/external/ceres-solver/internal/ceres/ |
D | polynomial.cc | 102 void BuildCompanionMatrix(const Vector& polynomial, in BuildCompanionMatrix() argument 107 const int degree = polynomial.size() - 1; in BuildCompanionMatrix() 112 companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree); in BuildCompanionMatrix() 124 void FindLinearPolynomialRoots(const Vector& polynomial, in FindLinearPolynomialRoots() argument 127 CHECK_EQ(polynomial.size(), 2); in FindLinearPolynomialRoots() 130 (*real)(0) = -polynomial(1) / polynomial(0); in FindLinearPolynomialRoots() 138 void FindQuadraticPolynomialRoots(const Vector& polynomial, in FindQuadraticPolynomialRoots() argument 141 CHECK_EQ(polynomial.size(), 3); in FindQuadraticPolynomialRoots() 142 const double a = polynomial(0); in FindQuadraticPolynomialRoots() 143 const double b = polynomial(1); in FindQuadraticPolynomialRoots() [all …]
|
D | polynomial_test.cc | 225 Vector polynomial(1); in TEST() local 226 polynomial(0) = 1.0; in TEST() 227 const Vector derivative = DifferentiatePolynomial(polynomial); in TEST() 234 Vector polynomial(3); in TEST() local 235 polynomial(0) = 1.0; in TEST() 236 polynomial(1) = 2.0; in TEST() 237 polynomial(2) = 3.0; in TEST() 239 const Vector derivative = DifferentiatePolynomial(polynomial); in TEST() 247 Vector polynomial(1); in TEST() local 248 polynomial(0) = 1.0; in TEST() [all …]
|
D | polynomial.h | 49 inline double EvaluatePolynomial(const Vector& polynomial, double x) { in EvaluatePolynomial() argument 51 for (int i = 0; i < polynomial.size(); ++i) { in EvaluatePolynomial() 52 v = v * x + polynomial(i); in EvaluatePolynomial() 66 bool FindPolynomialRoots(const Vector& polynomial, 72 Vector DifferentiatePolynomial(const Vector& polynomial); 80 void MinimizePolynomial(const Vector& polynomial,
|
D | dogleg_strategy.cc | 426 Vector polynomial(5); in MakePolynomialForBoundaryConstrainedProblem() local 427 polynomial(0) = r2; in MakePolynomialForBoundaryConstrainedProblem() 428 polynomial(1) = 2.0 * r2 * trB; in MakePolynomialForBoundaryConstrainedProblem() 429 polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm(); in MakePolynomialForBoundaryConstrainedProblem() 430 polynomial(3) = -2.0 * (subspace_g_.transpose() * B_adj * subspace_g_ in MakePolynomialForBoundaryConstrainedProblem() 432 polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm(); in MakePolynomialForBoundaryConstrainedProblem() 434 return polynomial; in MakePolynomialForBoundaryConstrainedProblem() 478 const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem(); in FindMinimumOnTrustRegionBoundary() local 482 if (!FindPolynomialRoots(polynomial, &roots_real, NULL)) { in FindMinimumOnTrustRegionBoundary()
|
D | CMakeLists.txt | 85 polynomial.cc 269 CERES_TEST(polynomial)
|
/external/eigen/unsupported/doc/examples/ |
D | PolynomialUtils1.cpp | 11 Eigen::Matrix<double,5,1> polynomial; in main() local 12 roots_to_monicPolynomial( roots, polynomial ); in main() 14 for( int i=0; i<4; ++i ){ cout << polynomial[i] << ".x^" << i << "+ "; } in main() 15 cout << polynomial[4] << ".x^4" << endl; in main() 18 evaluation[i] = poly_eval( polynomial, roots[i] ); } in main()
|
D | PolynomialSolver1.cpp | 14 Eigen::Matrix<double,6,1> polynomial; in main() local 15 roots_to_monicPolynomial( roots, polynomial ); in main() 17 PolynomialSolver<double,5> psolve( polynomial ); in main()
|
/external/eigen/unsupported/Eigen/ |
D | Polynomials | 29 * \brief This module provides a QR based polynomial solver. 44 and a QR based polynomial solver. 48 polynomials, computing estimates about polynomials and next the QR based polynomial 68 evaluates a polynomial at a given point using stabilized Hörner method. 70 …The following code: first computes the coefficients in the monomial basis of the monic polynomial … 71 then, it evaluates the computed polynomial, using a stabilized Hörner method. 81 …um bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e. 91 …(the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given polynomial i.e. 98 \section QR polynomial solver class 99 …Computes the complex roots of a polynomial by computing the eigenvalues of the associated companio… [all …]
