• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "lambda/box_table.h"
17 
18 #include "base/mutex.h"
19 #include "common_throws.h"
20 #include "gc_root-inl.h"
21 #include "lambda/closure.h"
22 #include "lambda/leaking_allocator.h"
23 #include "mirror/method.h"
24 #include "mirror/object-inl.h"
25 #include "thread.h"
26 
27 #include <vector>
28 
29 namespace art {
30 namespace lambda {
31 // Temporarily represent the lambda Closure as its raw bytes in an array.
32 // TODO: Generate a proxy class for the closure when boxing the first time.
33 using BoxedClosurePointerType = mirror::ByteArray*;
34 
GetBoxedClosureClass()35 static mirror::Class* GetBoxedClosureClass() SHARED_REQUIRES(Locks::mutator_lock_) {
36   return mirror::ByteArray::GetArrayClass();
37 }
38 
39 namespace {
40   // Convenience functions to allocating/deleting box table copies of the closures.
41   struct ClosureAllocator {
42     // Deletes a Closure that was allocated through ::Allocate.
Deleteart::lambda::__anon1fa7a5e10111::ClosureAllocator43     static void Delete(Closure* ptr) {
44       delete[] reinterpret_cast<char*>(ptr);
45     }
46 
47     // Returns a well-aligned pointer to a newly allocated Closure on the 'new' heap.
Allocateart::lambda::__anon1fa7a5e10111::ClosureAllocator48     static Closure* Allocate(size_t size) {
49       DCHECK_GE(size, sizeof(Closure));
50 
51       // TODO: Maybe point to the interior of the boxed closure object after we add proxy support?
52       Closure* closure = reinterpret_cast<Closure*>(new char[size]);
53       DCHECK_ALIGNED(closure, alignof(Closure));
54       return closure;
55     }
56   };
57 }  // namespace
58 
BoxTable()59 BoxTable::BoxTable()
60   : allow_new_weaks_(true),
61     new_weaks_condition_("lambda box table allowed weaks", *Locks::lambda_table_lock_) {}
62 
~BoxTable()63 BoxTable::~BoxTable() {
64   // Free all the copies of our closures.
65   for (auto map_iterator = map_.begin(); map_iterator != map_.end(); ) {
66     std::pair<UnorderedMapKeyType, ValueType>& key_value_pair = *map_iterator;
67 
68     Closure* closure = key_value_pair.first;
69 
70     // Remove from the map first, so that it doesn't try to access dangling pointer.
71     map_iterator = map_.Erase(map_iterator);
72 
73     // Safe to delete, no dangling pointers.
74     ClosureAllocator::Delete(closure);
75   }
76 }
77 
BoxLambda(const ClosureType & closure)78 mirror::Object* BoxTable::BoxLambda(const ClosureType& closure) {
79   Thread* self = Thread::Current();
80 
81   {
82     // TODO: Switch to ReaderMutexLock if ConditionVariable ever supports RW Mutexes
83     /*Reader*/MutexLock mu(self, *Locks::lambda_table_lock_);
84     BlockUntilWeaksAllowed();
85 
86     // Attempt to look up this object, it's possible it was already boxed previously.
87     // If this is the case we *must* return the same object as before to maintain
88     // referential equality.
89     //
90     // In managed code:
91     //   Functional f = () -> 5;  // vF = create-lambda
92     //   Object a = f;            // vA = box-lambda vA
93     //   Object b = f;            // vB = box-lambda vB
94     //   assert(a == f)
95     ValueType value = FindBoxedLambda(closure);
96     if (!value.IsNull()) {
97       return value.Read();
98     }
99 
100     // Otherwise we need to box ourselves and insert it into the hash map
101   }
102 
103   // Release the lambda table lock here, so that thread suspension is allowed.
104 
105   // Convert the Closure into a managed byte[] which will serve
106   // as the temporary 'boxed' version of the lambda. This is good enough
107   // to check all the basic object identities that a boxed lambda must retain.
108   // It's also good enough to contain all the captured primitive variables.
109 
110   // TODO: Boxing an innate lambda (i.e. made with create-lambda) should make a proxy class
111   // TODO: Boxing a learned lambda (i.e. made with unbox-lambda) should return the original object
112   BoxedClosurePointerType closure_as_array_object =
113       mirror::ByteArray::Alloc(self, closure->GetSize());
114 
115   // There are no thread suspension points after this, so we don't need to put it into a handle.
