• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// AArch64 Instruction definitions.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// ARM Instruction Predicate Definitions.
16//
17def HasV8_1a         : Predicate<"Subtarget->hasV8_1aOps()">,
18                                 AssemblerPredicate<"HasV8_1aOps", "armv8.1a">;
19def HasV8_2a         : Predicate<"Subtarget->hasV8_2aOps()">,
20                                 AssemblerPredicate<"HasV8_2aOps", "armv8.2a">;
21def HasFPARMv8       : Predicate<"Subtarget->hasFPARMv8()">,
22                               AssemblerPredicate<"FeatureFPARMv8", "fp-armv8">;
23def HasNEON          : Predicate<"Subtarget->hasNEON()">,
24                                 AssemblerPredicate<"FeatureNEON", "neon">;
25def HasCrypto        : Predicate<"Subtarget->hasCrypto()">,
26                                 AssemblerPredicate<"FeatureCrypto", "crypto">;
27def HasCRC           : Predicate<"Subtarget->hasCRC()">,
28                                 AssemblerPredicate<"FeatureCRC", "crc">;
29def HasPerfMon       : Predicate<"Subtarget->hasPerfMon()">;
30def HasFullFP16      : Predicate<"Subtarget->hasFullFP16()">,
31                                 AssemblerPredicate<"FeatureFullFP16", "fullfp16">;
32def HasSPE           : Predicate<"Subtarget->hasSPE()">,
33                                 AssemblerPredicate<"FeatureSPE", "spe">;
34
35def IsLE             : Predicate<"Subtarget->isLittleEndian()">;
36def IsBE             : Predicate<"!Subtarget->isLittleEndian()">;
37def IsCyclone        : Predicate<"Subtarget->isCyclone()">;
38
39//===----------------------------------------------------------------------===//
40// AArch64-specific DAG Nodes.
41//
42
43// SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
44def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
45                                              [SDTCisSameAs<0, 2>,
46                                               SDTCisSameAs<0, 3>,
47                                               SDTCisInt<0>, SDTCisVT<1, i32>]>;
48
49// SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
50def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
51                                            [SDTCisSameAs<0, 1>,
52                                             SDTCisSameAs<0, 2>,
53                                             SDTCisInt<0>,
54                                             SDTCisVT<3, i32>]>;
55
56// SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
57def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
58                                            [SDTCisSameAs<0, 2>,
59                                             SDTCisSameAs<0, 3>,
60                                             SDTCisInt<0>,
61                                             SDTCisVT<1, i32>,
62                                             SDTCisVT<4, i32>]>;
63
64def SDT_AArch64Brcond  : SDTypeProfile<0, 3,
65                                     [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
66                                      SDTCisVT<2, i32>]>;
67def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
68def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
69                                        SDTCisVT<2, OtherVT>]>;
70
71
72def SDT_AArch64CSel  : SDTypeProfile<1, 4,
73                                   [SDTCisSameAs<0, 1>,
74                                    SDTCisSameAs<0, 2>,
75                                    SDTCisInt<3>,
76                                    SDTCisVT<4, i32>]>;
77def SDT_AArch64CCMP : SDTypeProfile<1, 5,
78                                    [SDTCisVT<0, i32>,
79                                     SDTCisInt<1>,
80                                     SDTCisSameAs<1, 2>,
81                                     SDTCisInt<3>,
82                                     SDTCisInt<4>,
83                                     SDTCisVT<5, i32>]>;
84def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
85                                     [SDTCisVT<0, i32>,
86                                      SDTCisFP<1>,
87                                      SDTCisSameAs<1, 2>,
88                                      SDTCisInt<3>,
89                                      SDTCisInt<4>,
90                                      SDTCisVT<5, i32>]>;
91def SDT_AArch64FCmp   : SDTypeProfile<0, 2,
92                                   [SDTCisFP<0>,
93                                    SDTCisSameAs<0, 1>]>;
94def SDT_AArch64Dup   : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
95def SDT_AArch64DupLane   : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
96def SDT_AArch64Zip   : SDTypeProfile<1, 2, [SDTCisVec<0>,
97                                          SDTCisSameAs<0, 1>,
98                                          SDTCisSameAs<0, 2>]>;
99def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
100def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
101def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
102                                           SDTCisInt<2>, SDTCisInt<3>]>;
103def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
104def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
105                                          SDTCisSameAs<0,2>, SDTCisInt<3>]>;
106def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;
107
108def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
109def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>;
110def SDT_AArch64fcmp  : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
111def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
112                                           SDTCisSameAs<0,2>]>;
113def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
114                                           SDTCisSameAs<0,2>,
115                                           SDTCisSameAs<0,3>]>;
116def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
117def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;
118
119def SDT_AArch64ITOF  : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;
120
121def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
122                                                 SDTCisPtrTy<1>]>;
123
124// Generates the general dynamic sequences, i.e.
125//  adrp  x0, :tlsdesc:var
126//  ldr   x1, [x0, #:tlsdesc_lo12:var]
127//  add   x0, x0, #:tlsdesc_lo12:var
128//  .tlsdesccall var
129//  blr   x1
130
131// (the TPIDR_EL0 offset is put directly in X0, hence no "result" here)
132// number of operands (the variable)
133def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1,
134                                          [SDTCisPtrTy<0>]>;
135
136def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4,
137                                        [SDTCisVT<0, i64>, SDTCisVT<1, i32>,
138                                         SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
139                                         SDTCisSameAs<1, 4>]>;
140
141
142// Node definitions.
143def AArch64adrp          : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>;
144def AArch64addlow        : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>;
145def AArch64LOADgot       : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>;
146def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START",
147                                SDCallSeqStart<[ SDTCisVT<0, i32> ]>,
148                                [SDNPHasChain, SDNPOutGlue]>;
149def AArch64callseq_end   : SDNode<"ISD::CALLSEQ_END",
150                                SDCallSeqEnd<[ SDTCisVT<0, i32>,
151                                               SDTCisVT<1, i32> ]>,
152                                [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
153def AArch64call          : SDNode<"AArch64ISD::CALL",
154                                SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
155                                [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
156                                 SDNPVariadic]>;
157def AArch64brcond        : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond,
158                                [SDNPHasChain]>;
159def AArch64cbz           : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz,
160                                [SDNPHasChain]>;
161def AArch64cbnz           : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz,
162                                [SDNPHasChain]>;
163def AArch64tbz           : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz,
164                                [SDNPHasChain]>;
165def AArch64tbnz           : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz,
166                                [SDNPHasChain]>;
167
168
169def AArch64csel          : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>;
170def AArch64csinv         : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>;
171def AArch64csneg         : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>;
172def AArch64csinc         : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>;
173def AArch64retflag       : SDNode<"AArch64ISD::RET_FLAG", SDTNone,
174                                [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
175def AArch64adc       : SDNode<"AArch64ISD::ADC",  SDTBinaryArithWithFlagsIn >;
176def AArch64sbc       : SDNode<"AArch64ISD::SBC",  SDTBinaryArithWithFlagsIn>;
177def AArch64add_flag  : SDNode<"AArch64ISD::ADDS",  SDTBinaryArithWithFlagsOut,
178                            [SDNPCommutative]>;
179def AArch64sub_flag  : SDNode<"AArch64ISD::SUBS",  SDTBinaryArithWithFlagsOut>;
180def AArch64and_flag  : SDNode<"AArch64ISD::ANDS",  SDTBinaryArithWithFlagsOut,
181                            [SDNPCommutative]>;
182def AArch64adc_flag  : SDNode<"AArch64ISD::ADCS",  SDTBinaryArithWithFlagsInOut>;
183def AArch64sbc_flag  : SDNode<"AArch64ISD::SBCS",  SDTBinaryArithWithFlagsInOut>;
184
185def AArch64ccmp      : SDNode<"AArch64ISD::CCMP",  SDT_AArch64CCMP>;
186def AArch64ccmn      : SDNode<"AArch64ISD::CCMN",  SDT_AArch64CCMP>;
187def AArch64fccmp     : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;
188
189def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
190
191def AArch64fcmp      : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
192
193def AArch64dup       : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>;
194def AArch64duplane8  : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>;
195def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>;
196def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>;
197def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>;
198
199def AArch64zip1      : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>;
200def AArch64zip2      : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>;
201def AArch64uzp1      : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>;
202def AArch64uzp2      : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>;
203def AArch64trn1      : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>;
204def AArch64trn2      : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>;
205
206def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>;
207def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>;
208def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>;
209def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>;
210def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>;
211def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>;
212def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>;
213
214def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>;
215def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>;
216def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>;
217def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>;
218
219def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>;
220def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>;
221def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>;
222def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>;
223def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>;
224def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>;
225def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>;
226def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>;
227
228def AArch64not: SDNode<"AArch64ISD::NOT", SDT_AArch64unvec>;
229def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>;
230def AArch64bsl: SDNode<"AArch64ISD::BSL", SDT_AArch64trivec>;
231
232def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>;
233def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>;
234def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>;
235def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>;
236def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>;
237
238def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>;
239def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>;
240def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>;
241
242def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>;
243def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>;
244def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>;
245def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>;
246def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>;
247def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
248                        (AArch64not (AArch64cmeqz (and node:$LHS, node:$RHS)))>;
249
250def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>;
251def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>;
252def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>;
253def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>;
254def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>;
255
256def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>;
257def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>;
258
259def AArch64neg : SDNode<"AArch64ISD::NEG", SDT_AArch64unvec>;
260
261def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET,
262                  [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
263
264def AArch64Prefetch        : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH,
265                               [SDNPHasChain, SDNPSideEffect]>;
266
267def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>;
268def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>;
269
270def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ",
271                                    SDT_AArch64TLSDescCallSeq,
272                                    [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
273                                     SDNPVariadic]>;
274
275
276def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
277                                 SDT_AArch64WrapperLarge>;
278
279def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>;
280
281def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
282                                    SDTCisSameAs<1, 2>]>;
283def AArch64smull    : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>;
284def AArch64umull    : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>;
285
286def AArch64saddv    : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>;
287def AArch64uaddv    : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>;
288def AArch64sminv    : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>;
289def AArch64uminv    : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>;
290def AArch64smaxv    : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>;
291def AArch64umaxv    : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>;
292
293//===----------------------------------------------------------------------===//
294
295//===----------------------------------------------------------------------===//
296
297// AArch64 Instruction Predicate Definitions.
298//
299def HasZCZ    : Predicate<"Subtarget->hasZeroCycleZeroing()">;
300def NoZCZ     : Predicate<"!Subtarget->hasZeroCycleZeroing()">;
301def IsDarwin  : Predicate<"Subtarget->isTargetDarwin()">;
302def IsNotDarwin: Predicate<"!Subtarget->isTargetDarwin()">;
303def ForCodeSize   : Predicate<"ForCodeSize">;
304def NotForCodeSize   : Predicate<"!ForCodeSize">;
305
306include "AArch64InstrFormats.td"
307
308//===----------------------------------------------------------------------===//
309
310//===----------------------------------------------------------------------===//
311// Miscellaneous instructions.
312//===----------------------------------------------------------------------===//
313
314let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
315def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
316                              [(AArch64callseq_start timm:$amt)]>;
317def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
318                            [(AArch64callseq_end timm:$amt1, timm:$amt2)]>;
319} // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1
320
321let isReMaterializable = 1, isCodeGenOnly = 1 in {
322// FIXME: The following pseudo instructions are only needed because remat
323// cannot handle multiple instructions.  When that changes, they can be
324// removed, along with the AArch64Wrapper node.
325
326let AddedComplexity = 10 in
327def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
328                     [(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>,
329              Sched<[WriteLDAdr]>;
330
331// The MOVaddr instruction should match only when the add is not folded
332// into a load or store address.
333def MOVaddr
334    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
335             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi),
336                                            tglobaladdr:$low))]>,
337      Sched<[WriteAdrAdr]>;
338def MOVaddrJT
339    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
340             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi),
341                                             tjumptable:$low))]>,
342      Sched<[WriteAdrAdr]>;
343def MOVaddrCP
344    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
345             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi),
346                                             tconstpool:$low))]>,
347      Sched<[WriteAdrAdr]>;
348def MOVaddrBA
349    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
350             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi),
351                                             tblockaddress:$low))]>,
352      Sched<[WriteAdrAdr]>;
353def MOVaddrTLS
354    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
355             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi),
356                                            tglobaltlsaddr:$low))]>,
357      Sched<[WriteAdrAdr]>;
358def MOVaddrEXT
359    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
360             [(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi),
361                                            texternalsym:$low))]>,
362      Sched<[WriteAdrAdr]>;
363
364} // isReMaterializable, isCodeGenOnly
365
366def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr),
367          (LOADgot tglobaltlsaddr:$addr)>;
368
369def : Pat<(AArch64LOADgot texternalsym:$addr),
370          (LOADgot texternalsym:$addr)>;
371
372def : Pat<(AArch64LOADgot tconstpool:$addr),
373          (LOADgot tconstpool:$addr)>;
374
375//===----------------------------------------------------------------------===//
376// System instructions.
