1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com). */
108
109 #include <openssl/bn.h>
110
111 #include <assert.h>
112 #include <string.h>
113
114 #include <openssl/cpu.h>
115 #include <openssl/err.h>
116 #include <openssl/mem.h>
117
118 #include "internal.h"
119
120
121 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
122 #define OPENSSL_BN_ASM_MONT5
123 #define RSAZ_ENABLED
124
125 #include "rsaz_exp.h"
126
127 void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, const void *table,
128 const BN_ULONG *np, const BN_ULONG *n0, int num,
129 int power);
130 void bn_scatter5(const BN_ULONG *inp, size_t num, void *table, size_t power);
131 void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
132 void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const void *table,
133 const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
134 int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
135 const BN_ULONG *not_used, const BN_ULONG *np,
136 const BN_ULONG *n0, int num);
137 #endif
138
BN_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)139 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
140 int i, bits, ret = 0;
141 BIGNUM *v, *rr;
142
143 if ((p->flags & BN_FLG_CONSTTIME) != 0) {
144 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
145 OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
146 return 0;
147 }
148
149 BN_CTX_start(ctx);
150 if (r == a || r == p) {
151 rr = BN_CTX_get(ctx);
152 } else {
153 rr = r;
154 }
155
156 v = BN_CTX_get(ctx);
157 if (rr == NULL || v == NULL) {
158 goto err;
159 }
160
161 if (BN_copy(v, a) == NULL) {
162 goto err;
163 }
164 bits = BN_num_bits(p);
165
166 if (BN_is_odd(p)) {
167 if (BN_copy(rr, a) == NULL) {
168 goto err;
169 }
170 } else {
171 if (!BN_one(rr)) {
172 goto err;
173 }
174 }
175
176 for (i = 1; i < bits; i++) {
177 if (!BN_sqr(v, v, ctx)) {
178 goto err;
179 }
180 if (BN_is_bit_set(p, i)) {
181 if (!BN_mul(rr, rr, v, ctx)) {
182 goto err;
183 }
184 }
185 }
186
187 if (r != rr && !BN_copy(r, rr)) {
188 goto err;
189 }
190 ret = 1;
191
192 err:
193 BN_CTX_end(ctx);
194 return ret;
195 }
196
197 /* maximum precomputation table size for *variable* sliding windows */
198 #define TABLE_SIZE 32
199
200 typedef struct bn_recp_ctx_st {
201 BIGNUM N; /* the divisor */
202 BIGNUM Nr; /* the reciprocal */
203 int num_bits;
204 int shift;
205 int flags;
206 } BN_RECP_CTX;
207
BN_RECP_CTX_init(BN_RECP_CTX * recp)208 static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
209 BN_init(&recp->N);
210 BN_init(&recp->Nr);
211 recp->num_bits = 0;
212 recp->flags = 0;
213 }
214
BN_RECP_CTX_free(BN_RECP_CTX * recp)215 static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
216 if (recp == NULL) {
217 return;
218 }
219
220 BN_free(&recp->N);
221 BN_free(&recp->Nr);
222 }
223
BN_RECP_CTX_set(BN_RECP_CTX * recp,const BIGNUM * d,BN_CTX * ctx)224 static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
225 if (!BN_copy(&(recp->N), d)) {
226 return 0;
227 }
228 BN_zero(&recp->Nr);
229 recp->num_bits = BN_num_bits(d);
230 recp->shift = 0;
231
232 return 1;
233 }
234
235 /* len is the expected size of the result We actually calculate with an extra
236 * word of precision, so we can do faster division if the remainder is not
237 * required.
238 * r := 2^len / m */
BN_reciprocal(BIGNUM * r,const BIGNUM * m,int len,BN_CTX * ctx)239 static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
240 int ret = -1;
241 BIGNUM *t;
242
243 BN_CTX_start(ctx);
244 t = BN_CTX_get(ctx);
245 if (t == NULL) {
246 goto err;
247 }
248
249 if (!BN_set_bit(t, len)) {
250 goto err;
251 }
252
253 if (!BN_div(r, NULL, t, m, ctx)) {
254 goto err;
255 }
256
257 ret = len;
258
259 err:
260 BN_CTX_end(ctx);
261 return ret;
262 }
263
BN_div_recp(BIGNUM * dv,BIGNUM * rem,const BIGNUM * m,BN_RECP_CTX * recp,BN_CTX * ctx)264 static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
265 BN_RECP_CTX *recp, BN_CTX *ctx) {
266 int i, j, ret = 0;
267 BIGNUM *a, *b, *d, *r;
268
269 BN_CTX_start(ctx);
270 a = BN_CTX_get(ctx);
271 b = BN_CTX_get(ctx);
272 if (dv != NULL) {
273 d = dv;
274 } else {
275 d = BN_CTX_get(ctx);
276 }
277
278 if (rem != NULL) {
279 r = rem;
280 } else {
281 r = BN_CTX_get(ctx);
282 }
283
284 if (a == NULL || b == NULL || d == NULL || r == NULL) {
285 goto err;
286 }
287
288 if (BN_ucmp(m, &recp->N) < 0) {
289 BN_zero(d);
290 if (!BN_copy(r, m)) {
291 goto err;
292 }
293 BN_CTX_end(ctx);
294 return 1;
295 }
296
297 /* We want the remainder
298 * Given input of ABCDEF / ab
299 * we need multiply ABCDEF by 3 digests of the reciprocal of ab */
300
301 /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */
302 i = BN_num_bits(m);
303 j = recp->num_bits << 1;
304 if (j > i) {
305 i = j;
306 }
307
308 /* Nr := round(2^i / N) */
309 if (i != recp->shift) {
310 recp->shift =
311 BN_reciprocal(&(recp->Nr), &(recp->N), i,
312 ctx); /* BN_reciprocal returns i, or -1 for an error */
313 }
314
315 if (recp->shift == -1) {
316 goto err;
317 }
318
319 /* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
320 * BN_num_bits(N)))|
321 * = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
322 * BN_num_bits(N)))|
323 * <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
324 * = |m/N| */