116 
117   if (UNLIKELY(closure_as_array_object == nullptr)) {
118     // Most likely an OOM has occurred.
119     CHECK(self->IsExceptionPending());
120     return nullptr;
121   }
122 
123   // Write the raw closure data into the byte[].
124   closure->CopyTo(closure_as_array_object->GetRawData(sizeof(uint8_t),  // component size
125                                                       0 /*index*/),     // index
126                   closure_as_array_object->GetLength());
127 
128   // The method has been successfully boxed into an object, now insert it into the hash map.
129   {
130     MutexLock mu(self, *Locks::lambda_table_lock_);
131     BlockUntilWeaksAllowed();
132 
133     // Lookup the object again, it's possible another thread already boxed it while
134     // we were allocating the object before.
135     ValueType value = FindBoxedLambda(closure);
136     if (UNLIKELY(!value.IsNull())) {
137       // Let the GC clean up method_as_object at a later time.
138       return value.Read();
139     }
140 
141     // Otherwise we need to insert it into the hash map in this thread.
142 
143     // Make a copy for the box table to keep, in case the closure gets collected from the stack.
144     // TODO: GC may need to sweep for roots in the box table's copy of the closure.
145     Closure* closure_table_copy = ClosureAllocator::Allocate(closure->GetSize());
146     closure->CopyTo(closure_table_copy, closure->GetSize());
147 
148     // The closure_table_copy needs to be deleted by us manually when we erase it from the map.
149 
150     // Actually insert into the table.
151     map_.Insert({closure_table_copy, ValueType(closure_as_array_object)});
152   }
153 
154   return closure_as_array_object;
155 }
156 
UnboxLambda(mirror::Object * object,ClosureType * out_closure)157 bool BoxTable::UnboxLambda(mirror::Object* object, ClosureType* out_closure) {
158   DCHECK(object != nullptr);
159   *out_closure = nullptr;
160 
161   Thread* self = Thread::Current();
162 
163   // Note that we do not need to access lambda_table_lock_ here
164   // since we don't need to look at the map.
165 
166   mirror::Object* boxed_closure_object = object;
167 
168   // Raise ClassCastException if object is not instanceof byte[]
169   if (UNLIKELY(!boxed_closure_object->InstanceOf(GetBoxedClosureClass()))) {
170     ThrowClassCastException(GetBoxedClosureClass(), boxed_closure_object->GetClass());
171     return false;
172   }
173 
174   // TODO(iam): We must check that the closure object extends/implements the type
175   // specified in [type id]. This is not currently implemented since it's always a byte[].
176 
177   // If we got this far, the inputs are valid.
178   // Shuffle the byte[] back into a raw closure, then allocate it, copy, and return it.
179   BoxedClosurePointerType boxed_closure_as_array =
180       down_cast<BoxedClosurePointerType>(boxed_closure_object);
181 
182   const int8_t* unaligned_interior_closure = boxed_closure_as_array->GetData();
183 
184   // Allocate a copy that can "escape" and copy the closure data into that.
185   Closure* unboxed_closure =
186       LeakingAllocator::MakeFlexibleInstance<Closure>(self, boxed_closure_as_array->GetLength());
187   // TODO: don't just memcpy the closure, it's unsafe when we add references to the mix.
188   memcpy(unboxed_closure, unaligned_interior_closure, boxed_closure_as_array->GetLength());
189 
190   DCHECK_EQ(unboxed_closure->GetSize(), static_cast<size_t>(boxed_closure_as_array->GetLength()));
191 
192   *out_closure = unboxed_closure;
193   return true;
194 }
195 
FindBoxedLambda(const ClosureType & closure) const196 BoxTable::ValueType BoxTable::FindBoxedLambda(const ClosureType& closure) const {
197   auto map_iterator = map_.Find(closure);
198   if (map_iterator != map_.end()) {
199     const std::pair<UnorderedMapKeyType, ValueType>& key_value_pair = *map_iterator;
200     const ValueType& value = key_value_pair.second;
201 
202     DCHECK(!value.IsNull());  // Never store null boxes.
203     return value;
204   }
205 
206   return ValueType(nullptr);
207 }
208 
BlockUntilWeaksAllowed()209 void BoxTable::BlockUntilWeaksAllowed() {
210   Thread* self = Thread::Current();
211   while (UNLIKELY((!kUseReadBarrier && !allow_new_weaks_) ||
212                   (kUseReadBarrier && !self->GetWeakRefAccessEnabled()))) {
213     new_weaks_condition_.WaitHoldingLocks(self);  // wait while holding mutator lock
214   }
215 }
216 
SweepWeakBoxedLambdas(IsMarkedVisitor * visitor)217 void BoxTable::SweepWeakBoxedLambdas(IsMarkedVisitor* visitor) {
218   DCHECK(visitor != nullptr);
219 
220   Thread* self = Thread::Current();
221   MutexLock mu(self, *Locks::lambda_table_lock_);
222 
223   /*
224    * Visit every weak root in our lambda box table.
