Home
last modified time | relevance | path

Searched refs:covariance (Results 1 – 20 of 20) sorted by relevance

/external/apache-commons-math/src/main/java/org/apache/commons/math/random/
DCorrelatedRandomVectorGenerator.java98 RealMatrix covariance, double small, in CorrelatedRandomVectorGenerator() argument
102 int order = covariance.getRowDimension(); in CorrelatedRandomVectorGenerator()
108 decompose(covariance, small); in CorrelatedRandomVectorGenerator()
126 public CorrelatedRandomVectorGenerator(RealMatrix covariance, double small, in CorrelatedRandomVectorGenerator() argument
130 int order = covariance.getRowDimension(); in CorrelatedRandomVectorGenerator()
136 decompose(covariance, small); in CorrelatedRandomVectorGenerator()
188 private void decompose(RealMatrix covariance, double small) in decompose() argument
191 int order = covariance.getRowDimension(); in decompose()
192 double[][] c = covariance.getData(); in decompose()
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/regression/
DAbstractMultipleLinearRegression.java231 protected void validateCovarianceData(double[][] x, double[][] covariance) { in validateCovarianceData() argument
232 if (x.length != covariance.length) { in validateCovarianceData()
234 LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, x.length, covariance.length); in validateCovarianceData()
236 if (covariance.length > 0 && covariance.length != covariance[0].length) { in validateCovarianceData()
239 covariance.length, covariance[0].length); in validateCovarianceData()
DGLSMultipleLinearRegression.java56 public void newSampleData(double[] y, double[][] x, double[][] covariance) { in newSampleData() argument
60 validateCovarianceData(x, covariance); in newSampleData()
61 newCovarianceData(covariance); in newSampleData()
/external/ceres-solver/internal/ceres/
Dcovariance_test.cc315 Covariance covariance(options); in ComputeAndCompareCovarianceBlocks() local
316 EXPECT_TRUE(covariance.Compute(covariance_blocks, &problem_)); in ComputeAndCompareCovarianceBlocks()
322 GetCovarianceBlockAndCompare(block1, block2, covariance, expected_covariance); in ComputeAndCompareCovarianceBlocks()
324 GetCovarianceBlockAndCompare(block2, block1, covariance, expected_covariance); in ComputeAndCompareCovarianceBlocks()
331 const Covariance& covariance, in GetCovarianceBlockAndCompare() argument
339 EXPECT_TRUE(covariance.GetCovarianceBlock(block1, in GetCovarianceBlockAndCompare()
743 Covariance covariance(options); in ComputeAndCompare() local
744 EXPECT_TRUE(covariance.Compute(all_covariance_blocks_, &problem_)); in ComputeAndCompare()
755 covariance.GetCovarianceBlock(block_i, block_i, actual.data()); in ComputeAndCompare()
764 covariance.GetCovarianceBlock(block_i, block_j, actual.data()); in ComputeAndCompare()
DCMakeLists.txt54 covariance.cc
243 CERES_TEST(covariance)
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/correlation/
DCovariance.java166 double cov = covariance(matrix.getColumn(i), matrix.getColumn(j), biasCorrected); in computeCovarianceMatrix()
220 public double covariance(final double[] xArray, final double[] yArray, boolean biasCorrected) in covariance() method in Covariance
255 public double covariance(final double[] xArray, final double[] yArray) in covariance() method in Covariance
257 return covariance(xArray, yArray, true); in covariance()
DPearsonsCorrelation.java95 public PearsonsCorrelation(Covariance covariance) { in PearsonsCorrelation() argument
96 RealMatrix covarianceMatrix = covariance.getCovarianceMatrix(); in PearsonsCorrelation()
100 nObs = covariance.getN(); in PearsonsCorrelation()
/external/autotest/client/site_tests/video_WebRtcCamera/
Dssim.js47 covariance: function(a, b, meanA, meanB) { method in Ssim
76 var sigmaXy = this.covariance(x, y, muX, muY);
/external/autotest/client/site_tests/video_WebRtcPeerConnectionWithCamera/
Dssim.js47 covariance: function(a, b, meanA, meanB) { method in Ssim
76 var sigmaXy = this.covariance(x, y, muX, muY);
/external/opencv3/doc/tutorials/ml/introduction_to_pca/
Dintroduction_to_pca.markdown64 __Find the covariance matrix__
66 - Find the \f$ p\times p \f$ empirical covariance matrix __C__ from the outer product of matrix __B…
72 __Find the eigenvectors and eigenvalues of the covariance matrix__
74 - Compute the matrix __V__ of eigenvectors which diagonalizes the covariance matrix __C__:
84 here, \f$ \lambda_j \f$ is the _j_-th eigenvalue of the covariance matrix __C__
86 …n vectors, each of length _p_, which represent the _p_ eigenvectors of the covariance matrix __C__.