377//===----------------------------------------------------------------------===//
378
379def HINT : HintI<"hint">;
380def : InstAlias<"nop",  (HINT 0b000)>;
381def : InstAlias<"yield",(HINT 0b001)>;
382def : InstAlias<"wfe",  (HINT 0b010)>;
383def : InstAlias<"wfi",  (HINT 0b011)>;
384def : InstAlias<"sev",  (HINT 0b100)>;
385def : InstAlias<"sevl", (HINT 0b101)>;
386
387// v8.2a Statistical Profiling extension
388def : InstAlias<"psb $op",  (HINT psbhint_op:$op)>, Requires<[HasSPE]>;
389
390// As far as LLVM is concerned this writes to the system's exclusive monitors.
391let mayLoad = 1, mayStore = 1 in
392def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;
393
394// NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
395// model patterns with sufficiently fine granularity.
396let mayLoad = ?, mayStore = ? in {
397def DMB   : CRmSystemI<barrier_op, 0b101, "dmb",
398                       [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>;
399
400def DSB   : CRmSystemI<barrier_op, 0b100, "dsb",
401                       [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>;
402
403def ISB   : CRmSystemI<barrier_op, 0b110, "isb",
404                       [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>;
405}
406
407def : InstAlias<"clrex", (CLREX 0xf)>;
408def : InstAlias<"isb", (ISB 0xf)>;
409
410def MRS    : MRSI;
411def MSR    : MSRI;
412def MSRpstateImm1 : MSRpstateImm0_1;
413def MSRpstateImm4 : MSRpstateImm0_15;
414
415// The thread pointer (on Linux, at least, where this has been implemented) is
416// TPIDR_EL0.
417def : Pat<(AArch64threadpointer), (MRS 0xde82)>;
418
419// The cycle counter PMC register is PMCCNTR_EL0.
420let Predicates = [HasPerfMon] in
421def : Pat<(readcyclecounter), (MRS 0xdce8)>;
422
423// Generic system instructions
424def SYSxt  : SystemXtI<0, "sys">;
425def SYSLxt : SystemLXtI<1, "sysl">;
426
427def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
428                (SYSxt imm0_7:$op1, sys_cr_op:$Cn,
429                 sys_cr_op:$Cm, imm0_7:$op2, XZR)>;
430
431//===----------------------------------------------------------------------===//
432// Move immediate instructions.
433//===----------------------------------------------------------------------===//
434
435defm MOVK : InsertImmediate<0b11, "movk">;
436defm MOVN : MoveImmediate<0b00, "movn">;
437
438let PostEncoderMethod = "fixMOVZ" in
439defm MOVZ : MoveImmediate<0b10, "movz">;
440
441// First group of aliases covers an implicit "lsl #0".
442def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, imm0_65535:$imm, 0)>;
443def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, imm0_65535:$imm, 0)>;
444def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, imm0_65535:$imm, 0)>;
445def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, imm0_65535:$imm, 0)>;
446def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, imm0_65535:$imm, 0)>;
447def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, imm0_65535:$imm, 0)>;
448
449// Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax.
450def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
451def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
452def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
453def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
454
455def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
456def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
457def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
458def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
459
460def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g3:$sym, 48)>;
461def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g2:$sym, 32)>;
462def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g1:$sym, 16)>;
463def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g0:$sym, 0)>;
464
465def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
466def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
467
468def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
469def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
470
471def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g1:$sym, 16)>;
472def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g0:$sym, 0)>;
473
474// Final group of aliases covers true "mov $Rd, $imm" cases.
475multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR,
476                          int width, int shift> {
477  def _asmoperand : AsmOperandClass {
478    let Name = basename # width # "_lsl" # shift # "MovAlias";
479    let PredicateMethod = "is" # basename # "MovAlias<" # width # ", "
480                               # shift # ">";
481    let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">";
482  }
483
484  def _movimm : Operand<i32> {
485    let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand");
486  }
487
488  def : InstAlias<"mov $Rd, $imm",
489                  (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>;
490}
491
492defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>;
493defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>;
494
495defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>;
496defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>;
497defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>;
498defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>;
499
500defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>;
501defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>;
502
503defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>;
504defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>;
505defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>;
506defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>;
507
508let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
509    isAsCheapAsAMove = 1 in {
510// FIXME: The following pseudo instructions are only needed because remat
511// cannot handle multiple instructions.  When that changes, we can select
512// directly to the real instructions and get rid of these pseudos.
513
514def MOVi32imm
515    : Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
516             [(set GPR32:$dst, imm:$src)]>,
517      Sched<[WriteImm]>;
518def MOVi64imm
519    : Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
520             [(set GPR64:$dst, imm:$src)]>,
521      Sched<[WriteImm]>;
522} // isReMaterializable, isCodeGenOnly
523
524// If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
525// eventual expansion code fewer bits to worry about getting right. Marshalling
526// the types is a little tricky though:
527def i64imm_32bit : ImmLeaf<i64, [{
528  return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
529}]>;
530
531def trunc_imm : SDNodeXForm<imm, [{
532  return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32);
533}]>;
534
535def : Pat<(i64 i64imm_32bit:$src),
536          (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
537
538// Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model).
539def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
540return CurDAG->getTargetConstant(
541  N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32);
542}]>;
543
544def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
545return CurDAG->getTargetConstant(
546  N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64);
547}]>;
548
549
550def : Pat<(f32 fpimm:$in),
551  (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>;
552def : Pat<(f64 fpimm:$in),
553  (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>;
554
555
556// Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
557// sequences.
558def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
559                             tglobaladdr:$g1, tglobaladdr:$g0),
560          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g3, 48),
561                                  tglobaladdr:$g2, 32),
562                          tglobaladdr:$g1, 16),
563                  tglobaladdr:$g0, 0)>;
564
565def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
566                             tblockaddress:$g1, tblockaddress:$g0),
567          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g3, 48),
568                                  tblockaddress:$g2, 32),
569                          tblockaddress:$g1, 16),
570                  tblockaddress:$g0, 0)>;
571
572def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2,
573                             tconstpool:$g1, tconstpool:$g0),
574          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g3, 48),
575                                  tconstpool:$g2, 32),
576                          tconstpool:$g1, 16),
577                  tconstpool:$g0, 0)>;
578
579def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2,
580                             tjumptable:$g1, tjumptable:$g0),
581          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g3, 48),
582                                  tjumptable:$g2, 32),
583                          tjumptable:$g1, 16),
584                  tjumptable:$g0, 0)>;
585
586
587//===----------------------------------------------------------------------===//
588// Arithmetic instructions.
589//===----------------------------------------------------------------------===//
590
591// Add/subtract with carry.
592defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>;
593defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>;
594
595def : InstAlias<"ngc $dst, $src",  (SBCWr  GPR32:$dst, WZR, GPR32:$src)>;
596def : InstAlias<"ngc $dst, $src",  (SBCXr  GPR64:$dst, XZR, GPR64:$src)>;
597def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
598def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;
599
600// Add/subtract
601defm ADD : AddSub<0, "add", "sub", add>;
602defm SUB : AddSub<1, "sub", "add">;
603
604def : InstAlias<"mov $dst, $src",
605                (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>;
606def : InstAlias<"mov $dst, $src",
607                (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>;
608def : InstAlias<"mov $dst, $src",
609                (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>;
610def : InstAlias<"mov $dst, $src",
611                (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>;
612
613defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">;
614defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">;
615
616// Use SUBS instead of SUB to enable CSE between SUBS and SUB.
617def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
618          (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
619def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
620          (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
621def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
622          (SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
623def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
624          (SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
625def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
626          (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
627def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
628          (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
629let AddedComplexity = 1 in {
630def : Pat<(sub GPR32sp:$R2, arith_extended_reg32<i32>:$R3),
631          (SUBSWrx GPR32sp:$R2, arith_extended_reg32<i32>:$R3)>;
632def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3),
633          (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3)>;
634}
635
636// Because of the immediate format for add/sub-imm instructions, the
637// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
638//  These patterns capture that transformation.
639let AddedComplexity = 1 in {
640def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
641          (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
642def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
643          (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
644def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
645          (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
646def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
647          (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
648}
649
650// Because of the immediate format for add/sub-imm instructions, the
651// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
652//  These patterns capture that transformation.
653let AddedComplexity = 1 in {
654def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
655          (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
656def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
657          (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
658def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
659          (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
660def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
661          (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
662}
663
664def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
665def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
666def : InstAlias<"neg $dst, $src$shift",
667                (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
668def : InstAlias<"neg $dst, $src$shift",
669                (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
670
671def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
672def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
673def : InstAlias<"negs $dst, $src$shift",
674                (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
675def : InstAlias<"negs $dst, $src$shift",
676                (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
677
678
679// Unsigned/Signed divide
680defm UDIV : Div<0, "udiv", udiv>;
681defm SDIV : Div<1, "sdiv", sdiv>;
682let isCodeGenOnly = 1 in {
683defm UDIV_Int : Div<0, "udiv", int_aarch64_udiv>;
684defm SDIV_Int : Div<1, "sdiv", int_aarch64_sdiv>;
685}
686
687// Variable shift
688defm ASRV : Shift<0b10, "asr", sra>;
689defm LSLV : Shift<0b00, "lsl", shl>;
690defm LSRV : Shift<0b01, "lsr", srl>;
691defm RORV : Shift<0b11, "ror", rotr>;
692
693def : ShiftAlias<"asrv", ASRVWr, GPR32>;
694def : ShiftAlias<"asrv", ASRVXr, GPR64>;
695def : ShiftAlias<"lslv", LSLVWr, GPR32>;
696def : ShiftAlias<"lslv", LSLVXr, GPR64>;
697def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
698def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
699def : ShiftAlias<"rorv", RORVWr, GPR32>;
700def : ShiftAlias<"rorv", RORVXr, GPR64>;
701
702// Multiply-add
703let AddedComplexity = 7 in {
704defm MADD : MulAccum<0, "madd", add>;
705defm MSUB : MulAccum<1, "msub", sub>;
706
707def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
708          (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
709def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
710          (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
711
712def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
713          (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
714def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
715          (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
716def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)),
717          (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
718def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)),
719          (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
720} // AddedComplexity = 7
721
722let AddedComplexity = 5 in {
723def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
724def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
725def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
726def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;
727
728def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
729          (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
730def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
731          (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
732
733def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
734          (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
735def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
736          (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
737} // AddedComplexity = 5
738
739def : MulAccumWAlias<"mul", MADDWrrr>;
740def : MulAccumXAlias<"mul", MADDXrrr>;
741def : MulAccumWAlias<"mneg", MSUBWrrr>;
742def : MulAccumXAlias<"mneg", MSUBXrrr>;
743def : WideMulAccumAlias<"smull", SMADDLrrr>;
744def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
745def : WideMulAccumAlias<"umull", UMADDLrrr>;
746def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;
747
748// Multiply-high
749def SMULHrr : MulHi<0b010, "smulh", mulhs>;
750def UMULHrr : MulHi<0b110, "umulh", mulhu>;
751
752// CRC32
753def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">;
754def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">;
755def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">;
756def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">;
757
758def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">;
759def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">;
760def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">;
761def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">;
762
763// v8.1 atomic CAS
764defm CAS   : CompareAndSwap<0, 0, "">;
765defm CASA  : CompareAndSwap<1, 0, "a">;
766defm CASL  : CompareAndSwap<0, 1, "l">;
767defm CASAL : CompareAndSwap<1, 1, "al">;
768
769// v8.1 atomic CASP
770defm CASP   : CompareAndSwapPair<0, 0, "">;
771defm CASPA  : CompareAndSwapPair<1, 0, "a">;
772defm CASPL  : CompareAndSwapPair<0, 1, "l">;
773defm CASPAL : CompareAndSwapPair<1, 1, "al">;
774
775// v8.1 atomic SWP
776defm SWP   : Swap<0, 0, "">;
777defm SWPA  : Swap<1, 0, "a">;
778defm SWPL  : Swap<0, 1, "l">;
779defm SWPAL : Swap<1, 1, "al">;
780
781// v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register)
782defm LDADD   : LDOPregister<0b000, "add", 0, 0, "">;
783defm LDADDA  : LDOPregister<0b000, "add", 1, 0, "a">;
784defm LDADDL  : LDOPregister<0b000, "add", 0, 1, "l">;
785defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">;
786
787defm LDCLR   : LDOPregister<0b001, "clr", 0, 0, "">;
788defm LDCLRA  : LDOPregister<0b001, "clr", 1, 0, "a">;
789defm LDCLRL  : LDOPregister<0b001, "clr", 0, 1, "l">;
790defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">;
791
792defm LDEOR   : LDOPregister<0b010, "eor", 0, 0, "">;
793defm LDEORA  : LDOPregister<0b010, "eor", 1, 0, "a">;
794defm LDEORL  : LDOPregister<0b010, "eor", 0, 1, "l">;
795defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">;
796
797defm LDSET   : LDOPregister<0b011, "set", 0, 0, "">;
798defm LDSETA  : LDOPregister<0b011, "set", 1, 0, "a">;
799defm LDSETL  : LDOPregister<0b011, "set", 0, 1, "l">;
800defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">;
801
802defm LDSMAX   : LDOPregister<0b100, "smax", 0, 0, "">;
803defm LDSMAXA  : LDOPregister<0b100, "smax", 1, 0, "a">;
804defm LDSMAXL  : LDOPregister<0b100, "smax", 0, 1, "l">;
805defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">;
806
807defm LDSMIN   : LDOPregister<0b101, "smin", 0, 0, "">;
808defm LDSMINA  : LDOPregister<0b101, "smin", 1, 0, "a">;
809defm LDSMINL  : LDOPregister<0b101, "smin", 0, 1, "l">;
810defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">;
811
812defm LDUMAX   : LDOPregister<0b110, "umax", 0, 0, "">;
813defm LDUMAXA  : LDOPregister<0b110, "umax", 1, 0, "a">;
814defm LDUMAXL  : LDOPregister<0b110, "umax", 0, 1, "l">;
815defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">;
816
817defm LDUMIN   : LDOPregister<0b111, "umin", 0, 0, "">;
818defm LDUMINA  : LDOPregister<0b111, "umin", 1, 0, "a">;
819defm LDUMINL  : LDOPregister<0b111, "umin", 0, 1, "l">;
820defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">;
821
822// v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR"
823defm : STOPregister<"stadd","LDADD">; // STADDx
824defm : STOPregister<"stclr","LDCLR">; // STCLRx
825defm : STOPregister<"steor","LDEOR">; // STEORx
826defm : STOPregister<"stset","LDSET">; // STSETx
827defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx
828defm : STOPregister<"stsmin","LDSMIN">;// STSMINx
829defm : STOPregister<"stumax","LDUMAX">;// STUMAXx
830defm : STOPregister<"stumin","LDUMIN">;// STUMINx
831
832//===----------------------------------------------------------------------===//
833// Logical instructions.