225    * Remove unmarked objects, update marked objects to new address.
226    */
227   std::vector<ClosureType> remove_list;
228   for (auto map_iterator = map_.begin(); map_iterator != map_.end(); ) {
229     std::pair<UnorderedMapKeyType, ValueType>& key_value_pair = *map_iterator;
230 
231     const ValueType& old_value = key_value_pair.second;
232 
233     // This does not need a read barrier because this is called by GC.
234     mirror::Object* old_value_raw = old_value.Read<kWithoutReadBarrier>();
235     mirror::Object* new_value = visitor->IsMarked(old_value_raw);
236 
237     if (new_value == nullptr) {
238       // The object has been swept away.
239       const ClosureType& closure = key_value_pair.first;
240 
241       // Delete the entry from the map.
242       map_iterator = map_.Erase(map_iterator);
243 
244       // Clean up the memory by deleting the closure.
245       ClosureAllocator::Delete(closure);
246 
247     } else {
248       // The object has been moved.
249       // Update the map.
250       key_value_pair.second = ValueType(new_value);
251       ++map_iterator;
252     }
253   }
254 
255   // Occasionally shrink the map to avoid growing very large.
256   if (map_.CalculateLoadFactor() < kMinimumLoadFactor) {
257     map_.ShrinkToMaximumLoad();
258   }
259 }
260 
DisallowNewWeakBoxedLambdas()261 void BoxTable::DisallowNewWeakBoxedLambdas() {
262   CHECK(!kUseReadBarrier);
263   Thread* self = Thread::Current();
264   MutexLock mu(self, *Locks::lambda_table_lock_);
265 
266   allow_new_weaks_ = false;
267 }
268 
AllowNewWeakBoxedLambdas()269 void BoxTable::AllowNewWeakBoxedLambdas() {
270   CHECK(!kUseReadBarrier);
271   Thread* self = Thread::Current();
272   MutexLock mu(self, *Locks::lambda_table_lock_);
273 
274   allow_new_weaks_ = true;
275   new_weaks_condition_.Broadcast(self);
276 }
277 
BroadcastForNewWeakBoxedLambdas()278 void BoxTable::BroadcastForNewWeakBoxedLambdas() {
279   CHECK(kUseReadBarrier);
280   Thread* self = Thread::Current();
281   MutexLock mu(self, *Locks::lambda_table_lock_);
282   new_weaks_condition_.Broadcast(self);
283 }
284 
MakeEmpty(std::pair<UnorderedMapKeyType,ValueType> & item) const285 void BoxTable::EmptyFn::MakeEmpty(std::pair<UnorderedMapKeyType, ValueType>& item) const {
286   item.first = nullptr;
287 
288   Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
289   item.second = ValueType();  // Also clear the GC root.
290 }
291 
IsEmpty(const std::pair<UnorderedMapKeyType,ValueType> & item) const292 bool BoxTable::EmptyFn::IsEmpty(const std::pair<UnorderedMapKeyType, ValueType>& item) const {
293   return item.first == nullptr;
294 }
295 
operator ()(const UnorderedMapKeyType & lhs,const UnorderedMapKeyType & rhs) const296 bool BoxTable::EqualsFn::operator()(const UnorderedMapKeyType& lhs,
297                                     const UnorderedMapKeyType& rhs) const {
298   // Nothing needs this right now, but leave this assertion for later when
299   // we need to look at the references inside of the closure.
300   Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
301 
302   return lhs->ReferenceEquals(rhs);
303 }
304 
operator ()(const UnorderedMapKeyType & key) const305 size_t BoxTable::HashFn::operator()(const UnorderedMapKeyType& key) const {
306   const lambda::Closure* closure = key;
307   DCHECK_ALIGNED(closure, alignof(lambda::Closure));
308 
309   // Need to hold mutator_lock_ before calling into Closure::GetHashCode.
310   Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
311   return closure->GetHashCode();
312 }
313 
314 }  // namespace lambda
315 }  // namespace art
316