32_t y)227 int32_t shift_right(int32_t x, int32_t y) { return x >> y; }
bit_or(int32_t x,int32_t y)228 int32_t bit_or(int32_t x, int32_t y) { return x | y; }
bit_and(int32_t x,int32_t y)229 int32_t bit_and(int32_t x, int32_t y) { return x & y; }
bit_xor(int32_t x,int32_t y)230 int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; }
231 
232 }  // namespace
233 
234 
235 //------------------------------------------------------------------------------
236 // Soundness
237 //   For simplicity, we currently only test soundness on expression operators
238 //   that have a direct equivalent in C++.  Also, testing is currently limited
239 //   to ranges as input types.
240 
241 
TEST_F(TyperTest,TypeJSAdd)242 TEST_F(TyperTest, TypeJSAdd) {
243   TestBinaryArithOp(javascript_.Add(LanguageMode::SLOPPY, hints_),
244                     std::plus<double>());
245   TestBinaryArithOp(javascript_.Add(LanguageMode::STRONG, hints_),
246                     std::plus<double>());
247 }
248 
249 
TEST_F(TyperTest,TypeJSSubtract)250 TEST_F(TyperTest, TypeJSSubtract) {
251   TestBinaryArithOp(javascript_.Subtract(LanguageMode::SLOPPY, hints_),
252                     std::minus<double>());
253   TestBinaryArithOp(javascript_.Subtract(LanguageMode::STRONG, hints_),
254                     std::minus<double>());
255 }
256 
257 
TEST_F(TyperTest,TypeJSMultiply)258 TEST_F(TyperTest, TypeJSMultiply) {
259   TestBinaryArithOp(javascript_.Multiply(LanguageMode::SLOPPY, hints_),
260                     std::multiplies<double>());
261   TestBinaryArithOp(javascript_.Multiply(LanguageMode::STRONG, hints_),
262                     std::multiplies<double>());
263 }
264 
265 
TEST_F(TyperTest,TypeJSDivide)266 TEST_F(TyperTest, TypeJSDivide) {
267   TestBinaryArithOp(javascript_.Divide(LanguageMode::SLOPPY, hints_),
268                     std::divides<double>());
269   TestBinaryArithOp(javascript_.Divide(LanguageMode::STRONG, hints_),
270                     std::divides<double>());
271 }
272 
273 
TEST_F(TyperTest,TypeJSModulus)274 TEST_F(TyperTest, TypeJSModulus) {
275   TestBinaryArithOp(javascript_.Modulus(LanguageMode::SLOPPY, hints_), modulo);
276   TestBinaryArithOp(javascript_.Modulus(LanguageMode::STRONG, hints_), modulo);
277 }
278 
279 
TEST_F(TyperTest,TypeJSBitwiseOr)280 TEST_F(TyperTest, TypeJSBitwiseOr) {
281   TestBinaryBitOp(javascript_.BitwiseOr(LanguageMode::SLOPPY, hints_), bit_or);
282   TestBinaryBitOp(javascript_.BitwiseOr(LanguageMode::STRONG, hints_), bit_or);
283 }
284 
285 
TEST_F(TyperTest,TypeJSBitwiseAnd)286 TEST_F(TyperTest, TypeJSBitwiseAnd) {
287   TestBinaryBitOp(javascript_.BitwiseAnd(LanguageMode::SLOPPY, hints_),
288                   bit_and);
289   TestBinaryBitOp(javascript_.BitwiseAnd(LanguageMode::STRONG, hints_),
290                   bit_and);
291 }
292 
293 
TEST_F(TyperTest,TypeJSBitwiseXor)294 TEST_F(TyperTest, TypeJSBitwiseXor) {
295   TestBinaryBitOp(javascript_.BitwiseXor(LanguageMode::SLOPPY, hints_),
296                   bit_xor);
297   TestBinaryBitOp(javascript_.BitwiseXor(LanguageMode::STRONG, hints_),
298                   bit_xor);
299 }
300 
301 
TEST_F(TyperTest,TypeJSShiftLeft)302 TEST_F(TyperTest, TypeJSShiftLeft) {
303   TestBinaryBitOp(javascript_.ShiftLeft(LanguageMode::SLOPPY, hints_),
304                   shift_left);
305   TestBinaryBitOp(javascript_.ShiftLeft(LanguageMode::STRONG, hints_),
306                   shift_left);
307 }
308 
309 
TEST_F(TyperTest,TypeJSShiftRight)310 TEST_F(TyperTest, TypeJSShiftRight) {
311   TestBinaryBitOp(javascript_.ShiftRight(LanguageMode::SLOPPY, hints_),
312                   shift_right);
313   TestBinaryBitOp(javascript_.ShiftRight(LanguageMode::STRONG, hints_),
314                   shift_right);
315 }
316 
317 
TEST_F(TyperTest,TypeJSLessThan)318 TEST_F(TyperTest, TypeJSLessThan) {
319   TestBinaryCompareOp(javascript_.LessThan(LanguageMode::SLOPPY),
320                       std::less<double>());
321   TestBinaryCompareOp(javascript_.LessThan(LanguageMode::STRONG),
322                       std::less<double>());
323 }
324 
325 
TEST_F(TyperTest,TypeJSLessThanOrEqual)326 TEST_F(TyperTest, TypeJSLessThanOrEqual) {
327   TestBinaryCompareOp(javascript_.LessThanOrEqual(LanguageMode::SLOPPY),