834//===----------------------------------------------------------------------===//
835
836// (immediate)
837defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">;
838defm AND  : LogicalImm<0b00, "and", and, "bic">;
839defm EOR  : LogicalImm<0b10, "eor", xor, "eon">;
840defm ORR  : LogicalImm<0b01, "orr", or, "orn">;
841
842// FIXME: these aliases *are* canonical sometimes (when movz can't be
843// used). Actually, it seems to be working right now, but putting logical_immXX
844// here is a bit dodgy on the AsmParser side too.
845def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
846                                          logical_imm32:$imm), 0>;
847def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
848                                          logical_imm64:$imm), 0>;
849
850
851// (register)
852defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>;
853defm BICS : LogicalRegS<0b11, 1, "bics",
854                        BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>;
855defm AND  : LogicalReg<0b00, 0, "and", and>;
856defm BIC  : LogicalReg<0b00, 1, "bic",
857                       BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
858defm EON  : LogicalReg<0b10, 1, "eon",
859                       BinOpFrag<(not (xor node:$LHS, node:$RHS))>>;
860defm EOR  : LogicalReg<0b10, 0, "eor", xor>;
861defm ORN  : LogicalReg<0b01, 1, "orn",
862                       BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
863defm ORR  : LogicalReg<0b01, 0, "orr", or>;
864
865def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>;
866def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>;
867
868def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>;
869def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>;
870
871def : InstAlias<"mvn $Wd, $Wm$sh",
872                (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>;
873def : InstAlias<"mvn $Xd, $Xm$sh",
874                (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>;
875
876def : InstAlias<"tst $src1, $src2",
877                (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>;
878def : InstAlias<"tst $src1, $src2",
879                (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>;
880
881def : InstAlias<"tst $src1, $src2",
882                        (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>;
883def : InstAlias<"tst $src1, $src2",
884                        (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>;
885
886def : InstAlias<"tst $src1, $src2$sh",
887               (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>;
888def : InstAlias<"tst $src1, $src2$sh",
889               (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>;
890
891
892def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
893def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;
894
895
896//===----------------------------------------------------------------------===//
897// One operand data processing instructions.
898//===----------------------------------------------------------------------===//
899
900defm CLS    : OneOperandData<0b101, "cls">;
901defm CLZ    : OneOperandData<0b100, "clz", ctlz>;
902defm RBIT   : OneOperandData<0b000, "rbit">;
903
904def : Pat<(int_aarch64_rbit GPR32:$Rn), (RBITWr $Rn)>;
905def : Pat<(int_aarch64_rbit GPR64:$Rn), (RBITXr $Rn)>;
906
907def  REV16Wr : OneWRegData<0b001, "rev16",
908                                  UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
909def  REV16Xr : OneXRegData<0b001, "rev16", null_frag>;
910
911def : Pat<(cttz GPR32:$Rn),
912          (CLZWr (RBITWr GPR32:$Rn))>;
913def : Pat<(cttz GPR64:$Rn),
914          (CLZXr (RBITXr GPR64:$Rn))>;
915def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
916                (i32 1))),
917          (CLSWr GPR32:$Rn)>;
918def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
919                (i64 1))),
920          (CLSXr GPR64:$Rn)>;
921
922// Unlike the other one operand instructions, the instructions with the "rev"
923// mnemonic do *not* just different in the size bit, but actually use different
924// opcode bits for the different sizes.
925def REVWr   : OneWRegData<0b010, "rev", bswap>;
926def REVXr   : OneXRegData<0b011, "rev", bswap>;
927def REV32Xr : OneXRegData<0b010, "rev32",
928                                 UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;
929
930def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>;
931
932// The bswap commutes with the rotr so we want a pattern for both possible
933// orders.
934def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
935def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
936
937//===----------------------------------------------------------------------===//
938// Bitfield immediate extraction instruction.
939//===----------------------------------------------------------------------===//
940let hasSideEffects = 0 in
941defm EXTR : ExtractImm<"extr">;
942def : InstAlias<"ror $dst, $src, $shift",
943            (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
944def : InstAlias<"ror $dst, $src, $shift",
945            (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
946
947def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
948          (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
949def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
950          (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
951
952//===----------------------------------------------------------------------===//
953// Other bitfield immediate instructions.
954//===----------------------------------------------------------------------===//
955let hasSideEffects = 0 in {
956defm BFM  : BitfieldImmWith2RegArgs<0b01, "bfm">;
957defm SBFM : BitfieldImm<0b00, "sbfm">;
958defm UBFM : BitfieldImm<0b10, "ubfm">;
959}
960
961def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
962  uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
963  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
964}]>;
965
966def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
967  uint64_t enc = 31 - N->getZExtValue();
968  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
969}]>;
970
971// min(7, 31 - shift_amt)
972def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
973  uint64_t enc = 31 - N->getZExtValue();
974  enc = enc > 7 ? 7 : enc;
975  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
976}]>;
977
978// min(15, 31 - shift_amt)
979def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
980  uint64_t enc = 31 - N->getZExtValue();
981  enc = enc > 15 ? 15 : enc;
982  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
983}]>;
984
985def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
986  uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
987  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
988}]>;
989
990def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
991  uint64_t enc = 63 - N->getZExtValue();
992  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
993}]>;
994
995// min(7, 63 - shift_amt)
996def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
997  uint64_t enc = 63 - N->getZExtValue();
998  enc = enc > 7 ? 7 : enc;
999  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1000}]>;
1001
1002// min(15, 63 - shift_amt)
1003def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
1004  uint64_t enc = 63 - N->getZExtValue();
1005  enc = enc > 15 ? 15 : enc;
1006  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1007}]>;
1008
1009// min(31, 63 - shift_amt)
1010def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
1011  uint64_t enc = 63 - N->getZExtValue();
1012  enc = enc > 31 ? 31 : enc;
1013  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1014}]>;
1015
1016def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
1017          (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
1018                              (i64 (i32shift_b imm0_31:$imm)))>;
1019def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
1020          (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
1021                              (i64 (i64shift_b imm0_63:$imm)))>;
1022
1023let AddedComplexity = 10 in {
1024def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
1025          (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
1026def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
1027          (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
1028}
1029
1030def : InstAlias<"asr $dst, $src, $shift",
1031                (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
1032def : InstAlias<"asr $dst, $src, $shift",
1033                (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
1034def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
1035def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
1036def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
1037def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
1038def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
1039
1040def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
1041          (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
1042def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
1043          (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
1044
1045def : InstAlias<"lsr $dst, $src, $shift",
1046                (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
1047def : InstAlias<"lsr $dst, $src, $shift",
1048                (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
1049def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
1050def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
1051def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
1052def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
1053def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
1054
1055//===----------------------------------------------------------------------===//
1056// Conditional comparison instructions.
1057//===----------------------------------------------------------------------===//
1058defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
1059defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;
1060
1061//===----------------------------------------------------------------------===//
1062// Conditional select instructions.
1063//===----------------------------------------------------------------------===//
1064defm CSEL  : CondSelect<0, 0b00, "csel">;
1065
1066def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
1067defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
1068defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
1069defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;
1070
1071def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1072          (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1073def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1074          (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1075def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1076          (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1077def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1078          (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1079def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1080          (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1081def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1082          (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1083
1084def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
1085          (CSINCWr WZR, WZR, (i32 imm:$cc))>;
1086def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
1087          (CSINCXr XZR, XZR, (i32 imm:$cc))>;
1088def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
1089          (CSINVWr WZR, WZR, (i32 imm:$cc))>;
1090def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
1091          (CSINVXr XZR, XZR, (i32 imm:$cc))>;
1092
1093// The inverse of the condition code from the alias instruction is what is used
1094// in the aliased instruction. The parser all ready inverts the condition code
1095// for these aliases.
1096def : InstAlias<"cset $dst, $cc",
1097                (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
1098def : InstAlias<"cset $dst, $cc",
1099                (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
1100
1101def : InstAlias<"csetm $dst, $cc",
1102                (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
1103def : InstAlias<"csetm $dst, $cc",
1104                (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
1105
1106def : InstAlias<"cinc $dst, $src, $cc",
1107                (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1108def : InstAlias<"cinc $dst, $src, $cc",
1109                (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1110
1111def : InstAlias<"cinv $dst, $src, $cc",
1112                (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1113def : InstAlias<"cinv $dst, $src, $cc",
1114                (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1115
1116def : InstAlias<"cneg $dst, $src, $cc",
1117                (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1118def : InstAlias<"cneg $dst, $src, $cc",
1119                (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1120
1121//===----------------------------------------------------------------------===//
1122// PC-relative instructions.
1123//===----------------------------------------------------------------------===//
1124let isReMaterializable = 1 in {
1125let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
1126def ADR  : ADRI<0, "adr", adrlabel, []>;
1127} // hasSideEffects = 0
1128
1129def ADRP : ADRI<1, "adrp", adrplabel,
1130                [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
1131} // isReMaterializable = 1
1132
1133// page address of a constant pool entry, block address
1134def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
1135def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
1136
1137//===----------------------------------------------------------------------===//
1138// Unconditional branch (register) instructions.
1139//===----------------------------------------------------------------------===//
1140
1141let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
1142def RET  : BranchReg<0b0010, "ret", []>;
1143def DRPS : SpecialReturn<0b0101, "drps">;
1144def ERET : SpecialReturn<0b0100, "eret">;
1145} // isReturn = 1, isTerminator = 1, isBarrier = 1
1146
1147// Default to the LR register.
1148def : InstAlias<"ret", (RET LR)>;
1149
1150let isCall = 1, Defs = [LR], Uses = [SP] in {
1151def BLR : BranchReg<0b0001, "blr", [(AArch64call GPR64:$Rn)]>;
1152} // isCall
1153
1154let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
1155def BR  : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
1156} // isBranch, isTerminator, isBarrier, isIndirectBranch
1157
1158// Create a separate pseudo-instruction for codegen to use so that we don't
1159// flag lr as used in every function. It'll be restored before the RET by the
1160// epilogue if it's legitimately used.
