/external/apache-commons-math/src/main/java/org/apache/commons/math/random/ |
D | CorrelatedRandomVectorGenerator.java | 98 RealMatrix covariance, double small, in CorrelatedRandomVectorGenerator() argument 102 int order = covariance.getRowDimension(); in CorrelatedRandomVectorGenerator() 108 decompose(covariance, small); in CorrelatedRandomVectorGenerator() 126 public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small, in CorrelatedRandomVectorGenerator() argument 130 int order = covariance.getRowDimension(); in CorrelatedRandomVectorGenerator() 136 decompose(covariance, small); in CorrelatedRandomVectorGenerator() 188 private void decompose(RealMatrix covariance, double small) in decompose() argument 191 int order = covariance.getRowDimension(); in decompose() 192 double[][] c = covariance.getData(); in decompose()
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/regression/ |
D | AbstractMultipleLinearRegression.java | 231 protected void validateCovarianceData(double[][] x, double[][] covariance) { in validateCovarianceData() argument 232 if (x.length != covariance.length) { in validateCovarianceData() 234 LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, x.length, covariance.length); in validateCovarianceData() 236 if (covariance.length > 0 && covariance.length != covariance[0].length) { in validateCovarianceData() 239 covariance.length, covariance[0].length); in validateCovarianceData()
|
D | GLSMultipleLinearRegression.java | 56 public void newSampleData(double[] y, double[][] x, double[][] covariance) { in newSampleData() argument 60 validateCovarianceData(x, covariance); in newSampleData() 61 newCovarianceData(covariance); in newSampleData()
|
/external/ceres-solver/internal/ceres/ |
D | covariance_test.cc | 315 Covariance covariance(options); in ComputeAndCompareCovarianceBlocks() local 316 EXPECT_TRUE(covariance.Compute(covariance_blocks, &problem_)); in ComputeAndCompareCovarianceBlocks() 322 GetCovarianceBlockAndCompare(block1, block2, covariance, expected_covariance); in ComputeAndCompareCovarianceBlocks() 324 GetCovarianceBlockAndCompare(block2, block1, covariance, expected_covariance); in ComputeAndCompareCovarianceBlocks() 331 const Covariance& covariance, in GetCovarianceBlockAndCompare() argument 339 EXPECT_TRUE(covariance.GetCovarianceBlock(block1, in GetCovarianceBlockAndCompare() 743 Covariance covariance(options); in ComputeAndCompare() local 744 EXPECT_TRUE(covariance.Compute(all_covariance_blocks_, &problem_)); in ComputeAndCompare() 755 covariance.GetCovarianceBlock(block_i, block_i, actual.data()); in ComputeAndCompare() 764 covariance.GetCovarianceBlock(block_i, block_j, actual.data()); in ComputeAndCompare()
|
D | CMakeLists.txt | 54 covariance.cc 243 CERES_TEST(covariance)
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/correlation/ |
D | Covariance.java | 166 double cov = covariance(matrix.getColumn(i), matrix.getColumn(j), biasCorrected); in computeCovarianceMatrix() 220 public double covariance(final double[] xArray, final double[] yArray, boolean biasCorrected) in covariance() method in Covariance 255 public double covariance(final double[] xArray, final double[] yArray) in covariance() method in Covariance 257 return covariance(xArray, yArray, true); in covariance()
|
D | PearsonsCorrelation.java | 95 public PearsonsCorrelation(Covariance covariance) { in PearsonsCorrelation() argument 96 RealMatrix covarianceMatrix = covariance.getCovarianceMatrix(); in PearsonsCorrelation() 100 nObs = covariance.getN(); in PearsonsCorrelation()
|
/external/autotest/client/site_tests/video_WebRtcCamera/ |
D | ssim.js | 47 covariance: function(a, b, meanA, meanB) { method in Ssim 76 var sigmaXy = this.covariance(x, y, muX, muY);
|
/external/autotest/client/site_tests/video_WebRtcPeerConnectionWithCamera/ |
D | ssim.js | 47 covariance: function(a, b, meanA, meanB) { method in Ssim 76 var sigmaXy = this.covariance(x, y, muX, muY);
|
/external/opencv3/doc/tutorials/ml/introduction_to_pca/ |
D | introduction_to_pca.markdown | 64 __Find the covariance matrix__ 66 - Find the \f$ p\times p \f$ empirical covariance matrix __C__ from the outer product of matrix __B… 72 __Find the eigenvectors and eigenvalues of the covariance matrix__ 74 - Compute the matrix __V__ of eigenvectors which diagonalizes the covariance matrix __C__: 84 here, \f$ \lambda_j \f$ is the _j_-th eigenvalue of the covariance matrix __C__ 86 …n vectors, each of length _p_, which represent the _p_ eigenvectors of the covariance matrix __C__.