328                       std::less_equal<double>());
329   TestBinaryCompareOp(javascript_.LessThanOrEqual(LanguageMode::STRONG),
330                       std::less_equal<double>());
331 }
332 
333 
TEST_F(TyperTest,TypeJSGreaterThan)334 TEST_F(TyperTest, TypeJSGreaterThan) {
335   TestBinaryCompareOp(javascript_.GreaterThan(LanguageMode::SLOPPY),
336                       std::greater<double>());
337   TestBinaryCompareOp(javascript_.GreaterThan(LanguageMode::STRONG),
338                       std::greater<double>());
339 }
340 
341 
TEST_F(TyperTest,TypeJSGreaterThanOrEqual)342 TEST_F(TyperTest, TypeJSGreaterThanOrEqual) {
343   TestBinaryCompareOp(javascript_.GreaterThanOrEqual(LanguageMode::SLOPPY),
344                       std::greater_equal<double>());
345   TestBinaryCompareOp(javascript_.GreaterThanOrEqual(LanguageMode::STRONG),
346                       std::greater_equal<double>());
347 }
348 
349 
TEST_F(TyperTest,TypeJSEqual)350 TEST_F(TyperTest, TypeJSEqual) {
351   TestBinaryCompareOp(javascript_.Equal(), std::equal_to<double>());
352 }
353 
354 
TEST_F(TyperTest,TypeJSNotEqual)355 TEST_F(TyperTest, TypeJSNotEqual) {
356   TestBinaryCompareOp(javascript_.NotEqual(), std::not_equal_to<double>());
357 }
358 
359 
360 // For numbers there's no difference between strict and non-strict equality.
TEST_F(TyperTest,TypeJSStrictEqual)361 TEST_F(TyperTest, TypeJSStrictEqual) {
362   TestBinaryCompareOp(javascript_.StrictEqual(), std::equal_to<double>());
363 }
364 
365 
TEST_F(TyperTest,TypeJSStrictNotEqual)366 TEST_F(TyperTest, TypeJSStrictNotEqual) {
367   TestBinaryCompareOp(javascript_.StrictNotEqual(),
368                       std::not_equal_to<double>());
369 }
370 
371 
372 //------------------------------------------------------------------------------
373 // Monotonicity
374 
375 
376 #define TEST_BINARY_MONOTONICITY(name)          \
377   TEST_F(TyperTest, Monotonicity_##name) {      \
378     TestBinaryMonotonicity(javascript_.name()); \
379   }
380 TEST_BINARY_MONOTONICITY(Equal)
TEST_BINARY_MONOTONICITY(NotEqual)381 TEST_BINARY_MONOTONICITY(NotEqual)
382 TEST_BINARY_MONOTONICITY(StrictEqual)
383 TEST_BINARY_MONOTONICITY(StrictNotEqual)
384 #undef TEST_BINARY_MONOTONICITY
385 
386 
387 #define TEST_BINARY_MONOTONICITY(name)                              \
388   TEST_F(TyperTest, Monotonicity_##name) {                          \
389     TestBinaryMonotonicity(javascript_.name(LanguageMode::SLOPPY)); \
390     TestBinaryMonotonicity(javascript_.name(LanguageMode::STRONG)); \
391   }
392 TEST_BINARY_MONOTONICITY(LessThan)
393 TEST_BINARY_MONOTONICITY(GreaterThan)
394 TEST_BINARY_MONOTONICITY(LessThanOrEqual)
395 TEST_BINARY_MONOTONICITY(GreaterThanOrEqual)
396 #undef TEST_BINARY_MONOTONICITY
397 
398 
399 #define TEST_BINARY_MONOTONICITY(name)                                        \
400   TEST_F(TyperTest, Monotonicity_##name) {                                    \
401     TestBinaryMonotonicity(                                                   \
402         javascript_.name(LanguageMode::SLOPPY, BinaryOperationHints::Any())); \
403     TestBinaryMonotonicity(                                                   \
404         javascript_.name(LanguageMode::STRONG, BinaryOperationHints::Any())); \
405   }
406 TEST_BINARY_MONOTONICITY(BitwiseOr)
407 TEST_BINARY_MONOTONICITY(BitwiseXor)
408 TEST_BINARY_MONOTONICITY(BitwiseAnd)
409 TEST_BINARY_MONOTONICITY(ShiftLeft)
410 TEST_BINARY_MONOTONICITY(ShiftRight)
411 TEST_BINARY_MONOTONICITY(ShiftRightLogical)
412 TEST_BINARY_MONOTONICITY(Add)
413 TEST_BINARY_MONOTONICITY(Subtract)
414 TEST_BINARY_MONOTONICITY(Multiply)
415 TEST_BINARY_MONOTONICITY(Divide)
416 TEST_BINARY_MONOTONICITY(Modulus)
417 #undef TEST_BINARY_MONOTONICITY
418 
419 
420 //------------------------------------------------------------------------------
421 // Regression tests
422 
423 
424 TEST_F(TyperTest, TypeRegressInt32Constant) {
425   int values[] = {-5, 10};
426   for (auto i : values) {
427     Node* c = graph()->NewNode(common()->Int32Constant(i));
428     Type* type = NodeProperties::GetType(c);
429     EXPECT_TRUE(type->Is(NewRange(i, i)));
430   }
431 }
432 
433 }  // namespace compiler
434 }  // namespace internal
435 }  // namespace v8
436