1161def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]> {
1162  let isTerminator = 1;
1163  let isBarrier = 1;
1164  let isReturn = 1;
1165}
1166
1167// This is a directive-like pseudo-instruction. The purpose is to insert an
1168// R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
1169// (which in the usual case is a BLR).
1170let hasSideEffects = 1 in
1171def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []> {
1172  let AsmString = ".tlsdesccall $sym";
1173}
1174
1175// FIXME: maybe the scratch register used shouldn't be fixed to X1?
1176// FIXME: can "hasSideEffects be dropped?
1177let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1,
1178    isCodeGenOnly = 1 in
1179def TLSDESC_CALLSEQ
1180    : Pseudo<(outs), (ins i64imm:$sym),
1181             [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>;
1182def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym),
1183          (TLSDESC_CALLSEQ texternalsym:$sym)>;
1184
1185//===----------------------------------------------------------------------===//
1186// Conditional branch (immediate) instruction.
1187//===----------------------------------------------------------------------===//
1188def Bcc : BranchCond;
1189
1190//===----------------------------------------------------------------------===//
1191// Compare-and-branch instructions.
1192//===----------------------------------------------------------------------===//
1193defm CBZ  : CmpBranch<0, "cbz", AArch64cbz>;
1194defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>;
1195
1196//===----------------------------------------------------------------------===//
1197// Test-bit-and-branch instructions.
1198//===----------------------------------------------------------------------===//
1199defm TBZ  : TestBranch<0, "tbz", AArch64tbz>;
1200defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>;
1201
1202//===----------------------------------------------------------------------===//
1203// Unconditional branch (immediate) instructions.
1204//===----------------------------------------------------------------------===//
1205let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
1206def B  : BranchImm<0, "b", [(br bb:$addr)]>;
1207} // isBranch, isTerminator, isBarrier
1208
1209let isCall = 1, Defs = [LR], Uses = [SP] in {
1210def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>;
1211} // isCall
1212def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>;
1213
1214//===----------------------------------------------------------------------===//
1215// Exception generation instructions.
1216//===----------------------------------------------------------------------===//
1217def BRK   : ExceptionGeneration<0b001, 0b00, "brk">;
1218def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
1219def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
1220def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
1221def HLT   : ExceptionGeneration<0b010, 0b00, "hlt">;
1222def HVC   : ExceptionGeneration<0b000, 0b10, "hvc">;
1223def SMC   : ExceptionGeneration<0b000, 0b11, "smc">;
1224def SVC   : ExceptionGeneration<0b000, 0b01, "svc">;
1225
1226// DCPSn defaults to an immediate operand of zero if unspecified.
1227def : InstAlias<"dcps1", (DCPS1 0)>;
1228def : InstAlias<"dcps2", (DCPS2 0)>;
1229def : InstAlias<"dcps3", (DCPS3 0)>;
1230
1231//===----------------------------------------------------------------------===//
1232// Load instructions.
1233//===----------------------------------------------------------------------===//
1234
1235// Pair (indexed, offset)
1236defm LDPW : LoadPairOffset<0b00, 0, GPR32, simm7s4, "ldp">;
1237defm LDPX : LoadPairOffset<0b10, 0, GPR64, simm7s8, "ldp">;
1238defm LDPS : LoadPairOffset<0b00, 1, FPR32, simm7s4, "ldp">;
1239defm LDPD : LoadPairOffset<0b01, 1, FPR64, simm7s8, "ldp">;
1240defm LDPQ : LoadPairOffset<0b10, 1, FPR128, simm7s16, "ldp">;
1241
1242defm LDPSW : LoadPairOffset<0b01, 0, GPR64, simm7s4, "ldpsw">;
1243
1244// Pair (pre-indexed)
1245def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32, simm7s4, "ldp">;
1246def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64, simm7s8, "ldp">;
1247def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32, simm7s4, "ldp">;
1248def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64, simm7s8, "ldp">;
1249def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128, simm7s16, "ldp">;
1250
1251def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64, simm7s4, "ldpsw">;
1252
1253// Pair (post-indexed)
1254def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32, simm7s4, "ldp">;
1255def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64, simm7s8, "ldp">;
1256def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32, simm7s4, "ldp">;
1257def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64, simm7s8, "ldp">;
1258def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128, simm7s16, "ldp">;
1259
1260def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64, simm7s4, "ldpsw">;
1261
1262
1263// Pair (no allocate)
1264defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32, simm7s4, "ldnp">;
1265defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64, simm7s8, "ldnp">;
1266defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32, simm7s4, "ldnp">;
1267defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64, simm7s8, "ldnp">;
1268defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128, simm7s16, "ldnp">;
1269
1270//---
1271// (register offset)
1272//---
1273
1274// Integer
1275defm LDRBB : Load8RO<0b00,  0, 0b01, GPR32, "ldrb", i32, zextloadi8>;
1276defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>;
1277defm LDRW  : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>;
1278defm LDRX  : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>;
1279
1280// Floating-point
1281defm LDRB : Load8RO<0b00,   1, 0b01, FPR8,   "ldr", untyped, load>;
1282defm LDRH : Load16RO<0b01,  1, 0b01, FPR16,  "ldr", f16, load>;
1283defm LDRS : Load32RO<0b10,  1, 0b01, FPR32,  "ldr", f32, load>;
1284defm LDRD : Load64RO<0b11,  1, 0b01, FPR64,  "ldr", f64, load>;
1285defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128, "ldr", f128, load>;
1286
1287// Load sign-extended half-word
1288defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>;
1289defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>;
1290
1291// Load sign-extended byte
1292defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>;
1293defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>;
1294
1295// Load sign-extended word
1296defm LDRSW  : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>;
1297
1298// Pre-fetch.
1299defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">;
1300
1301// For regular load, we do not have any alignment requirement.
1302// Thus, it is safe to directly map the vector loads with interesting
1303// addressing modes.
1304// FIXME: We could do the same for bitconvert to floating point vectors.
1305multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop,
1306                              ValueType ScalTy, ValueType VecTy,
1307                              Instruction LOADW, Instruction LOADX,
1308                              SubRegIndex sub> {
1309  def : Pat<(VecTy (scalar_to_vector (ScalTy
1310              (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))),
1311            (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
1312                           (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset),
1313                           sub)>;
1314
1315  def : Pat<(VecTy (scalar_to_vector (ScalTy
1316              (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))),
1317            (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
1318                           (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset),
1319                           sub)>;
1320}
1321
1322let AddedComplexity = 10 in {
1323defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v8i8,  LDRBroW, LDRBroX, bsub>;
1324defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v16i8, LDRBroW, LDRBroX, bsub>;
1325
1326defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
1327defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;
1328
1329defm : ScalToVecROLoadPat<ro16, load,       i32, v4f16, LDRHroW, LDRHroX, hsub>;
1330defm : ScalToVecROLoadPat<ro16, load,       i32, v8f16, LDRHroW, LDRHroX, hsub>;
1331
1332defm : ScalToVecROLoadPat<ro32, load,       i32, v2i32, LDRSroW, LDRSroX, ssub>;
1333defm : ScalToVecROLoadPat<ro32, load,       i32, v4i32, LDRSroW, LDRSroX, ssub>;
1334
1335defm : ScalToVecROLoadPat<ro32, load,       f32, v2f32, LDRSroW, LDRSroX, ssub>;
1336defm : ScalToVecROLoadPat<ro32, load,       f32, v4f32, LDRSroW, LDRSroX, ssub>;
1337
1338defm : ScalToVecROLoadPat<ro64, load,       i64, v2i64, LDRDroW, LDRDroX, dsub>;
1339
1340defm : ScalToVecROLoadPat<ro64, load,       f64, v2f64, LDRDroW, LDRDroX, dsub>;
1341
1342
1343def : Pat <(v1i64 (scalar_to_vector (i64
1344                      (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
1345                                           ro_Wextend64:$extend))))),
1346           (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
1347
1348def : Pat <(v1i64 (scalar_to_vector (i64
1349                      (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
1350                                           ro_Xextend64:$extend))))),
1351           (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
1352}
1353
1354// Match all load 64 bits width whose type is compatible with FPR64
1355multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy,
1356                        Instruction LOADW, Instruction LOADX> {
1357
1358  def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
1359            (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
1360
1361  def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
1362            (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
1363}
1364
1365let AddedComplexity = 10 in {
1366let Predicates = [IsLE] in {
1367  // We must do vector loads with LD1 in big-endian.
1368  defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>;
1369  defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
1370  defm : VecROLoadPat<ro64, v8i8,  LDRDroW, LDRDroX>;
1371  defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
1372  defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>;
1373}
1374
1375defm : VecROLoadPat<ro64, v1i64,  LDRDroW, LDRDroX>;
1376defm : VecROLoadPat<ro64, v1f64,  LDRDroW, LDRDroX>;
1377
1378// Match all load 128 bits width whose type is compatible with FPR128
1379let Predicates = [IsLE] in {
1380  // We must do vector loads with LD1 in big-endian.
1381  defm : VecROLoadPat<ro128, v2i64,  LDRQroW, LDRQroX>;
1382  defm : VecROLoadPat<ro128, v2f64,  LDRQroW, LDRQroX>;
1383  defm : VecROLoadPat<ro128, v4i32,  LDRQroW, LDRQroX>;
1384  defm : VecROLoadPat<ro128, v4f32,  LDRQroW, LDRQroX>;
1385  defm : VecROLoadPat<ro128, v8i16,  LDRQroW, LDRQroX>;
1386  defm : VecROLoadPat<ro128, v8f16,  LDRQroW, LDRQroX>;
1387  defm : VecROLoadPat<ro128, v16i8,  LDRQroW, LDRQroX>;
1388}
1389} // AddedComplexity = 10
1390
1391// zextload -> i64
1392multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop,
1393                            Instruction INSTW, Instruction INSTX> {
1394  def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
1395            (SUBREG_TO_REG (i64 0),
1396                           (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
1397                           sub_32)>;
1398
1399  def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
1400            (SUBREG_TO_REG (i64 0),
1401                           (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
1402                           sub_32)>;
1403}
1404
1405let AddedComplexity = 10 in {
1406  defm : ExtLoadTo64ROPat<ro8,  zextloadi8,  LDRBBroW, LDRBBroX>;
1407  defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>;
1408  defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW,  LDRWroX>;
1409
1410  // zextloadi1 -> zextloadi8
1411  defm : ExtLoadTo64ROPat<ro8,  zextloadi1,  LDRBBroW, LDRBBroX>;
1412
1413  // extload -> zextload
1414  defm : ExtLoadTo64ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
1415  defm : ExtLoadTo64ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
1416  defm : ExtLoadTo64ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
1417
1418  // extloadi1 -> zextloadi8
1419  defm : ExtLoadTo64ROPat<ro8,  extloadi1,   LDRBBroW, LDRBBroX>;
1420}
1421
1422
1423// zextload -> i64
1424multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop,
1425                            Instruction INSTW, Instruction INSTX> {
1426  def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
1427            (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
1428
1429  def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
1430            (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
1431
1432}
1433
1434let AddedComplexity = 10 in {
1435  // extload -> zextload
1436  defm : ExtLoadTo32ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
1437  defm : ExtLoadTo32ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
1438  defm : ExtLoadTo32ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
1439
1440  // zextloadi1 -> zextloadi8
1441  defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
1442}
1443
1444//---
1445// (unsigned immediate)
1446//---
1447defm LDRX : LoadUI<0b11, 0, 0b01, GPR64, uimm12s8, "ldr",
1448                   [(set GPR64:$Rt,
1449                         (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
1450defm LDRW : LoadUI<0b10, 0, 0b01, GPR32, uimm12s4, "ldr",
1451                   [(set GPR32:$Rt,
1452                         (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
1453defm LDRB : LoadUI<0b00, 1, 0b01, FPR8, uimm12s1, "ldr",
1454                   [(set FPR8:$Rt,
1455                         (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>;
1456defm LDRH : LoadUI<0b01, 1, 0b01, FPR16, uimm12s2, "ldr",
1457                   [(set (f16 FPR16:$Rt),
1458                         (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>;
1459defm LDRS : LoadUI<0b10, 1, 0b01, FPR32, uimm12s4, "ldr",
1460                   [(set (f32 FPR32:$Rt),
1461                         (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
1462defm LDRD : LoadUI<0b11, 1, 0b01, FPR64, uimm12s8, "ldr",
1463                   [(set (f64 FPR64:$Rt),
1464                         (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
1465defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128, uimm12s16, "ldr",
1466                 [(set (f128 FPR128:$Rt),
1467                       (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>;
1468
1469// For regular load, we do not have any alignment requirement.