325 if (!BN_rshift(a, m, recp->num_bits)) {
326 goto err;
327 }
328 if (!BN_mul(b, a, &(recp->Nr), ctx)) {
329 goto err;
330 }
331 if (!BN_rshift(d, b, i - recp->num_bits)) {
332 goto err;
333 }
334 d->neg = 0;
335
336 if (!BN_mul(b, &(recp->N), d, ctx)) {
337 goto err;
338 }
339 if (!BN_usub(r, m, b)) {
340 goto err;
341 }
342 r->neg = 0;
343
344 j = 0;
345 while (BN_ucmp(r, &(recp->N)) >= 0) {
346 if (j++ > 2) {
347 OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL);
348 goto err;
349 }
350 if (!BN_usub(r, r, &(recp->N))) {
351 goto err;
352 }
353 if (!BN_add_word(d, 1)) {
354 goto err;
355 }
356 }
357
358 r->neg = BN_is_zero(r) ? 0 : m->neg;
359 d->neg = m->neg ^ recp->N.neg;
360 ret = 1;
361
362 err:
363 BN_CTX_end(ctx);
364 return ret;
365 }
366
BN_mod_mul_reciprocal(BIGNUM * r,const BIGNUM * x,const BIGNUM * y,BN_RECP_CTX * recp,BN_CTX * ctx)367 static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
368 BN_RECP_CTX *recp, BN_CTX *ctx) {
369 int ret = 0;
370 BIGNUM *a;
371 const BIGNUM *ca;
372
373 BN_CTX_start(ctx);
374 a = BN_CTX_get(ctx);
375 if (a == NULL) {
376 goto err;
377 }
378
379 if (y != NULL) {
380 if (x == y) {
381 if (!BN_sqr(a, x, ctx)) {
382 goto err;
383 }
384 } else {
385 if (!BN_mul(a, x, y, ctx)) {
386 goto err;
387 }
388 }
389 ca = a;
390 } else {
391 ca = x; /* Just do the mod */
392 }
393
394 ret = BN_div_recp(NULL, r, ca, recp, ctx);
395
396 err:
397 BN_CTX_end(ctx);
398 return ret;
399 }
400
401 /* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp
402 * functions
403 *
404 * For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
405 * multiplications is a constant plus on average
406 *
407 * 2^(w-1) + (b-w)/(w+1);
408 *
409 * here 2^(w-1) is for precomputing the table (we actually need entries only
410 * for windows that have the lowest bit set), and (b-w)/(w+1) is an
411 * approximation for the expected number of w-bit windows, not counting the
412 * first one.
413 *
414 * Thus we should use
415 *
416 * w >= 6 if b > 671
417 * w = 5 if 671 > b > 239
418 * w = 4 if 239 > b > 79
419 * w = 3 if 79 > b > 23
420 * w <= 2 if 23 > b
421 *
422 * (with draws in between). Very small exponents are often selected
423 * with low Hamming weight, so we use w = 1 for b <= 23. */
424 #define BN_window_bits_for_exponent_size(b) \
425 ((b) > 671 ? 6 : \
426 (b) > 239 ? 5 : \
427 (b) > 79 ? 4 : \
428 (b) > 23 ? 3 : 1)
429
mod_exp_recp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)430 static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
431 const BIGNUM *m, BN_CTX *ctx) {
432 int i, j, bits, ret = 0, wstart, window;
433 int start = 1;
434 BIGNUM *aa;
435 /* Table of variables obtained from 'ctx' */
436 BIGNUM *val[TABLE_SIZE];
437 BN_RECP_CTX recp;
438
439 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
440 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
441 OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
442 return 0;
443 }
444
445 bits = BN_num_bits(p);
446
447 if (bits == 0) {
448 /* x**0 mod 1 is still zero. */
449 if (BN_is_one(m)) {
450 BN_zero(r);
451 return 1;
452 }
453 return BN_one(r);
454 }
455
456 BN_CTX_start(ctx);
457 aa = BN_CTX_get(ctx);
458 val[0] = BN_CTX_get(ctx);
459 if (!aa || !val[0]) {
460 goto err;
461 }
462
463 BN_RECP_CTX_init(&recp);
464 if (m->neg) {
465 /* ignore sign of 'm' */
466 if (!BN_copy(aa, m)) {
467 goto err;
468 }
469 aa->neg = 0;
470 if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
471 goto err;
472 }
473 } else {
474 if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
475 goto err;
476 }
477 }
478
479 if (!BN_nnmod(val[0], a, m, ctx)) {
480 goto err; /* 1 */
481 }
482 if (BN_is_zero(val[0])) {
483 BN_zero(r);
484 ret = 1;
485 goto err;
486 }
487
488 window = BN_window_bits_for_exponent_size(bits);
489 if (window > 1) {
490 if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
491 goto err; /* 2 */
492 }
493 j = 1 << (window - 1);
494 for (i = 1; i < j; i++) {
495 if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
496 !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
497 goto err;
498 }
499 }
500 }
501
502 start = 1; /* This is used to avoid multiplication etc
503 * when there is only the value '1' in the
504 * buffer. */
505 wstart = bits - 1; /* The top bit of the window */
506
507 if (!BN_one(r)) {
508 goto err;
509 }
510
511 for (;;) {
512 int wvalue; /* The 'value' of the window */
513 int wend; /* The bottom bit of the window */
514
515 if (BN_is_bit_set(p, wstart) == 0) {
516 if (!start) {
517 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
518 goto err;
519 }
520 }
521 if (wstart == 0) {
522 break;
523 }
524 wstart--;
525 continue;
526 }
527
528 /* We now have wstart on a 'set' bit, we now need to work out
529 * how bit a window to do. To do this we need to scan
530 * forward until the last set bit before the end of the
531 * window */
532 wvalue = 1;
533 wend = 0;
534 for (i = 1; i < window; i++) {
535 if (wstart - i < 0) {
536 break;
537 }
538 if (BN_is_bit_set(p, wstart - i)) {
539 wvalue <<= (i - wend);
540 wvalue |= 1;
541 wend = i;
542 }
543 }
544
545 /* wend is the size of the current window */
546 j = wend + 1;
547 /* add the 'bytes above' */
548 if (!start) {
549 for (i = 0; i < j; i++) {