|
/external/ceres-solver/docs/source/ |
D | solving.rst | 2157 non-linear least squares solve is to analyze the covariance of the 2166 covariance. Then the maximum likelihood estimate of :math:`x` given 2172 And the covariance of :math:`x^*` is given by 2179 If :math:`J(x^*)` is rank deficient, then the covariance matrix :math:`C(x^*)` 2184 Note that in the above, we assumed that the covariance matrix for 2191 covariance of :math:`y`, then the maximum likelihood problem to be 2196 and the corresponding covariance estimate of :math:`x^*` is given by 2201 covariance matrix not equal to identity, then it is the user's 2205 where :math:`S^{-1/2}` is the inverse square root of the covariance 2222 :class:`Covariance` allows the user to evaluate the covariance for a [all …]
|
D | features.rst | 71 the solution by evaluating all or part of the covariance
|
D | version_history.rst | 13 #. Added ``EIGEN_SPARSE_QR`` algorithm for covariance estimation using 22 #. The ``SPARSE_CHOLESKY`` algorithm for covariance estimation has 26 #. The ``SPARSE_QR`` algorithm for covariance estimation has been 228 #. Sparse and dense covariance estimation.
|
D | modeling.rst | 800 where, :math:`\mu` is a vector and :math:`S` is a covariance matrix, 802 root of the inverse of the covariance, also known as the stiffness 805 the covariance matrix :math:`S` is rank deficient.
|
/external/clang/test/ARCMT/ |
D | checking.m | 198 - (id) init03; // covariance 199 - (id) init04; // covariance 217 - (Test8_super*) init30; // id exception to covariance 221 - (Test8_super*) init34; // covariance 224 - (Test8*) init40; // id exception to covariance
|
/external/opencv3/modules/ml/doc/ |
D | ml_intro.markdown | 51 algorithm estimates mean vectors and covariance matrices for every class, and then it uses them for 313 \f$a_k\f$ and covariance matrix \f$S_k\f$, \f$\pi_k\f$ is the weight of the k-th mixture. Given the 340 majority of the parameters reside in covariance matrices, which are \f$d \times d\f$ elements each 342 covariance matrices are close to diagonal or even to \f$\mu_k*I\f$ , where \f$I\f$ is an identity 344 could start with harder constraints on the covariance matrices and then use the estimated parameters 345 as an input for a less constrained optimization problem (often a diagonal covariance matrix is
|
/external/clang/test/SemaObjC/ |
D | arc.m | 172 - (id) init03; // covariance 173 - (id) init04; // covariance 191 - (Test8_super*) init30; // id exception to covariance 196 - (Test8_super*) init34; // covariance 199 - (Test8*) init40; // id exception to covariance
|
/external/eigen/doc/ |
D | FunctionsTakingEigenTypes.dox | 94 A Ref object can also be writable. Here is an example of a function computing the covariance matrix… 179 … done now, right? This is not completely true because in order for our covariance function to be g…
|
/external/ceres-solver/ |
D | CMakeLists.txt | 115 This does not affect the covariance estimation algorithm, as it 256 MESSAGE(" This does not affect the covariance estimation algorithm ")
|
/external/opencv3/doc/tutorials/calib3d/real_time_pose/ |
D | real_time_pose.markdown | 578 noise, the measurement noise and the error covariance matrix. Secondly, are set the transition 593 cv::setIdentity(KF.errorCovPost, cv::Scalar::all(1)); // error covariance
|