1470// Thus, it is safe to directly map the vector loads with interesting
1471// addressing modes.
1472// FIXME: We could do the same for bitconvert to floating point vectors.
1473def : Pat <(v8i8 (scalar_to_vector (i32
1474               (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
1475           (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
1476                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
1477def : Pat <(v16i8 (scalar_to_vector (i32
1478               (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
1479           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
1480                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
1481def : Pat <(v4i16 (scalar_to_vector (i32
1482               (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
1483           (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
1484                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
1485def : Pat <(v8i16 (scalar_to_vector (i32
1486               (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
1487           (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
1488                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
1489def : Pat <(v2i32 (scalar_to_vector (i32
1490               (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
1491           (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
1492                          (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
1493def : Pat <(v4i32 (scalar_to_vector (i32
1494               (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
1495           (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
1496                          (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
1497def : Pat <(v1i64 (scalar_to_vector (i64
1498               (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
1499           (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1500def : Pat <(v2i64 (scalar_to_vector (i64
1501               (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
1502           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
1503                          (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>;
1504
1505// Match all load 64 bits width whose type is compatible with FPR64
1506let Predicates = [IsLE] in {
1507  // We must use LD1 to perform vector loads in big-endian.
1508  def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1509            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1510  def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1511            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1512  def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1513            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1514  def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1515            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1516  def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1517            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1518}
1519def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1520          (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1521def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1522          (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1523
1524// Match all load 128 bits width whose type is compatible with FPR128
1525let Predicates = [IsLE] in {
1526  // We must use LD1 to perform vector loads in big-endian.
1527  def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1528            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1529  def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1530            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1531  def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1532            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1533  def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1534            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1535  def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1536            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1537  def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1538            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1539  def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1540            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1541}
1542def : Pat<(f128  (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1543          (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1544
1545defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh",
1546                    [(set GPR32:$Rt,
1547                          (zextloadi16 (am_indexed16 GPR64sp:$Rn,
1548                                                     uimm12s2:$offset)))]>;
1549defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb",
1550                    [(set GPR32:$Rt,
1551                          (zextloadi8 (am_indexed8 GPR64sp:$Rn,
1552                                                   uimm12s1:$offset)))]>;
1553// zextload -> i64
1554def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1555    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
1556def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
1557    (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
1558
1559// zextloadi1 -> zextloadi8
1560def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1561          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
1562def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1563    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
1564
1565// extload -> zextload
1566def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
1567          (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
1568def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1569          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
1570def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1571          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
1572def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
1573    (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
1574def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
1575    (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
1576def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1577    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
1578def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1579    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
1580
1581// load sign-extended half-word
1582defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh",
1583                     [(set GPR32:$Rt,
1584                           (sextloadi16 (am_indexed16 GPR64sp:$Rn,
1585                                                      uimm12s2:$offset)))]>;
1586defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh",
1587                     [(set GPR64:$Rt,
1588                           (sextloadi16 (am_indexed16 GPR64sp:$Rn,
1589                                                      uimm12s2:$offset)))]>;
1590
1591// load sign-extended byte
1592defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb",
1593                     [(set GPR32:$Rt,
1594                           (sextloadi8 (am_indexed8 GPR64sp:$Rn,
1595                                                    uimm12s1:$offset)))]>;
1596defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb",
1597                     [(set GPR64:$Rt,
1598                           (sextloadi8 (am_indexed8 GPR64sp:$Rn,
1599                                                    uimm12s1:$offset)))]>;
1600
1601// load sign-extended word
1602defm LDRSW  : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw",
1603                     [(set GPR64:$Rt,
1604                           (sextloadi32 (am_indexed32 GPR64sp:$Rn,
1605                                                      uimm12s4:$offset)))]>;
1606
1607// load zero-extended word
1608def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
1609      (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
1610
1611// Pre-fetch.
1612def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
1613                        [(AArch64Prefetch imm:$Rt,
1614                                        (am_indexed64 GPR64sp:$Rn,
1615                                                      uimm12s8:$offset))]>;
1616
1617def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>;
1618
1619//---
1620// (literal)
1621def LDRWl : LoadLiteral<0b00, 0, GPR32, "ldr">;
1622def LDRXl : LoadLiteral<0b01, 0, GPR64, "ldr">;
1623def LDRSl : LoadLiteral<0b00, 1, FPR32, "ldr">;
1624def LDRDl : LoadLiteral<0b01, 1, FPR64, "ldr">;
1625def LDRQl : LoadLiteral<0b10, 1, FPR128, "ldr">;
1626
1627// load sign-extended word
1628def LDRSWl : LoadLiteral<0b10, 0, GPR64, "ldrsw">;
1629
1630// prefetch
1631def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
1632//                   [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>;
1633
1634//---
1635// (unscaled immediate)
1636defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64, "ldur",
1637                    [(set GPR64:$Rt,
1638                          (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
1639defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32, "ldur",
1640                    [(set GPR32:$Rt,
1641                          (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
1642defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8, "ldur",
1643                    [(set FPR8:$Rt,
1644                          (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
1645defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16, "ldur",
1646                    [(set FPR16:$Rt,
1647                          (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
1648defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32, "ldur",
1649                    [(set (f32 FPR32:$Rt),
1650                          (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
1651defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64, "ldur",
1652                    [(set (f64 FPR64:$Rt),
1653                          (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
1654defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128, "ldur",
1655                    [(set (f128 FPR128:$Rt),
1656                          (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>;
1657
1658defm LDURHH
1659    : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh",
1660             [(set GPR32:$Rt,
1661                    (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
1662defm LDURBB
1663    : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb",
1664             [(set GPR32:$Rt,
1665                    (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
1666
1667// Match all load 64 bits width whose type is compatible with FPR64
1668let Predicates = [IsLE] in {
1669  def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1670            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1671  def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1672            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1673  def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1674            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1675  def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1676            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1677  def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1678            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1679}
1680def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1681          (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1682def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1683          (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1684
1685// Match all load 128 bits width whose type is compatible with FPR128
1686let Predicates = [IsLE] in {
1687  def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1688            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1689  def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1690            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1691  def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1692            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1693  def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1694            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1695  def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1696            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1697  def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1698            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1699  def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1700            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1701}
1702
1703//  anyext -> zext
1704def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1705          (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
1706def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1707          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
1708def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1709          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
1710def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
1711    (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1712def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1713    (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1714def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1715    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1716def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1717    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1718// unscaled zext
1719def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1720          (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
1721def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1722          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
1723def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1724          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
1725def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
1726    (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1727def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1728    (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1729def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1730    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1731def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1732    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1733
1734
1735//---
1736// LDR mnemonics fall back to LDUR for negative or unaligned offsets.
1737
1738// Define new assembler match classes as we want to only match these when
1739// the don't otherwise match the scaled addressing mode for LDR/STR. Don't
1740// associate a DiagnosticType either, as we want the diagnostic for the
1741// canonical form (the scaled operand) to take precedence.
1742class SImm9OffsetOperand<int Width> : AsmOperandClass {
1743  let Name = "SImm9OffsetFB" # Width;
1744  let PredicateMethod = "isSImm9OffsetFB<" # Width # ">";
1745  let RenderMethod = "addImmOperands";
1746}
1747
1748def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>;
1749def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>;
1750def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>;
1751def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>;
1752def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>;
1753
1754def simm9_offset_fb8 : Operand<i64> {
1755  let ParserMatchClass = SImm9OffsetFB8Operand;
1756}
1757def simm9_offset_fb16 : Operand<i64> {
1758  let ParserMatchClass = SImm9OffsetFB16Operand;
1759}
1760def simm9_offset_fb32 : Operand<i64> {
1761  let ParserMatchClass = SImm9OffsetFB32Operand;
1762}
1763def simm9_offset_fb64 : Operand<i64> {
1764  let ParserMatchClass = SImm9OffsetFB64Operand;
1765}
1766def simm9_offset_fb128 : Operand<i64> {
1767  let ParserMatchClass = SImm9OffsetFB128Operand;
1768}
1769
1770def : InstAlias<"ldr $Rt, [$Rn, $offset]",
1771                (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
1772def : InstAlias<"ldr $Rt, [$Rn, $offset]",
1773                (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
1774def : InstAlias<"ldr $Rt, [$Rn, $offset]",
1775                (LDURBi FPR8:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
1776def : InstAlias<"ldr $Rt, [$Rn, $offset]",
1777                (LDURHi FPR16:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
1778def : InstAlias<"ldr $Rt, [$Rn, $offset]",
1779                (LDURSi FPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
1780def : InstAlias<"ldr $Rt, [$Rn, $offset]",
1781                (LDURDi FPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
1782def : InstAlias<"ldr $Rt, [$Rn, $offset]",
1783               (LDURQi FPR128:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
1784
1785// zextload -> i64
1786def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1787  (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1788def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1789  (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1790
1791// load sign-extended half-word
1792defm LDURSHW
1793    : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh",
1794               [(set GPR32:$Rt,
1795                    (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
1796defm LDURSHX
1797    : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh",
1798              [(set GPR64:$Rt,
1799                    (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
1800
1801// load sign-extended byte
1802defm LDURSBW
1803    : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb",
1804                [(set GPR32:$Rt,
1805                      (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
1806defm LDURSBX
1807    : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb",
1808                [(set GPR64:$Rt,
1809                      (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
1810
1811// load sign-extended word
1812defm LDURSW
1813    : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw",
1814              [(set GPR64:$Rt,
1815                    (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
1816
1817// zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
1818def : InstAlias<"ldrb $Rt, [$Rn, $offset]",
1819                (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
1820def : InstAlias<"ldrh $Rt, [$Rn, $offset]",
1821                (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
1822def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
1823                (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
1824def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
1825                (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
1826def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
1827                (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
1828def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
1829                (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
1830def : InstAlias<"ldrsw $Rt, [$Rn, $offset]",
1831                (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
1832
1833// Pre-fetch.
1834defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
1835                  [(AArch64Prefetch imm:$Rt,
1836                                  (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
1837
1838//---
1839// (unscaled immediate, unprivileged)
1840defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
1841defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;
1842
1843defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
1844defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;
1845
1846// load sign-extended half-word
1847defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
1848defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;
1849
1850// load sign-extended byte
1851defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
1852defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;
1853
1854// load sign-extended word
1855defm LDTRSW  : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;
1856
1857//---
1858// (immediate pre-indexed)
1859def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32, "ldr">;
1860def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64, "ldr">;
1861def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8,  "ldr">;
1862def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16, "ldr">;
1863def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32, "ldr">;
1864def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64, "ldr">;
1865def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128, "ldr">;
1866
1867// load sign-extended half-word
1868def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32, "ldrsh">;
1869def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64, "ldrsh">;
1870
1871// load sign-extended byte
1872def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32, "ldrsb">;
1873def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64, "ldrsb">;
1874
1875// load zero-extended byte
1876def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32, "ldrb">;
1877def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32, "ldrh">;
1878
1879// load sign-extended word
1880def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64, "ldrsw">;
1881
1882//---
1883// (immediate post-indexed)
1884def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32, "ldr">;
1885def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64, "ldr">;
1886def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8,  "ldr">;
1887def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16, "ldr">;
1888def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32, "ldr">;
1889def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64, "ldr">;
1890def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128, "ldr">;
1891
1892// load sign-extended half-word
1893def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32, "ldrsh">;
1894def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64, "ldrsh">;
1895
1896// load sign-extended byte
1897def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32, "ldrsb">;
1898def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64, "ldrsb">;
1899
1900// load zero-extended byte
1901def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32, "ldrb">;
1902def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32, "ldrh">;
1903
1904// load sign-extended word
1905def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64, "ldrsw">;
1906
1907//===----------------------------------------------------------------------===//
1908// Store instructions.
1909//===----------------------------------------------------------------------===//
1910
1911// Pair (indexed, offset)
1912// FIXME: Use dedicated range-checked addressing mode operand here.