550 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
551 goto err;
552 }
553 }
554 }
555
556 /* wvalue will be an odd number < 2^window */
557 if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
558 goto err;
559 }
560
561 /* move the 'window' down further */
562 wstart -= wend + 1;
563 start = 0;
564 if (wstart < 0) {
565 break;
566 }
567 }
568 ret = 1;
569
570 err:
571 BN_CTX_end(ctx);
572 BN_RECP_CTX_free(&recp);
573 return ret;
574 }
575
BN_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)576 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
577 BN_CTX *ctx) {
578 /* For even modulus m = 2^k*m_odd, it might make sense to compute
579 * a^p mod m_odd and a^p mod 2^k separately (with Montgomery
580 * exponentiation for the odd part), using appropriate exponent
581 * reductions, and combine the results using the CRT.
582 *
583 * For now, we use Montgomery only if the modulus is odd; otherwise,
584 * exponentiation using the reciprocal-based quick remaindering
585 * algorithm is used.
586 *
587 * (Timing obtained with expspeed.c [computations a^p mod m
588 * where a, p, m are of the same length: 256, 512, 1024, 2048,
589 * 4096, 8192 bits], compared to the running time of the
590 * standard algorithm:
591 *
592 * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration]
593 * 55 .. 77 % [UltraSparc processor, but
594 * debug-solaris-sparcv8-gcc conf.]
595 *
596 * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration]
597 * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
598 *
599 * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
600 * at 2048 and more bits, but at 512 and 1024 bits, it was
601 * slower even than the standard algorithm!
602 *
603 * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
604 * should be obtained when the new Montgomery reduction code
605 * has been integrated into OpenSSL.) */
606
607 if (BN_is_odd(m)) {
608 if (a->top == 1 && !a->neg && BN_get_flags(p, BN_FLG_CONSTTIME) == 0) {
609 BN_ULONG A = a->d[0];
610 return BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
611 }
612
613 return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
614 }
615
616 return mod_exp_recp(r, a, p, m, ctx);
617 }
618
BN_mod_exp_mont(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)619 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
620 const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) {
621 int i, j, bits, ret = 0, wstart, window;
622 int start = 1;
623 BIGNUM *d, *r;
624 const BIGNUM *aa;
625 /* Table of variables obtained from 'ctx' */
626 BIGNUM *val[TABLE_SIZE];
627 BN_MONT_CTX *new_mont = NULL;
628
629 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
630 return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, mont);
631 }
632
633 if (!BN_is_odd(m)) {
634 OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
635 return 0;
636 }
637 bits = BN_num_bits(p);
638 if (bits == 0) {
639 /* x**0 mod 1 is still zero. */
640 if (BN_is_one(m)) {
641 BN_zero(rr);
642 return 1;
643 }
644 return BN_one(rr);
645 }
646
647 BN_CTX_start(ctx);
648 d = BN_CTX_get(ctx);
649 r = BN_CTX_get(ctx);
650 val[0] = BN_CTX_get(ctx);
651 if (!d || !r || !val[0]) {
652 goto err;
653 }
654
655 /* Allocate a montgomery context if it was not supplied by the caller. */
656 if (mont == NULL) {
657 new_mont = BN_MONT_CTX_new();
658 if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
659 goto err;
660 }
661 mont = new_mont;
662 }
663
664 if (a->neg || BN_ucmp(a, m) >= 0) {
665 if (!BN_nnmod(val[0], a, m, ctx)) {
666 goto err;
667 }
668 aa = val[0];
669 } else {
670 aa = a;
671 }
672
673 if (BN_is_zero(aa)) {
674 BN_zero(rr);
675 ret = 1;
676 goto err;
677 }
678 if (!BN_to_montgomery(val[0], aa, mont, ctx)) {
679 goto err; /* 1 */
680 }
681
682 window = BN_window_bits_for_exponent_size(bits);
683 if (window > 1) {
684 if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
685 goto err; /* 2 */
686 }
687 j = 1 << (window - 1);
688 for (i = 1; i < j; i++) {
689 if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
690 !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
691 goto err;
692 }
693 }
694 }
695
696 start = 1; /* This is used to avoid multiplication etc
697 * when there is only the value '1' in the
698 * buffer. */
699 wstart = bits - 1; /* The top bit of the window */
700
701 j = m->top; /* borrow j */
702 if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
703 if (bn_wexpand(r, j) == NULL) {
704 goto err;
705 }
706 /* 2^(top*BN_BITS2) - m */
707 r->d[0] = (0 - m->d[0]) & BN_MASK2;
708 for (i = 1; i < j; i++) {
709 r->d[i] = (~m->d[i]) & BN_MASK2;
710 }
711 r->top = j;
712 /* Upper words will be zero if the corresponding words of 'm'
713 * were 0xfff[...], so decrement r->top accordingly. */
714 bn_correct_top(r);
715 } else if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
716 goto err;
717 }
718
719 for (;;) {
720 int wvalue; /* The 'value' of the window */
721 int wend; /* The bottom bit of the window */
722
723 if (BN_is_bit_set(p, wstart) == 0) {
724 if (!start && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
725 goto err;
726 }
727 if (wstart == 0) {
728 break;
729 }
730 wstart--;
731 continue;
732 }
733