|
/external/opencv3/modules/calib3d/src/ |
D | triangulate.cpp | 190 cv::Ptr<CvMat> polynomial; in cvCorrectMatches() local 247 polynomial.reset(cvCreateMat(1,7,CV_64FC1)); in cvCorrectMatches() 332 cvSetReal2D(polynomial,0,6,( +b*c*c*f1*f1*f1*f1*a-a*a*d*f1*f1*f1*f1*c )); in cvCorrectMatches() 333 …cvSetReal2D(polynomial,0,5,( +f2*f2*f2*f2*c*c*c*c+2*a*a*f2*f2*c*c-a*a*d*d*f1*f1*f1*f1+b*b*c*c*f1*f… in cvCorrectMatches() 334 …cvSetReal2D(polynomial,0,4,( +4*a*a*a*b+2*b*c*c*f1*f1*a+4*f2*f2*f2*f2*c*c*c*d+4*a*b*f2*f2*c*c+4*a*… in cvCorrectMatches() 335 …cvSetReal2D(polynomial,0,3,( +6*a*a*b*b+6*f2*f2*f2*f2*c*c*d*d+2*b*b*f2*f2*c*c+2*a*a*f2*f2*d*d-2*a*… in cvCorrectMatches() 336 …cvSetReal2D(polynomial,0,2,( +4*a*b*b*b+4*b*b*f2*f2*c*d+4*f2*f2*f2*f2*c*d*d*d-a*a*d*c+b*c*c*a+4*a*… in cvCorrectMatches() 337 … cvSetReal2D(polynomial,0,1,( +f2*f2*f2*f2*d*d*d*d+b*b*b*b+2*b*b*f2*f2*d*d-a*a*d*d+b*b*c*c )); in cvCorrectMatches() 338 cvSetReal2D(polynomial,0,0,( -a*d*d*b+b*b*c*d )); in cvCorrectMatches() 342 cvSolvePoly(polynomial, result, 100, 20); in cvCorrectMatches()
|
/external/bouncycastle/bcprov/src/main/java/org/bouncycastle/math/field/ |
D | GenericPolynomialExtensionField.java | 12 GenericPolynomialExtensionField(FiniteField subfield, Polynomial polynomial) in GenericPolynomialExtensionField() argument 15 this.minimalPolynomial = polynomial; in GenericPolynomialExtensionField()
|
/external/mesa3d/src/gallium/auxiliary/gallivm/ |
D | f.cpp | 88 const boost::math::tools::polynomial<boost::math::ntl::RR>& n, in show_extra() 89 const boost::math::tools::polynomial<boost::math::ntl::RR>& d, in show_extra()
|
/external/chromium-trace/catapult/third_party/gsutil/third_party/crcmod/docs/source/ |
D | crcmod.rst | 32 :param poly: The generator polynomial to use in calculating the CRC. The value 34 are the coefficients of the polynomial. The only polynomials allowed are 117 :param poly: The generator polynomial to use in calculating the CRC. The value 119 are the coefficients of the polynomial. The only polynomials allowed are 140 The size of the resulting digest in bytes. This depends on the width of the CRC polynomial.
|
D | intro.rst | 17 generate a Python function for the selected polynomial or an instance of the
|
D | crcmod.predefined.rst | 15 individual polynomial, reflection, and initial and final-XOR parameters.
|
/external/webrtc/webrtc/modules/video_processing/test/ |
D | createTable.m | 13 % is a second-order polynomial intersecting the points (0,0) 15 % 2. From r0 to r1, the compander is a third-order polynomial
|
/external/llvm/test/Transforms/LoopStrengthReduce/ |
D | quadradic-exit-value.ll | 6 ; The value of %r is dependent on a polynomial iteration expression.
|
/external/ceres-solver/ |
D | Android.mk | 165 $(CERES_SRC_PATH)/polynomial.cc \
|
/external/ceres-solver/jni/ |
D | Android.mk | 156 $(CERES_SRC_PATH)/polynomial.cc \
|
/external/chromium-trace/catapult/third_party/gsutil/third_party/crcmod/ |
D | README | 13 generate a Python function for the selected polynomial or an instance of the
|
/external/llvm/test/Analysis/ScalarEvolution/ |
D | trip-count10.ll | 78 ; Trip counts for non-polynomial iterations. It's theoretically possible
|
/external/llvm/lib/Target/Hexagon/ |
D | HexagonIntrinsicsV4.td | 41 // Vector polynomial multiply halfwords
|
/external/llvm/include/llvm/IR/ |
D | IntrinsicsAArch64.td | 208 // 64-bit polynomial multiply really returns an i128, which is not legal. Fake
|
/external/llvm/test/MC/Disassembler/Hexagon/ |
D | xtype_mpy.txt | 396 # Vector polynomial multiply halfwords
|
/external/opencv3/doc/ |
D | opencv.bib | 249 title = {Two-frame motion estimation based on polynomial expansion},
|
/external/libogg/doc/ |
D | rfc3533.txt | 583 The generator polynomial is 0x04c11db7.
|