1913defm STPW : StorePairOffset<0b00, 0, GPR32, simm7s4, "stp">;
1914defm STPX : StorePairOffset<0b10, 0, GPR64, simm7s8, "stp">;
1915defm STPS : StorePairOffset<0b00, 1, FPR32, simm7s4, "stp">;
1916defm STPD : StorePairOffset<0b01, 1, FPR64, simm7s8, "stp">;
1917defm STPQ : StorePairOffset<0b10, 1, FPR128, simm7s16, "stp">;
1918
1919// Pair (pre-indexed)
1920def STPWpre : StorePairPreIdx<0b00, 0, GPR32, simm7s4, "stp">;
1921def STPXpre : StorePairPreIdx<0b10, 0, GPR64, simm7s8, "stp">;
1922def STPSpre : StorePairPreIdx<0b00, 1, FPR32, simm7s4, "stp">;
1923def STPDpre : StorePairPreIdx<0b01, 1, FPR64, simm7s8, "stp">;
1924def STPQpre : StorePairPreIdx<0b10, 1, FPR128, simm7s16, "stp">;
1925
1926// Pair (pre-indexed)
1927def STPWpost : StorePairPostIdx<0b00, 0, GPR32, simm7s4, "stp">;
1928def STPXpost : StorePairPostIdx<0b10, 0, GPR64, simm7s8, "stp">;
1929def STPSpost : StorePairPostIdx<0b00, 1, FPR32, simm7s4, "stp">;
1930def STPDpost : StorePairPostIdx<0b01, 1, FPR64, simm7s8, "stp">;
1931def STPQpost : StorePairPostIdx<0b10, 1, FPR128, simm7s16, "stp">;
1932
1933// Pair (no allocate)
1934defm STNPW : StorePairNoAlloc<0b00, 0, GPR32, simm7s4, "stnp">;
1935defm STNPX : StorePairNoAlloc<0b10, 0, GPR64, simm7s8, "stnp">;
1936defm STNPS : StorePairNoAlloc<0b00, 1, FPR32, simm7s4, "stnp">;
1937defm STNPD : StorePairNoAlloc<0b01, 1, FPR64, simm7s8, "stnp">;
1938defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128, simm7s16, "stnp">;
1939
1940//---
1941// (Register offset)
1942
1943// Integer
1944defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>;
1945defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>;
1946defm STRW  : Store32RO<0b10, 0, 0b00, GPR32, "str",  i32, store>;
1947defm STRX  : Store64RO<0b11, 0, 0b00, GPR64, "str",  i64, store>;
1948
1949
1950// Floating-point
1951defm STRB : Store8RO< 0b00,  1, 0b00, FPR8,   "str", untyped, store>;
1952defm STRH : Store16RO<0b01,  1, 0b00, FPR16,  "str", f16,     store>;
1953defm STRS : Store32RO<0b10,  1, 0b00, FPR32,  "str", f32,     store>;
1954defm STRD : Store64RO<0b11,  1, 0b00, FPR64,  "str", f64,     store>;
1955defm STRQ : Store128RO<0b00, 1, 0b10, FPR128, "str", f128,    store>;
1956
1957multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop,
1958                                 Instruction STRW, Instruction STRX> {
1959
1960  def : Pat<(storeop GPR64:$Rt,
1961                     (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
1962            (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32),
1963                  GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
1964
1965  def : Pat<(storeop GPR64:$Rt,
1966                     (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
1967            (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32),
1968                  GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
1969}
1970
1971let AddedComplexity = 10 in {
1972  // truncstore i64
1973  defm : TruncStoreFrom64ROPat<ro8,  truncstorei8,  STRBBroW, STRBBroX>;
1974  defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>;
1975  defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW,  STRWroX>;
1976}
1977
1978multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR,
1979                         Instruction STRW, Instruction STRX> {
1980  def : Pat<(store (VecTy FPR:$Rt),
1981                   (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
1982            (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
1983
1984  def : Pat<(store (VecTy FPR:$Rt),
1985                   (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
1986            (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
1987}
1988
1989let AddedComplexity = 10 in {
1990// Match all store 64 bits width whose type is compatible with FPR64
1991let Predicates = [IsLE] in {
1992  // We must use ST1 to store vectors in big-endian.
1993  defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>;
1994  defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
1995  defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
1996  defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
1997  defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>;
1998}
1999
2000defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
2001defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>;
2002
2003// Match all store 128 bits width whose type is compatible with FPR128
2004let Predicates = [IsLE] in {
2005  // We must use ST1 to store vectors in big-endian.
2006  defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>;
2007  defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>;
2008  defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>;
2009  defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
2010  defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
2011  defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
2012  defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>;
2013}
2014} // AddedComplexity = 10
2015
2016// Match stores from lane 0 to the appropriate subreg's store.
2017multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop,
2018                              ValueType VecTy, ValueType STy,
2019                              SubRegIndex SubRegIdx,
2020                              Instruction STRW, Instruction STRX> {
2021
2022  def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
2023                     (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2024            (STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2025                  GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2026
2027  def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
2028                     (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2029            (STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2030                  GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2031}
2032
2033let AddedComplexity = 19 in {
2034  defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>;
2035  defm : VecROStoreLane0Pat<ro16,      store   , v8i16, i16, hsub, STRHroW, STRHroX>;
2036  defm : VecROStoreLane0Pat<ro32, truncstorei32, v4i32, i32, ssub, STRSroW, STRSroX>;
2037  defm : VecROStoreLane0Pat<ro32,      store   , v4i32, i32, ssub, STRSroW, STRSroX>;
2038  defm : VecROStoreLane0Pat<ro32,      store   , v4f32, f32, ssub, STRSroW, STRSroX>;
2039  defm : VecROStoreLane0Pat<ro64,      store   , v2i64, i64, dsub, STRDroW, STRDroX>;
2040  defm : VecROStoreLane0Pat<ro64,      store   , v2f64, f64, dsub, STRDroW, STRDroX>;
2041}
2042
2043//---
2044// (unsigned immediate)
2045defm STRX : StoreUI<0b11, 0, 0b00, GPR64, uimm12s8, "str",
2046                   [(store GPR64:$Rt,
2047                            (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
2048defm STRW : StoreUI<0b10, 0, 0b00, GPR32, uimm12s4, "str",
2049                    [(store GPR32:$Rt,
2050                            (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
2051defm STRB : StoreUI<0b00, 1, 0b00, FPR8, uimm12s1, "str",
2052                    [(store FPR8:$Rt,
2053                            (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>;
2054defm STRH : StoreUI<0b01, 1, 0b00, FPR16, uimm12s2, "str",
2055                    [(store (f16 FPR16:$Rt),
2056                            (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>;
2057defm STRS : StoreUI<0b10, 1, 0b00, FPR32, uimm12s4, "str",
2058                    [(store (f32 FPR32:$Rt),
2059                            (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
2060defm STRD : StoreUI<0b11, 1, 0b00, FPR64, uimm12s8, "str",
2061                    [(store (f64 FPR64:$Rt),
2062                            (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
2063defm STRQ : StoreUI<0b00, 1, 0b10, FPR128, uimm12s16, "str", []>;
2064
2065defm STRHH : StoreUI<0b01, 0, 0b00, GPR32, uimm12s2, "strh",
2066                     [(truncstorei16 GPR32:$Rt,
2067                                     (am_indexed16 GPR64sp:$Rn,
2068                                                   uimm12s2:$offset))]>;
2069defm STRBB : StoreUI<0b00, 0, 0b00, GPR32, uimm12s1,  "strb",
2070                     [(truncstorei8 GPR32:$Rt,
2071                                    (am_indexed8 GPR64sp:$Rn,
2072                                                 uimm12s1:$offset))]>;
2073
2074// Match all store 64 bits width whose type is compatible with FPR64
2075let AddedComplexity = 10 in {
2076let Predicates = [IsLE] in {
2077  // We must use ST1 to store vectors in big-endian.
2078  def : Pat<(store (v2f32 FPR64:$Rt),
2079                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2080            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2081  def : Pat<(store (v8i8 FPR64:$Rt),
2082                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2083            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2084  def : Pat<(store (v4i16 FPR64:$Rt),
2085                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2086            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2087  def : Pat<(store (v2i32 FPR64:$Rt),
2088                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2089            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2090  def : Pat<(store (v4f16 FPR64:$Rt),
2091                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2092            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2093}
2094def : Pat<(store (v1f64 FPR64:$Rt),
2095                 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2096          (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2097def : Pat<(store (v1i64 FPR64:$Rt),
2098                 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2099          (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2100
2101// Match all store 128 bits width whose type is compatible with FPR128
2102let Predicates = [IsLE] in {
2103  // We must use ST1 to store vectors in big-endian.
2104  def : Pat<(store (v4f32 FPR128:$Rt),
2105                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2106            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2107  def : Pat<(store (v2f64 FPR128:$Rt),
2108                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2109            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2110  def : Pat<(store (v16i8 FPR128:$Rt),
2111                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2112            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2113  def : Pat<(store (v8i16 FPR128:$Rt),
2114                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2115            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2116  def : Pat<(store (v4i32 FPR128:$Rt),
2117                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2118            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2119  def : Pat<(store (v2i64 FPR128:$Rt),
2120                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2121            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2122  def : Pat<(store (v8f16 FPR128:$Rt),
2123                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2124            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2125}
2126def : Pat<(store (f128  FPR128:$Rt),
2127                 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2128          (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2129
2130// truncstore i64
2131def : Pat<(truncstorei32 GPR64:$Rt,
2132                         (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)),
2133  (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>;
2134def : Pat<(truncstorei16 GPR64:$Rt,
2135                         (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
2136  (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>;
2137def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)),
2138  (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>;
2139
2140} // AddedComplexity = 10
2141
2142//---
2143// (unscaled immediate)
2144defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64, "stur",
2145                         [(store GPR64:$Rt,
2146                                 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
2147defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32, "stur",
2148                         [(store GPR32:$Rt,
2149                                 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
2150defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8, "stur",
2151                         [(store FPR8:$Rt,
2152                                 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
2153defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16, "stur",
2154                         [(store (f16 FPR16:$Rt),
2155                                 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
2156defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32, "stur",
2157                         [(store (f32 FPR32:$Rt),
2158                                 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
2159defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64, "stur",
2160                         [(store (f64 FPR64:$Rt),
2161                                 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
2162defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128, "stur",
2163                         [(store (f128 FPR128:$Rt),
2164                                 (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>;
2165defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32, "sturh",
2166                         [(truncstorei16 GPR32:$Rt,
2167                                 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
2168defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32, "sturb",
2169                         [(truncstorei8 GPR32:$Rt,
2170                                  (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
2171
2172// Match all store 64 bits width whose type is compatible with FPR64
2173let Predicates = [IsLE] in {
2174  // We must use ST1 to store vectors in big-endian.
2175  def : Pat<(store (v2f32 FPR64:$Rt),
2176                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2177            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2178  def : Pat<(store (v8i8 FPR64:$Rt),
2179                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2180            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2181  def : Pat<(store (v4i16 FPR64:$Rt),
2182                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2183            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2184  def : Pat<(store (v2i32 FPR64:$Rt),
2185                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2186            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2187  def : Pat<(store (v4f16 FPR64:$Rt),
2188                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2189            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2190}
2191def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2192          (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2193def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2194          (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2195
2196// Match all store 128 bits width whose type is compatible with FPR128
2197let Predicates = [IsLE] in {
2198  // We must use ST1 to store vectors in big-endian.
2199  def : Pat<(store (v4f32 FPR128:$Rt),
2200                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2201            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2202  def : Pat<(store (v2f64 FPR128:$Rt),
2203                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2204            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2205  def : Pat<(store (v16i8 FPR128:$Rt),
2206                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2207            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2208  def : Pat<(store (v8i16 FPR128:$Rt),
2209                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2210            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2211  def : Pat<(store (v4i32 FPR128:$Rt),
2212                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2213            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2214  def : Pat<(store (v2i64 FPR128:$Rt),
2215                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2216            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2217  def : Pat<(store (v2f64 FPR128:$Rt),
2218                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2219            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2220  def : Pat<(store (v8f16 FPR128:$Rt),
2221                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2222            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2223}
2224
2225// unscaled i64 truncating stores
2226def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
2227  (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
2228def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
2229  (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
2230def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
2231  (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
2232
2233//---
2234// STR mnemonics fall back to STUR for negative or unaligned offsets.