734 /* We now have wstart on a 'set' bit, we now need to work out how bit a
735 * window to do. To do this we need to scan forward until the last set bit
736 * before the end of the window */
737 wvalue = 1;
738 wend = 0;
739 for (i = 1; i < window; i++) {
740 if (wstart - i < 0) {
741 break;
742 }
743 if (BN_is_bit_set(p, wstart - i)) {
744 wvalue <<= (i - wend);
745 wvalue |= 1;
746 wend = i;
747 }
748 }
749
750 /* wend is the size of the current window */
751 j = wend + 1;
752 /* add the 'bytes above' */
753 if (!start) {
754 for (i = 0; i < j; i++) {
755 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
756 goto err;
757 }
758 }
759 }
760
761 /* wvalue will be an odd number < 2^window */
762 if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
763 goto err;
764 }
765
766 /* move the 'window' down further */
767 wstart -= wend + 1;
768 start = 0;
769 if (wstart < 0) {
770 break;
771 }
772 }
773
774 if (!BN_from_montgomery(rr, r, mont, ctx)) {
775 goto err;
776 }
777 ret = 1;
778
779 err:
780 BN_MONT_CTX_free(new_mont);
781 BN_CTX_end(ctx);
782 return ret;
783 }
784
785 /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
786 * layout so that accessing any of these table values shows the same access
787 * pattern as far as cache lines are concerned. The following functions are
788 * used to transfer a BIGNUM from/to that table. */
copy_to_prebuf(const BIGNUM * b,int top,unsigned char * buf,int idx,int width)789 static int copy_to_prebuf(const BIGNUM *b, int top, unsigned char *buf, int idx,
790 int width) {
791 size_t i, j;
792
793 if (top > b->top) {
794 top = b->top; /* this works because 'buf' is explicitly zeroed */
795 }
796 for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
797 buf[j] = ((unsigned char *)b->d)[i];
798 }
799
800 return 1;
801 }
802
copy_from_prebuf(BIGNUM * b,int top,unsigned char * buf,int idx,int width)803 static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx,
804 int width) {
805 size_t i, j;
806
807 if (bn_wexpand(b, top) == NULL) {
808 return 0;
809 }
810
811 for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
812 ((unsigned char *)b->d)[i] = buf[j];
813 }
814
815 b->top = top;
816 bn_correct_top(b);
817 return 1;
818 }
819
820 /* BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
821 * line width of the target processor is at least the following value. */
822 #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
823 #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
824 (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
825
826 /* Window sizes optimized for fixed window size modular exponentiation
827 * algorithm (BN_mod_exp_mont_consttime).
828 *
829 * To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
830 * size of the window must not exceed
831 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
832 *
833 * Window size thresholds are defined for cache line sizes of 32 and 64, cache
834 * line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
835 * 7 should only be used on processors that have a 128 byte or greater cache
836 * line size. */
837 #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
838
839 #define BN_window_bits_for_ctime_exponent_size(b) \
840 ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
841 #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
842
843 #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
844
845 #define BN_window_bits_for_ctime_exponent_size(b) \
846 ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
847 #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
848
849 #endif
850
851 /* Given a pointer value, compute the next address that is a cache line
852 * multiple. */
853 #define MOD_EXP_CTIME_ALIGN(x_) \
854 ((unsigned char *)(x_) + \
855 (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
856 (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
857
858 /* This variant of BN_mod_exp_mont() uses fixed windows and the special
859 * precomputation memory layout to limit data-dependency to a minimum
860 * to protect secret exponents (cf. the hyper-threading timing attacks
861 * pointed out by Colin Percival,
862 * http://www.daemonology.net/hyperthreading-considered-harmful/)
863 */
BN_mod_exp_mont_consttime(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)864 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
865 const BIGNUM *m, BN_CTX *ctx,
866 const BN_MONT_CTX *mont) {
867 int i, bits, ret = 0, window, wvalue;
868 int top;
869 BN_MONT_CTX *new_mont = NULL;
870
871 int numPowers;
872 unsigned char *powerbufFree = NULL;
873 int powerbufLen = 0;
874 unsigned char *powerbuf = NULL;
875 BIGNUM tmp, am;
876
877 if (!BN_is_odd(m)) {
878 OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
879 return 0;
880 }
881
882 top = m->top;
883
884 bits = BN_num_bits(p);
885 if (bits == 0) {
886 /* x**0 mod 1 is still zero. */
887 if (BN_is_one(m)) {
888 BN_zero(rr);
889 return 1;
890 }
891 return BN_one(rr);
892 }
893
894 BN_CTX_start(ctx);
895
896 /* Allocate a montgomery context if it was not supplied by the caller. */
897 if (mont == NULL) {
898 new_mont = BN_MONT_CTX_new();
899 if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
900 goto err;
901 }
902 mont = new_mont;
903 }
904
905 #ifdef RSAZ_ENABLED
