/external/opencv/ml/src/ |
D | mlestimate.cpp | 404 const CvMat* sampleIdx) 454 if (sampleIdx) 459 if (!CV_IS_MAT (sampleIdx)) 462 if (sampleIdx->rows != 1 && sampleIdx->cols != 1) 465 s_len = sampleIdx->rows + sampleIdx->cols - 1; 466 s_step = sampleIdx->rows == 1 ? 467 1 : sampleIdx->step / CV_ELEM_SIZE(sampleIdx->type); 469 s_type = CV_MAT_TYPE (sampleIdx->type); 476 uchar* s_data = sampleIdx->data.ptr; 510 uchar* s_data = sampleIdx->data.ptr; [all …]
|
D | _ml.h | 219 ICV_MAT2VEC( *sampleIdx, sidx, sistep, l ); \
|
/external/opencv3/apps/traincascade/ |
D | old_ml.hpp | 198 const CvMat* varIdx=0, const CvMat* sampleIdx=0 ); 201 const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false ); 207 const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() ); 209 const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), 243 const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 ); 246 const CvMat* sampleIdx=0, bool is_regression=false, 253 const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 ); 256 const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, 473 const CvMat* varIdx=0, const CvMat* sampleIdx=0, 477 const CvMat* varIdx=0, const CvMat* sampleIdx=0, [all …]
|
D | haarfeatures.h | 37 virtual float operator()(int featureIdx, int sampleIdx) const; 73 inline float CvHaarEvaluator::operator()(int featureIdx, int sampleIdx) const in operator() 75 float nf = normfactor.at<float>(0, sampleIdx); in operator() 76 return !nf ? 0.0f : (features[featureIdx].calc( sum, tilted, sampleIdx)/nf); in operator()
|
D | HOGfeatures.h | 25 virtual float operator()(int varIdx, int sampleIdx) const; 52 inline float CvHOGEvaluator::operator()(int varIdx, int sampleIdx) const in operator() 57 return features[featureIdx].calc( hist, normSum, sampleIdx, componentIdx); in operator()
|
D | lbpfeatures.h | 20 virtual float operator()(int featureIdx, int sampleIdx) const in operator() 21 { return (float)features[featureIdx].calc( sum, sampleIdx); } in operator()
|
D | boost.h | 56 virtual CvDTreeNode* predict( int sampleIdx ) const; 70 virtual float predict( int sampleIdx, bool returnSum = false ) const;
|
D | boost.cpp | 954 CvDTreeNode* CvCascadeBoostTree::predict( int sampleIdx ) const in predict() 965 float val = ((CvCascadeBoostTrainData*)data)->getVarValue( split->var_idx, sampleIdx ); in predict() 974 int c = (int)((CvCascadeBoostTrainData*)data)->getVarValue( split->var_idx, sampleIdx ); in predict() 1403 float CvCascadeBoost::predict( int sampleIdx, bool returnSum ) const in predict() argument 1414 sum += ((CvCascadeBoostTree*)wtree)->predict(sampleIdx)->value; in predict() 1437 const int* sampleIdx = 0; in update_weights() local 1448 sampleIdx = data->get_sample_indices( data->data_root, sampleIdxBuf ); in update_weights() 1513 fdata[sampleIdx[i]*step] = orig_response->data.i[i] > 0 ? 2.f : -2.f; in update_weights() 1523 fdata[sampleIdx[i]*step] = (float)orig_response->data.i[i]; in update_weights() 1632 fdata[sampleIdx[i]*step] = (float)min(z, lbZMax); in update_weights() [all …]
|
D | cascadeclassifier.cpp | 288 int CvCascadeClassifier::predict( int sampleIdx ) in predict() argument 290 CV_DbgAssert( sampleIdx < numPos + numNeg ); in predict() 294 if ( (*it)->predict( sampleIdx ) == 0.f ) in predict()
|
D | cascadeclassifier.h | 100 int predict( int sampleIdx );
|
D | traincascade_features.h | 83 virtual float operator()(int featureIdx, int sampleIdx) const = 0;
|
D | old_ml_precomp.hpp | 215 ICV_MAT2VEC( *sampleIdx, sidx, sistep, l ); \
|
/external/opencv3/modules/ml/src/ |
D | data.cpp | 131 return !sampleIdx.empty() ? (int)sampleIdx.total() : in getNSamples() 160 Mat getTrainSampleIdx() const { return !trainSampleIdx.empty() ? trainSampleIdx : sampleIdx; } in getTrainSampleIdx() 217 sampleIdx.release(); in clear() 242 sampleIdx = _sampleIdx.getMat(); in setData() 253 if( !sampleIdx.empty() ) in setData() 255 CV_Assert( (sampleIdx.checkVector(1, CV_32S, true) > 0 && in setData() 256 checkRange(sampleIdx, true, 0, 0, nsamples-1)) || in setData() 257 sampleIdx.checkVector(1, CV_8U, true) == nsamples ); in setData() 258 if( sampleIdx.type() == CV_8U ) in setData() 259 sampleIdx = convertMaskToIdx(sampleIdx); in setData() [all …]
|
D | gbt.cpp | 1322 const cv::Mat& sampleIdx, const cv::Mat& varType, 1338 train(trainData, tflag, responses, varIdx, sampleIdx, varType, missingDataMask, _params, false); 1343 const cv::Mat& sampleIdx, const cv::Mat& varType, 1349 CvMat _varIdx = varIdx, _sampleIdx = sampleIdx, _varType = varType; 1353 sampleIdx.empty() ? 0 : &_sampleIdx, varType.empty() ? 0 : &_varType,
|
/external/webrtc/webrtc/modules/audio_device/mac/ |
D | audio_device_mac.cc | 2638 for (uint32_t sampleIdx = 0; sampleIdx < nOutSamples; sampleIdx += 2) { in RenderWorkerThread() local 2639 sampleInt32 = pPlayBuffer[sampleIdx]; in RenderWorkerThread() 2640 sampleInt32 += pPlayBuffer[sampleIdx + 1]; in RenderWorkerThread() 2649 pPlayBuffer[sampleIdx] = 0; in RenderWorkerThread() 2650 pPlayBuffer[sampleIdx + 1] = static_cast<SInt16>(sampleInt32); in RenderWorkerThread()
|
/external/opencv3/modules/ml/include/opencv2/ |
D | ml.hpp | 284 InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
|
/external/opencv/ml/include/ |
D | ml.h | 1508 const CvMat* sampleIdx CV_DEFAULT(0) ); 1525 const CvMat* sampleIdx CV_DEFAULT(0),
|