/external/ceres-solver/docs/source/
Dsolving.rst2157 non-linear least squares solve is to analyze the covariance of the
2166 covariance. Then the maximum likelihood estimate of :math:`x` given
2172 And the covariance of :math:`x^*` is given by
2179 If :math:`J(x^*)` is rank deficient, then the covariance matrix :math:`C(x^*)`
2184 Note that in the above, we assumed that the covariance matrix for
2191 covariance of :math:`y`, then the maximum likelihood problem to be
2196 and the corresponding covariance estimate of :math:`x^*` is given by
2201 covariance matrix not equal to identity, then it is the user's
2205 where :math:`S^{-1/2}` is the inverse square root of the covariance
2222 :class:`Covariance` allows the user to evaluate the covariance for a
[all …]
Dfeatures.rst71 the solution by evaluating all or part of the covariance
Dversion_history.rst13 #. Added ``EIGEN_SPARSE_QR`` algorithm for covariance estimation using
22 #. The ``SPARSE_CHOLESKY`` algorithm for covariance estimation has
26 #. The ``SPARSE_QR`` algorithm for covariance estimation has been
228 #. Sparse and dense covariance estimation.
Dmodeling.rst800 where, :math:`\mu` is a vector and :math:`S` is a covariance matrix,
802 root of the inverse of the covariance, also known as the stiffness
805 the covariance matrix :math:`S` is rank deficient.
/external/clang/test/ARCMT/
Dchecking.m198 - (id) init03; // covariance
199 - (id) init04; // covariance
217 - (Test8_super*) init30; // id exception to covariance
221 - (Test8_super*) init34; // covariance
224 - (Test8*) init40; // id exception to covariance
/external/opencv3/modules/ml/doc/
Dml_intro.markdown51 algorithm estimates mean vectors and covariance matrices for every class, and then it uses them for
313 \f$a_k\f$ and covariance matrix \f$S_k\f$, \f$\pi_k\f$ is the weight of the k-th mixture. Given the
340 majority of the parameters reside in covariance matrices, which are \f$d \times d\f$ elements each
342 covariance matrices are close to diagonal or even to \f$\mu_k*I\f$ , where \f$I\f$ is an identity
344 could start with harder constraints on the covariance matrices and then use the estimated parameters
345 as an input for a less constrained optimization problem (often a diagonal covariance matrix is
/external/clang/test/SemaObjC/
Darc.m172 - (id) init03; // covariance
173 - (id) init04; // covariance
191 - (Test8_super*) init30; // id exception to covariance
196 - (Test8_super*) init34; // covariance
199 - (Test8*) init40; // id exception to covariance
/external/eigen/doc/
DFunctionsTakingEigenTypes.dox94 A Ref object can also be writable. Here is an example of a function computing the covariance matrix…
179 … done now, right? This is not completely true because in order for our covariance function to be g…
/external/ceres-solver/
DCMakeLists.txt115 This does not affect the covariance estimation algorithm, as it
256 MESSAGE(" This does not affect the covariance estimation algorithm ")
/external/opencv3/doc/tutorials/calib3d/real_time_pose/
Dreal_time_pose.markdown578 noise, the measurement noise and the error covariance matrix. Secondly, are set the transition
593 cv::setIdentity(KF.errorCovPost, cv::Scalar::all(1)); // error covariance