906 /* If the size of the operands allow it, perform the optimized
907 * RSAZ exponentiation. For further information see
908 * crypto/bn/rsaz_exp.c and accompanying assembly modules. */
909 if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) &&
910 rsaz_avx2_eligible()) {
911 if (NULL == bn_wexpand(rr, 16)) {
912 goto err;
913 }
914 RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]);
915 rr->top = 16;
916 rr->neg = 0;
917 bn_correct_top(rr);
918 ret = 1;
919 goto err;
920 } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
921 if (NULL == bn_wexpand(rr, 8)) {
922 goto err;
923 }
924 RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
925 rr->top = 8;
926 rr->neg = 0;
927 bn_correct_top(rr);
928 ret = 1;
929 goto err;
930 }
931 #endif
932
933 /* Get the window size to use with size of p. */
934 window = BN_window_bits_for_ctime_exponent_size(bits);
935 #if defined(OPENSSL_BN_ASM_MONT5)
936 if (window >= 5) {
937 window = 5; /* ~5% improvement for RSA2048 sign, and even for RSA4096 */
938 if ((top & 7) == 0) {
939 powerbufLen += 2 * top * sizeof(m->d[0]);
940 }
941 }
942 #endif
943
944 /* Allocate a buffer large enough to hold all of the pre-computed
945 * powers of am, am itself and tmp.
946 */
947 numPowers = 1 << window;
948 powerbufLen +=
949 sizeof(m->d[0]) *
950 (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
951 #ifdef alloca
952 if (powerbufLen < 3072) {
953 powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
954 } else
955 #endif
956 {
957 if ((powerbufFree = (unsigned char *)OPENSSL_malloc(
958 powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) {
959 goto err;
960 }
961 }
962
963 powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
964 memset(powerbuf, 0, powerbufLen);
965
966 #ifdef alloca
967 if (powerbufLen < 3072) {
968 powerbufFree = NULL;
969 }
970 #endif
971
972 /* lay down tmp and am right after powers table */
973 tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
974 am.d = tmp.d + top;
975 tmp.top = am.top = 0;
976 tmp.dmax = am.dmax = top;
977 tmp.neg = am.neg = 0;
978 tmp.flags = am.flags = BN_FLG_STATIC_DATA;
979
980 /* prepare a^0 in Montgomery domain */
981 /* by Shay Gueron's suggestion */
982 if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
983 /* 2^(top*BN_BITS2) - m */
984 tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
985 for (i = 1; i < top; i++) {
986 tmp.d[i] = (~m->d[i]) & BN_MASK2;
987 }
988 tmp.top = top;
989 } else if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) {
990 goto err;
991 }
992
993 /* prepare a^1 in Montgomery domain */
994 if (a->neg || BN_ucmp(a, m) >= 0) {
995 if (!BN_mod(&am, a, m, ctx) ||
996 !BN_to_montgomery(&am, &am, mont, ctx)) {
997 goto err;
998 }
999 } else if (!BN_to_montgomery(&am, a, mont, ctx)) {
1000 goto err;
1001 }
1002
1003 #if defined(OPENSSL_BN_ASM_MONT5)
1004 /* This optimization uses ideas from http://eprint.iacr.org/2011/239,
1005 * specifically optimization of cache-timing attack countermeasures
1006 * and pre-computation optimization. */
1007
1008 /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
1009 * 512-bit RSA is hardly relevant, we omit it to spare size... */
1010 if (window == 5 && top > 1) {
1011 const BN_ULONG *np = mont->N.d, *n0 = mont->n0, *np2;
1012
1013 /* BN_to_montgomery can contaminate words above .top
1014 * [in BN_DEBUG[_DEBUG] build]... */
1015 for (i = am.top; i < top; i++) {
1016 am.d[i] = 0;
1017 }
1018 for (i = tmp.top; i < top; i++) {
1019 tmp.d[i] = 0;
1020 }
1021
1022 if (top & 7) {
1023 np2 = np;
1024 } else {
1025 BN_ULONG *np_double = am.d + top;
1026 for (i = 0; i < top; i++) {
1027 np_double[2 * i] = np[i];
1028 }
1029 np2 = np_double;
1030 }
1031
1032 bn_scatter5(tmp.d, top, powerbuf, 0);
1033 bn_scatter5(am.d, am.top, powerbuf, 1);
1034 bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
1035 bn_scatter5(tmp.d, top, powerbuf, 2);
1036
1037 /* same as above, but uses squaring for 1/2 of operations */
1038 for (i = 4; i < 32; i *= 2) {
1039 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1040 bn_scatter5(tmp.d, top, powerbuf, i);
1041 }
1042 for (i = 3; i < 8; i += 2) {
1043 int j;
1044 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1045 bn_scatter5(tmp.d, top, powerbuf, i);
1046 for (j = 2 * i; j < 32; j *= 2) {
1047 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1048 bn_scatter5(tmp.d, top, powerbuf, j);
1049 }
1050 }
1051 for (; i < 16; i += 2) {
1052 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1053 bn_scatter5(tmp.d, top, powerbuf, i);
1054 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1055 bn_scatter5(tmp.d, top, powerbuf, 2 * i);
1056 }
1057 for (; i < 32; i += 2) {
1058 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1059 bn_scatter5(tmp.d, top, powerbuf, i);
1060 }
1061
1062 bits--;
1063 for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
1064 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1065 }
1066 bn_gather5(tmp.d, top, powerbuf, wvalue);
1067
1068 /* At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
1069 * that has not been read yet.) */
1070 assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
1071
1072 /* Scan the exponent one window at a time starting from the most
1073 * significant bits.