2235def : InstAlias<"str $Rt, [$Rn, $offset]",
2236                (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2237def : InstAlias<"str $Rt, [$Rn, $offset]",
2238                (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2239def : InstAlias<"str $Rt, [$Rn, $offset]",
2240                (STURBi FPR8:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2241def : InstAlias<"str $Rt, [$Rn, $offset]",
2242                (STURHi FPR16:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2243def : InstAlias<"str $Rt, [$Rn, $offset]",
2244                (STURSi FPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2245def : InstAlias<"str $Rt, [$Rn, $offset]",
2246                (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2247def : InstAlias<"str $Rt, [$Rn, $offset]",
2248                (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
2249
2250def : InstAlias<"strb $Rt, [$Rn, $offset]",
2251                (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2252def : InstAlias<"strh $Rt, [$Rn, $offset]",
2253                (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2254
2255//---
2256// (unscaled immediate, unprivileged)
2257defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
2258defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;
2259
2260defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
2261defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;
2262
2263//---
2264// (immediate pre-indexed)
2265def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32, "str",  pre_store, i32>;
2266def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64, "str",  pre_store, i64>;
2267def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8,  "str",  pre_store, untyped>;
2268def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16, "str",  pre_store, f16>;
2269def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32, "str",  pre_store, f32>;
2270def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64, "str",  pre_store, f64>;
2271def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128, "str", pre_store, f128>;
2272
2273def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32, "strb", pre_truncsti8,  i32>;
2274def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32, "strh", pre_truncsti16, i32>;
2275
2276// truncstore i64
2277def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2278  (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2279           simm9:$off)>;
2280def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2281  (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2282            simm9:$off)>;
2283def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2284  (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2285            simm9:$off)>;
2286
2287def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2288          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2289def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2290          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2291def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2292          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2293def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2294          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2295def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2296          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2297def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2298          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2299def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2300          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2301
2302def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2303          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2304def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2305          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2306def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2307          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2308def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2309          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2310def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2311          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2312def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2313          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2314def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2315          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2316
2317//---
2318// (immediate post-indexed)
2319def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32,  "str", post_store, i32>;
2320def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64,  "str", post_store, i64>;
2321def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8,   "str", post_store, untyped>;
2322def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16,  "str", post_store, f16>;
2323def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32,  "str", post_store, f32>;
2324def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64,  "str", post_store, f64>;
2325def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128, "str", post_store, f128>;
2326
2327def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32, "strb", post_truncsti8, i32>;
2328def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32, "strh", post_truncsti16, i32>;
2329
2330// truncstore i64
2331def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2332  (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2333            simm9:$off)>;
2334def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2335  (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2336             simm9:$off)>;
2337def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2338  (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2339             simm9:$off)>;
2340
2341def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2342          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2343def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2344          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2345def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2346          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2347def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2348          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2349def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2350          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2351def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2352          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2353def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2354          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2355
2356def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2357          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2358def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2359          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2360def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2361          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2362def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2363          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2364def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2365          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2366def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2367          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2368def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2369          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2370
2371//===----------------------------------------------------------------------===//
2372// Load/store exclusive instructions.
2373//===----------------------------------------------------------------------===//
2374
2375def LDARW  : LoadAcquire   <0b10, 1, 1, 0, 1, GPR32, "ldar">;
2376def LDARX  : LoadAcquire   <0b11, 1, 1, 0, 1, GPR64, "ldar">;
2377def LDARB  : LoadAcquire   <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
2378def LDARH  : LoadAcquire   <0b01, 1, 1, 0, 1, GPR32, "ldarh">;
2379
2380def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
2381def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
2382def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
2383def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;
2384
2385def LDXRW  : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
2386def LDXRX  : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
2387def LDXRB  : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
2388def LDXRH  : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;
2389
2390def STLRW  : StoreRelease  <0b10, 1, 0, 0, 1, GPR32, "stlr">;
2391def STLRX  : StoreRelease  <0b11, 1, 0, 0, 1, GPR64, "stlr">;
2392def STLRB  : StoreRelease  <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
2393def STLRH  : StoreRelease  <0b01, 1, 0, 0, 1, GPR32, "stlrh">;
2394
2395def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
2396def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
2397def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
2398def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;
2399
2400def STXRW  : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
2401def STXRX  : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
2402def STXRB  : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
2403def STXRH  : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;
2404
2405def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
2406def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;
2407
2408def LDXPW  : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
2409def LDXPX  : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;
2410
2411def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
2412def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;
2413
2414def STXPW  : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
2415def STXPX  : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;
2416
2417let Predicates = [HasV8_1a] in {
2418  // v8.1a "Limited Order Region" extension load-acquire instructions
2419  def LDLARW  : LoadAcquire   <0b10, 1, 1, 0, 0, GPR32, "ldlar">;
2420  def LDLARX  : LoadAcquire   <0b11, 1, 1, 0, 0, GPR64, "ldlar">;
2421  def LDLARB  : LoadAcquire   <0b00, 1, 1, 0, 0, GPR32, "ldlarb">;
2422  def LDLARH  : LoadAcquire   <0b01, 1, 1, 0, 0, GPR32, "ldlarh">;
2423
2424  // v8.1a "Limited Order Region" extension store-release instructions
2425  def STLLRW  : StoreRelease   <0b10, 1, 0, 0, 0, GPR32, "stllr">;
2426  def STLLRX  : StoreRelease   <0b11, 1, 0, 0, 0, GPR64, "stllr">;
2427  def STLLRB  : StoreRelease   <0b00, 1, 0, 0, 0, GPR32, "stllrb">;
2428  def STLLRH  : StoreRelease   <0b01, 1, 0, 0, 0, GPR32, "stllrh">;
2429}
2430
2431//===----------------------------------------------------------------------===//
2432// Scaled floating point to integer conversion instructions.
2433//===----------------------------------------------------------------------===//
2434
2435defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>;
2436defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>;
2437defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>;
2438defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>;
2439defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>;
2440defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>;
2441defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>;
2442defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>;
2443defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
2444defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
2445defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
2446defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
2447let isCodeGenOnly = 1 in {
2448defm FCVTZS_Int : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", int_aarch64_neon_fcvtzs>;
2449defm FCVTZU_Int : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", int_aarch64_neon_fcvtzu>;
2450defm FCVTZS_Int : FPToIntegerScaled<0b11, 0b000, "fcvtzs", int_aarch64_neon_fcvtzs>;
2451defm FCVTZU_Int : FPToIntegerScaled<0b11, 0b001, "fcvtzu", int_aarch64_neon_fcvtzu>;
2452}
2453
2454multiclass FPToIntegerPats<SDNode to_int, SDNode round, string INST> {
2455  def : Pat<(i32 (to_int (round f32:$Rn))),
2456            (!cast<Instruction>(INST # UWSr) f32:$Rn)>;
2457  def : Pat<(i64 (to_int (round f32:$Rn))),
2458            (!cast<Instruction>(INST # UXSr) f32:$Rn)>;
2459  def : Pat<(i32 (to_int (round f64:$Rn))),
2460            (!cast<Instruction>(INST # UWDr) f64:$Rn)>;
2461  def : Pat<(i64 (to_int (round f64:$Rn))),
2462            (!cast<Instruction>(INST # UXDr) f64:$Rn)>;
2463}
2464
2465defm : FPToIntegerPats<fp_to_sint, fceil,  "FCVTPS">;
2466defm : FPToIntegerPats<fp_to_uint, fceil,  "FCVTPU">;
2467defm : FPToIntegerPats<fp_to_sint, ffloor, "FCVTMS">;
2468defm : FPToIntegerPats<fp_to_uint, ffloor, "FCVTMU">;
2469defm : FPToIntegerPats<fp_to_sint, ftrunc, "FCVTZS">;
2470defm : FPToIntegerPats<fp_to_uint, ftrunc, "FCVTZU">;
2471defm : FPToIntegerPats<fp_to_sint, frnd,   "FCVTAS">;
2472defm : FPToIntegerPats<fp_to_uint, frnd,   "FCVTAU">;
2473
2474//===----------------------------------------------------------------------===//
2475// Scaled integer to floating point conversion instructions.
2476//===----------------------------------------------------------------------===//
2477
2478defm SCVTF : IntegerToFP<0, "scvtf", sint_to_fp>;
2479defm UCVTF : IntegerToFP<1, "ucvtf", uint_to_fp>;
2480
2481//===----------------------------------------------------------------------===//
2482// Unscaled integer to floating point conversion instruction.
2483//===----------------------------------------------------------------------===//
2484
2485defm FMOV : UnscaledConversion<"fmov">;
2486
2487// Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable
2488let isReMaterializable = 1, isCodeGenOnly = 1 in {
2489def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>,
2490    PseudoInstExpansion<(FMOVWSr FPR32:$Rd, WZR)>,
2491    Requires<[NoZCZ]>;
2492def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>,
2493    PseudoInstExpansion<(FMOVXDr FPR64:$Rd, XZR)>,
2494    Requires<[NoZCZ]>;
2495}
2496
2497//===----------------------------------------------------------------------===//
2498// Floating point conversion instruction.
2499//===----------------------------------------------------------------------===//
2500
2501defm FCVT : FPConversion<"fcvt">;
2502
2503//===----------------------------------------------------------------------===//
2504// Floating point single operand instructions.
2505//===----------------------------------------------------------------------===//
2506
2507defm FABS   : SingleOperandFPData<0b0001, "fabs", fabs>;
2508defm FMOV   : SingleOperandFPData<0b0000, "fmov">;
2509defm FNEG   : SingleOperandFPData<0b0010, "fneg", fneg>;
2510defm FRINTA : SingleOperandFPData<0b1100, "frinta", frnd>;
2511defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
2512defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
2513defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_aarch64_neon_frintn>;
2514defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;
2515
2516def : Pat<(v1f64 (int_aarch64_neon_frintn (v1f64 FPR64:$Rn))),
2517          (FRINTNDr FPR64:$Rn)>;
2518
2519defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
2520defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;
2521
2522let SchedRW = [WriteFDiv] in {
2523defm FSQRT  : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
2524}
2525
2526//===----------------------------------------------------------------------===//
2527// Floating point two operand instructions.
2528//===----------------------------------------------------------------------===//
2529
2530defm FADD   : TwoOperandFPData<0b0010, "fadd", fadd>;
2531let SchedRW = [WriteFDiv] in {
2532defm FDIV   : TwoOperandFPData<0b0001, "fdiv", fdiv>;
2533}
2534defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>;
2535defm FMAX   : TwoOperandFPData<0b0100, "fmax", fmaxnan>;
2536defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>;
2537defm FMIN   : TwoOperandFPData<0b0101, "fmin", fminnan>;
2538let SchedRW = [WriteFMul] in {
2539defm FMUL   : TwoOperandFPData<0b0000, "fmul", fmul>;
2540defm FNMUL  : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
2541}
2542defm FSUB   : TwoOperandFPData<0b0011, "fsub", fsub>;
2543
2544def : Pat<(v1f64 (fmaxnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
2545          (FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
2546def : Pat<(v1f64 (fminnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
2547          (FMINDrr FPR64:$Rn, FPR64:$Rm)>;
2548def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
2549          (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
2550def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
2551          (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;
2552
2553//===----------------------------------------------------------------------===//
2554// Floating point three operand instructions.
2555//===----------------------------------------------------------------------===//
2556
2557defm FMADD  : ThreeOperandFPData<0, 0, "fmadd", fma>;
2558defm FMSUB  : ThreeOperandFPData<0, 1, "fmsub",
2559     TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
2560defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
2561     TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
2562defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
2563     TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;
2564
2565// The following def pats catch the case where the LHS of an FMA is negated.
2566// The TriOpFrag above catches the case where the middle operand is negated.
2567
2568// N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
2569// the NEON variant.
2570def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
2571          (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
2572
2573def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
2574          (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
2575
2576// We handled -(a + b*c) for FNMADD above, now it's time for "(-a) + (-b)*c" and
2577// "(-a) + b*(-c)".
2578def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
2579          (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
2580
2581def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
2582          (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
2583
2584def : Pat<(f32 (fma FPR32:$Rn, (fneg FPR32:$Rm), (fneg FPR32:$Ra))),
2585          (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
2586
2587def : Pat<(f64 (fma FPR64:$Rn, (fneg FPR64:$Rm), (fneg FPR64:$Ra))),
2588          (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
2589
2590//===----------------------------------------------------------------------===//
2591// Floating point comparison instructions.
2592//===----------------------------------------------------------------------===//
2593
2594defm FCMPE : FPComparison<1, "fcmpe">;
2595defm FCMP  : FPComparison<0, "fcmp", AArch64fcmp>;
2596
2597//===----------------------------------------------------------------------===//
2598// Floating point conditional comparison instructions.
2599//===----------------------------------------------------------------------===//
2600
2601defm FCCMPE : FPCondComparison<1, "fccmpe">;
2602defm FCCMP  : FPCondComparison<0, "fccmp", AArch64fccmp>;
2603
2604//===----------------------------------------------------------------------===//
2605// Floating point conditional select instruction.
2606//===----------------------------------------------------------------------===//
2607
2608defm FCSEL : FPCondSelect<"fcsel">;
2609
2610// CSEL instructions providing f128 types need to be handled by a
2611// pseudo-instruction since the eventual code will need to introduce basic
2612// blocks and control flow.
2613def F128CSEL : Pseudo<(outs FPR128:$Rd),
2614                      (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
2615                      [(set (f128 FPR128:$Rd),
2616                            (AArch64csel FPR128:$Rn, FPR128:$Rm,
2617                                       (i32 imm:$cond), NZCV))]> {
2618  let Uses = [NZCV];
2619  let usesCustomInserter = 1;
2620}
2621
2622
2623//===----------------------------------------------------------------------===//
2624// Floating point immediate move.