1074 */
1075 if (top & 7) {
1076 while (bits >= 0) {
1077 for (wvalue = 0, i = 0; i < 5; i++, bits--) {
1078 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1079 }
1080
1081 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1082 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1083 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1084 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1085 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1086 bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1087 }
1088 } else {
1089 const uint8_t *p_bytes = (const uint8_t *)p->d;
1090 int max_bits = p->top * BN_BITS2;
1091 assert(bits < max_bits);
1092 /* |p = 0| has been handled as a special case, so |max_bits| is at least
1093 * one word. */
1094 assert(max_bits >= 64);
1095
1096 /* If the first bit to be read lands in the last byte, unroll the first
1097 * iteration to avoid reading past the bounds of |p->d|. (After the first
1098 * iteration, we are guaranteed to be past the last byte.) Note |bits|
1099 * here is the top bit, inclusive. */
1100 if (bits - 4 >= max_bits - 8) {
1101 /* Read five bits from |bits-4| through |bits|, inclusive. */
1102 wvalue = p_bytes[p->top * BN_BYTES - 1];
1103 wvalue >>= (bits - 4) & 7;
1104 wvalue &= 0x1f;
1105 bits -= 5;
1106 bn_power5(tmp.d, tmp.d, powerbuf, np2, n0, top, wvalue);
1107 }
1108 while (bits >= 0) {
1109 /* Read five bits from |bits-4| through |bits|, inclusive. */
1110 int first_bit = bits - 4;
1111 wvalue = *(const uint16_t *) (p_bytes + (first_bit >> 3));
1112 wvalue >>= first_bit & 7;
1113 wvalue &= 0x1f;
1114 bits -= 5;
1115 bn_power5(tmp.d, tmp.d, powerbuf, np2, n0, top, wvalue);
1116 }
1117 }
1118
1119 ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np2, n0, top);
1120 tmp.top = top;
1121 bn_correct_top(&tmp);
1122 if (ret) {
1123 if (!BN_copy(rr, &tmp)) {
1124 ret = 0;
1125 }
1126 goto err; /* non-zero ret means it's not error */
1127 }
1128 } else
1129 #endif
1130 {
1131 if (!copy_to_prebuf(&tmp, top, powerbuf, 0, numPowers) ||
1132 !copy_to_prebuf(&am, top, powerbuf, 1, numPowers)) {
1133 goto err;
1134 }
1135
1136 /* If the window size is greater than 1, then calculate
1137 * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
1138 * (even powers could instead be computed as (a^(i/2))^2
1139 * to use the slight performance advantage of sqr over mul).
1140 */
1141 if (window > 1) {
1142 if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx) ||
1143 !copy_to_prebuf(&tmp, top, powerbuf, 2, numPowers)) {
1144 goto err;
1145 }
1146 for (i = 3; i < numPowers; i++) {
1147 /* Calculate a^i = a^(i-1) * a */
1148 if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx) ||
1149 !copy_to_prebuf(&tmp, top, powerbuf, i, numPowers)) {
1150 goto err;
1151 }
1152 }
1153 }
1154
1155 bits--;
1156 for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
1157 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1158 }
1159 if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, numPowers)) {
1160 goto err;
1161 }
1162
1163 /* Scan the exponent one window at a time starting from the most
1164 * significant bits.
1165 */
1166 while (bits >= 0) {
1167 wvalue = 0; /* The 'value' of the window */
1168
1169 /* Scan the window, squaring the result as we go */
1170 for (i = 0; i < window; i++, bits--) {
1171 if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
1172 goto err;
1173 }
1174 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1175 }
1176
1177 /* Fetch the appropriate pre-computed value from the pre-buf */
1178 if (!copy_from_prebuf(&am, top, powerbuf, wvalue, numPowers)) {
1179 goto err;
1180 }
1181
1182 /* Multiply the result into the intermediate result */
1183 if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
1184 goto err;
1185 }
1186 }
1187 }
1188
1189 /* Convert the final result from montgomery to standard format */
1190 if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
1191 goto err;
1192 }
1193 ret = 1;
1194
1195 err:
1196 BN_MONT_CTX_free(new_mont);
1197 if (powerbuf != NULL) {
1198 OPENSSL_cleanse(powerbuf, powerbufLen);
1199 OPENSSL_free(powerbufFree);
1200 }
1201 BN_CTX_end(ctx);
1202 return (ret);
1203 }
1204
BN_mod_exp_mont_word(BIGNUM * rr,BN_ULONG a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)1205 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1206 const BIGNUM *m, BN_CTX *ctx,
1207 const BN_MONT_CTX *mont) {
1208 BN_MONT_CTX *new_mont = NULL;
1209 int b, bits, ret = 0;
1210 int r_is_one;
1211 BN_ULONG w, next_w;
1212 BIGNUM *d, *r, *t;
1213 BIGNUM *swap_tmp;
1214 #define BN_MOD_MUL_WORD(r, w, m) \
1215 (BN_mul_word(r, (w)) && \
1216 (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
1217 (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
1218 /* BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
1219 * probably more overhead than always using BN_mod (which uses BN_copy if a
1220 * similar test returns true). We can use BN_mod and do not need BN_nnmod
1221 * because our accumulator is never negative (the result of BN_mod does not
1222 * depend on the sign of the modulus). */
1223 #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
1224 (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
1225
1226 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
1227 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1228 OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1229 return 0;
1230 }
1231
1232 if (!BN_is_odd(m)) {
1233 OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
1234 return 0;
1235 }
1236
1237 if (m->top == 1) {
1238 a %= m->d[0]; /* make sure that 'a' is reduced */
1239 }
1240
1241 bits = BN_num_bits(p);
1242 if (bits == 0) {
1243 /* x**0 mod 1 is still zero. */
1244 if (BN_is_one(m)) {
1245 BN_zero(rr);
1246 return 1;
1247 }
1248 return BN_one(rr);
1249 }
1250 if (a == 0) {
1251 BN_zero(rr);
1252 return 1;
1253 }
1254
1255 BN_CTX_start(ctx);
1256 d = BN_CTX_get(ctx);
1257 r = BN_CTX_get(ctx);
1258 t = BN_CTX_get(ctx);
1259 if (d == NULL || r == NULL || t == NULL) {
1260 goto err;
1261 }
1262
1263 /* Allocate a montgomery context if it was not supplied by the caller. */
1264 if (mont == NULL) {
1265 new_mont = BN_MONT_CTX_new();
1266 if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
1267 goto err;
1268 }
1269 mont = new_mont;
1270 }
1271
1272 r_is_one = 1; /* except for Montgomery factor */
1273
1274 /* bits-1 >= 0 */
1275
1276 /* The result is accumulated in the product r*w. */
1277 w = a; /* bit 'bits-1' of 'p' is always set */
1278 for (b = bits - 2; b >= 0; b--) {
1279 /* First, square r*w. */
1280 next_w = w * w;
1281 if ((next_w / w) != w) {
1282 /* overflow */
1283 if (r_is_one) {
1284 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1285 goto err;
1286 }
1287 r_is_one = 0;
1288 } else {
1289 if (!BN_MOD_MUL_WORD(r, w, m)) {
1290 goto err;
1291 }
1292 }
1293 next_w = 1;
1294 }
1295
1296 w = next_w;
1297 if (!r_is_one) {
1298 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
1299 goto err;
1300 }
1301 }
1302
1303 /* Second, multiply r*w by 'a' if exponent bit is set. */
1304 if (BN_is_bit_set(p, b)) {
1305 next_w = w * a;
1306 if ((next_w / a) != w) {
1307 /* overflow */
1308 if (r_is_one) {
1309 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1310 goto err;
1311 }
1312 r_is_one = 0;
1313 } else {
1314 if (!BN_MOD_MUL_WORD(r, w, m)) {
1315 goto err;
1316 }
1317 }
1318 next_w = a;
1319 }
1320 w = next_w;
1321 }
1322 }
1323
1324 /* Finally, set r:=r*w. */
1325 if (w != 1) {
1326 if (r_is_one) {
1327 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1328 goto err;
1329 }
1330 r_is_one = 0;
1331 } else {
1332 if (!BN_MOD_MUL_WORD(r, w, m)) {
1333 goto err;
1334 }
1335 }
1336 }
1337
1338 if (r_is_one) {
1339 /* can happen only if a == 1*/
1340 if (!BN_one(rr)) {
1341 goto err;
1342 }
1343 } else {
1344 if (!BN_from_montgomery(rr, r, mont, ctx)) {
1345 goto err;
1346 }
1347 }
1348 ret = 1;
1349
1350 err:
1351 BN_MONT_CTX_free(new_mont);
1352 BN_CTX_end(ctx);
1353 return ret;
1354 }
1355
1356 #define TABLE_SIZE 32
1357
BN_mod_exp2_mont(BIGNUM * rr,const BIGNUM * a1,const BIGNUM * p1,const BIGNUM * a2,const BIGNUM * p2,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)1358 int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
1359 const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
1360 BN_CTX *ctx, const BN_MONT_CTX *mont) {
1361 int i, j, bits, b, bits1, bits2, ret = 0, wpos1, wpos2, window1, window2,
1362 wvalue1, wvalue2;
1363 int r_is_one = 1;
1364 BIGNUM *d, *r;
1365 const BIGNUM *a_mod_m;
1366 /* Tables of variables obtained from 'ctx' */
1367 BIGNUM *val1[TABLE_SIZE], *val2[TABLE_SIZE];
1368 BN_MONT_CTX *new_mont = NULL;
1369
1370 if (!(m->d[0] & 1)) {
1371 OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
1372 return 0;
1373 }
1374 bits1 = BN_num_bits(p1);
1375 bits2 = BN_num_bits(p2);
1376 if (bits1 == 0 && bits2 == 0) {
1377 ret = BN_one(rr);
1378 return ret;
1379 }
1380
1381 bits = (bits1 > bits2) ? bits1 : bits2;
1382
1383 BN_CTX_start(ctx);
1384 d = BN_CTX_get(ctx);
1385 r = BN_CTX_get(ctx);
1386 val1[0] = BN_CTX_get(ctx);
1387 val2[0] = BN_CTX_get(ctx);
1388 if (!d || !r || !val1[0] || !val2[0]) {
1389 goto err;
1390 }
1391
1392 /* Allocate a montgomery context if it was not supplied by the caller. */
1393 if (mont == NULL) {
1394 new_mont = BN_MONT_CTX_new();
1395 if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
1396 goto err;
1397 }
1398 mont = new_mont;
1399 }
1400
1401 window1 = BN_window_bits_for_exponent_size(bits1);
1402 window2 = BN_window_bits_for_exponent_size(bits2);
1403
1404 /* Build table for a1: val1[i] := a1^(2*i + 1) mod m for i = 0 ..
1405 * 2^(window1-1) */
1406 if (a1->neg || BN_ucmp(a1, m) >= 0) {
1407 if (!BN_mod(val1[0], a1, m, ctx)) {
1408 goto err;
1409 }
1410 a_mod_m = val1[0];
1411 } else {
1412 a_mod_m = a1;
1413 }
1414
1415 if (BN_is_zero(a_mod_m)) {
1416 BN_zero(rr);
1417 ret = 1;
1418 goto err;
1419 }
1420
1421 if (!BN_to_montgomery(val1[0], a_mod_m, mont, ctx)) {
1422 goto err;
1423 }
1424
1425 if (window1 > 1) {
1426 if (!BN_mod_mul_montgomery(d, val1[0], val1[0], mont, ctx)) {
1427 goto err;
1428 }
1429
1430 j = 1 << (window1 - 1);
1431 for (i = 1; i < j; i++) {
1432 if (((val1[i] = BN_CTX_get(ctx)) == NULL) ||
1433 !BN_mod_mul_montgomery(val1[i], val1[i - 1], d, mont, ctx)) {
1434 goto err;
1435 }
1436 }
1437 }
1438
1439 /* Build table for a2: val2[i] := a2^(2*i + 1) mod m for i = 0 ..
1440 * 2^(window2-1) */
1441 if (a2->neg || BN_ucmp(a2, m) >= 0) {
1442 if (!BN_mod(val2[0], a2, m, ctx)) {
1443 goto err;
1444 }
1445 a_mod_m = val2[0];
1446 } else {
1447 a_mod_m = a2;
1448 }
1449
1450 if (BN_is_zero(a_mod_m)) {
1451 BN_zero(rr);
1452 ret = 1;
1453 goto err;
1454 }
1455
1456 if (!BN_to_montgomery(val2[0], a_mod_m, mont, ctx)) {
1457 goto err;
1458 }
1459
1460 if (window2 > 1) {
1461 if (!BN_mod_mul_montgomery(d, val2[0], val2[0], mont, ctx)) {
1462 goto err;
1463 }
1464
1465 j = 1 << (window2 - 1);
1466 for (i = 1; i < j; i++) {
1467 if (((val2[i] = BN_CTX_get(ctx)) == NULL) ||
1468 !BN_mod_mul_montgomery(val2[i], val2[i - 1], d, mont, ctx)) {
1469 goto err;
1470 }
1471 }
1472 }
1473
1474 /* Now compute the power product, using independent windows. */
1475 r_is_one = 1;
1476 wvalue1 = 0; /* The 'value' of the first window */
1477 wvalue2 = 0; /* The 'value' of the second window */
1478 wpos1 = 0; /* If wvalue1 > 0, the bottom bit of the first window */
1479 wpos2 = 0; /* If wvalue2 > 0, the bottom bit of the second window */
1480
1481 if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
1482 goto err;
1483 }
1484
1485 for (b = bits - 1; b >= 0; b--) {
1486 if (!r_is_one) {
1487 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
1488 goto err;
1489 }
1490 }
1491
1492 if (!wvalue1 && BN_is_bit_set(p1, b)) {
1493 /* consider bits b-window1+1 .. b for this window */
1494 i = b - window1 + 1;
1495 /* works for i<0 */
1496 while (!BN_is_bit_set(p1, i)) {
1497 i++;
1498 }
1499 wpos1 = i;
1500 wvalue1 = 1;
1501 for (i = b - 1; i >= wpos1; i--) {
1502 wvalue1 <<= 1;
1503 if (BN_is_bit_set(p1, i)) {
1504 wvalue1++;
1505 }
1506 }
1507 }
1508
1509 if (!wvalue2 && BN_is_bit_set(p2, b)) {
1510 /* consider bits b-window2+1 .. b for this window */
1511 i = b - window2 + 1;
1512 while (!BN_is_bit_set(p2, i)) {
1513 i++;
1514 }
1515 wpos2 = i;
1516 wvalue2 = 1;
1517 for (i = b - 1; i >= wpos2; i--) {
1518 wvalue2 <<= 1;
1519 if (BN_is_bit_set(p2, i)) {
1520 wvalue2++;
1521 }
1522 }
1523 }
1524
1525 if (wvalue1 && b == wpos1) {
1526 /* wvalue1 is odd and < 2^window1 */
1527 if (!BN_mod_mul_montgomery(r, r, val1[wvalue1 >> 1], mont, ctx)) {
1528 goto err;
1529 }
1530 wvalue1 = 0;
1531 r_is_one = 0;
1532 }
1533
1534 if (wvalue2 && b == wpos2) {
1535 /* wvalue2 is odd and < 2^window2 */
1536 if (!BN_mod_mul_montgomery(r, r, val2[wvalue2 >> 1], mont, ctx)) {
1537 goto err;
1538 }
1539 wvalue2 = 0;
1540 r_is_one = 0;
1541 }
1542 }
1543
1544 if (!BN_from_montgomery(rr, r, mont, ctx)) {
1545 goto err;
1546 }
1547 ret = 1;
1548
1549 err:
1550 BN_MONT_CTX_free(new_mont);
1551 BN_CTX_end(ctx);
1552 return ret;
1553 }
1554