2625//===----------------------------------------------------------------------===//
2626
2627let isReMaterializable = 1 in {
2628defm FMOV : FPMoveImmediate<"fmov">;
2629}
2630
2631//===----------------------------------------------------------------------===//
2632// Advanced SIMD two vector instructions.
2633//===----------------------------------------------------------------------===//
2634
2635defm UABDL   : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
2636                                          int_aarch64_neon_uabd>;
2637// Match UABDL in log2-shuffle patterns.
2638def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
2639               (v8i16 (add (sub (zext (v8i8 V64:$opA)),
2640                                (zext (v8i8 V64:$opB))),
2641                           (AArch64vashr v8i16:$src, (i32 15))))),
2642          (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
2643def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
2644               (v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)),
2645                                (zext (extract_high_v16i8 V128:$opB))),
2646                           (AArch64vashr v8i16:$src, (i32 15))))),
2647          (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
2648def : Pat<(xor (v4i32 (AArch64vashr v4i32:$src, (i32 31))),
2649               (v4i32 (add (sub (zext (v4i16 V64:$opA)),
2650                                (zext (v4i16 V64:$opB))),
2651                           (AArch64vashr v4i32:$src, (i32 31))))),
2652          (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>;
2653def : Pat<(xor (v4i32 (AArch64vashr v4i32:$src, (i32 31))),
2654               (v4i32 (add (sub (zext (extract_high_v8i16 V128:$opA)),
2655                                (zext (extract_high_v8i16 V128:$opB))),
2656                          (AArch64vashr v4i32:$src, (i32 31))))),
2657          (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>;
2658def : Pat<(xor (v2i64 (AArch64vashr v2i64:$src, (i32 63))),
2659               (v2i64 (add (sub (zext (v2i32 V64:$opA)),
2660                                (zext (v2i32 V64:$opB))),
2661                           (AArch64vashr v2i64:$src, (i32 63))))),
2662          (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>;
2663def : Pat<(xor (v2i64 (AArch64vashr v2i64:$src, (i32 63))),
2664               (v2i64 (add (sub (zext (extract_high_v4i32 V128:$opA)),
2665                                (zext (extract_high_v4i32 V128:$opB))),
2666                          (AArch64vashr v2i64:$src, (i32 63))))),
2667          (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>;
2668
2669defm ABS    : SIMDTwoVectorBHSD<0, 0b01011, "abs", int_aarch64_neon_abs>;
2670def : Pat<(xor (v8i8 (AArch64vashr V64:$src, (i32 7))),
2671               (v8i8 (add V64:$src, (AArch64vashr V64:$src, (i32 7))))),
2672          (ABSv8i8 V64:$src)>;
2673def : Pat<(xor (v4i16 (AArch64vashr V64:$src, (i32 15))),
2674               (v4i16 (add V64:$src, (AArch64vashr V64:$src, (i32 15))))),
2675          (ABSv4i16 V64:$src)>;
2676def : Pat<(xor (v2i32 (AArch64vashr V64:$src, (i32 31))),
2677               (v2i32 (add V64:$src, (AArch64vashr V64:$src, (i32 31))))),
2678          (ABSv2i32 V64:$src)>;
2679def : Pat<(xor (v16i8 (AArch64vashr V128:$src, (i32 7))),
2680               (v16i8 (add V128:$src, (AArch64vashr V128:$src, (i32 7))))),
2681          (ABSv16i8 V128:$src)>;
2682def : Pat<(xor (v8i16 (AArch64vashr V128:$src, (i32 15))),
2683               (v8i16 (add V128:$src, (AArch64vashr V128:$src, (i32 15))))),
2684          (ABSv8i16 V128:$src)>;
2685def : Pat<(xor (v4i32 (AArch64vashr V128:$src, (i32 31))),
2686               (v4i32 (add V128:$src, (AArch64vashr V128:$src, (i32 31))))),
2687          (ABSv4i32 V128:$src)>;
2688def : Pat<(xor (v2i64 (AArch64vashr V128:$src, (i32 63))),
2689               (v2i64 (add V128:$src, (AArch64vashr V128:$src, (i32 63))))),
2690          (ABSv2i64 V128:$src)>;
2691
2692defm CLS    : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
2693defm CLZ    : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
2694defm CMEQ   : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
2695defm CMGE   : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>;
2696defm CMGT   : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>;
2697defm CMLE   : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>;
2698defm CMLT   : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>;
2699defm CNT    : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
2700defm FABS   : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;
2701
2702defm FCMEQ  : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
2703defm FCMGE  : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
2704defm FCMGT  : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
2705defm FCMLE  : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
2706defm FCMLT  : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
2707defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>;
2708defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>;
2709defm FCVTL  : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
2710def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))),
2711          (FCVTLv4i16 V64:$Rn)>;
2712def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
2713                                                              (i64 4)))),
2714          (FCVTLv8i16 V128:$Rn)>;
2715def : Pat<(v2f64 (fextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;
2716def : Pat<(v2f64 (fextend (v2f32 (extract_subvector (v4f32 V128:$Rn),
2717                                                    (i64 2))))),
2718          (FCVTLv4i32 V128:$Rn)>;
2719
2720def : Pat<(v4f32 (fextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>;
2721def : Pat<(v4f32 (fextend (v4f16 (extract_subvector (v8f16 V128:$Rn),
2722                                                    (i64 4))))),
2723          (FCVTLv8i16 V128:$Rn)>;
2724
2725defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
2726defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
2727defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
2728defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>;
2729defm FCVTN  : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
2730def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
2731          (FCVTNv4i16 V128:$Rn)>;
2732def : Pat<(concat_vectors V64:$Rd,
2733                          (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
2734          (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
2735def : Pat<(v2f32 (fround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
2736def : Pat<(v4f16 (fround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>;
2737def : Pat<(concat_vectors V64:$Rd, (v2f32 (fround (v2f64 V128:$Rn)))),
2738          (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
2739defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
2740defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>;
2741defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
2742                                        int_aarch64_neon_fcvtxn>;
2743defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
2744defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;
2745let isCodeGenOnly = 1 in {
2746defm FCVTZS_Int : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs",
2747                                       int_aarch64_neon_fcvtzs>;
2748defm FCVTZU_Int : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu",
2749                                       int_aarch64_neon_fcvtzu>;
2750}
2751defm FNEG   : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
2752defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>;
2753defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", frnd>;
2754defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
2755defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
2756defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_aarch64_neon_frintn>;
2757defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
2758defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
2759defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;
2760defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>;
2761defm FSQRT  : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
2762defm NEG    : SIMDTwoVectorBHSD<1, 0b01011, "neg",
2763                               UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
2764defm NOT    : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
2765// Aliases for MVN -> NOT.
2766def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}",
2767                (NOTv8i8 V64:$Vd, V64:$Vn)>;
2768def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}",
2769                (NOTv16i8 V128:$Vd, V128:$Vn)>;
2770
2771def : Pat<(AArch64neg (v8i8  V64:$Rn)),  (NEGv8i8  V64:$Rn)>;
2772def : Pat<(AArch64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>;
2773def : Pat<(AArch64neg (v4i16 V64:$Rn)),  (NEGv4i16 V64:$Rn)>;
2774def : Pat<(AArch64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>;
2775def : Pat<(AArch64neg (v2i32 V64:$Rn)),  (NEGv2i32 V64:$Rn)>;
2776def : Pat<(AArch64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>;
2777def : Pat<(AArch64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>;
2778
2779def : Pat<(AArch64not (v8i8 V64:$Rn)),   (NOTv8i8  V64:$Rn)>;
2780def : Pat<(AArch64not (v16i8 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
2781def : Pat<(AArch64not (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
2782def : Pat<(AArch64not (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
2783def : Pat<(AArch64not (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
2784def : Pat<(AArch64not (v1i64 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
2785def : Pat<(AArch64not (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
2786def : Pat<(AArch64not (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
2787
2788def : Pat<(vnot (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
2789def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
2790def : Pat<(vnot (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
2791def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
2792def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
2793
2794defm RBIT   : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_aarch64_neon_rbit>;
2795defm REV16  : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>;
2796defm REV32  : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>;
2797defm REV64  : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>;
2798defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
2799       BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >;
2800defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>;
2801defm SCVTF  : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
2802defm SHLL   : SIMDVectorLShiftLongBySizeBHS;
2803defm SQABS  : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
2804defm SQNEG  : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
2805defm SQXTN  : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>;
2806defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>;
2807defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>;
2808defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
2809       BinOpFrag<(add node:$LHS, (int_aarch64_neon_uaddlp node:$RHS))> >;
2810defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp",
2811                    int_aarch64_neon_uaddlp>;
2812defm UCVTF  : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
2813defm UQXTN  : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>;
2814defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>;
2815defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>;
2816defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
2817defm XTN    : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
2818
2819def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>;
2820def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>;
2821def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
2822def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
2823def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>;
2824def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
2825
2826// Patterns for vector long shift (by element width). These need to match all
2827// three of zext, sext and anyext so it's easier to pull the patterns out of the
2828// definition.
2829multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
2830  def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
2831            (SHLLv8i8 V64:$Rn)>;
2832  def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
2833            (SHLLv16i8 V128:$Rn)>;
2834  def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
2835            (SHLLv4i16 V64:$Rn)>;
2836  def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
2837            (SHLLv8i16 V128:$Rn)>;
2838  def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
2839            (SHLLv2i32 V64:$Rn)>;
2840  def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
2841            (SHLLv4i32 V128:$Rn)>;
2842}
2843
2844defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
2845defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
2846defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;
2847
2848//===----------------------------------------------------------------------===//
2849// Advanced SIMD three vector instructions.
2850//===----------------------------------------------------------------------===//
2851
2852defm ADD     : SIMDThreeSameVector<0, 0b10000, "add", add>;
2853defm ADDP    : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>;
2854defm CMEQ    : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>;
2855defm CMGE    : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>;
2856defm CMGT    : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>;
2857defm CMHI    : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>;
2858defm CMHS    : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>;
2859defm CMTST   : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>;
2860defm FABD    : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>;
2861defm FACGE   : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>;
2862defm FACGT   : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>;
2863defm FADDP   : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_addp>;
2864defm FADD    : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>;
2865defm FCMEQ   : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
2866defm FCMGE   : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
2867defm FCMGT   : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
2868defm FDIV    : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>;
2869defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>;
2870defm FMAXNM  : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>;
2871defm FMAXP   : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>;
2872defm FMAX    : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaxnan>;
2873defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>;
2874defm FMINNM  : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>;
2875defm FMINP   : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>;
2876defm FMIN    : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminnan>;
2877
2878// NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
2879// instruction expects the addend first, while the fma intrinsic puts it last.
2880defm FMLA     : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla",
2881            TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
2882defm FMLS     : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls",
2883            TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
2884
2885// The following def pats catch the case where the LHS of an FMA is negated.
2886// The TriOpFrag above catches the case where the middle operand is negated.
2887def : Pat<(v2f32 (fma (fneg V64:$Rn), V64:$Rm, V64:$Rd)),
2888          (FMLSv2f32 V64:$Rd, V64:$Rn, V64:$Rm)>;
2889
2890def : Pat<(v4f32 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
2891          (FMLSv4f32 V128:$Rd, V128:$Rn, V128:$Rm)>;
2892
2893def : Pat<(v2f64 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
2894          (FMLSv2f64 V128:$Rd, V128:$Rn, V128:$Rm)>;
2895
2896defm FMULX    : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>;
2897defm FMUL     : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>;
2898defm FRECPS   : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>;
2899defm FRSQRTS  : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>;
2900defm FSUB     : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>;
2901defm MLA      : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla",
2902                      TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))> >;
2903defm MLS      : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls",
2904                      TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))> >;
2905defm MUL      : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
2906defm PMUL     : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>;
2907defm SABA     : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
2908      TriOpFrag<(add node:$LHS, (int_aarch64_neon_sabd node:$MHS, node:$RHS))> >;
2909defm SABD     : SIMDThreeSameVectorBHS<0,0b01110,"sabd", int_aarch64_neon_sabd>;
2910defm SHADD    : SIMDThreeSameVectorBHS<0,0b00000,"shadd", int_aarch64_neon_shadd>;
2911defm SHSUB    : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>;
2912defm SMAXP    : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>;
2913defm SMAX     : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>;
2914defm SMINP    : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>;
2915defm SMIN     : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>;
2916defm SQADD    : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>;
2917defm SQDMULH  : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>;
2918defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>;
2919defm SQRSHL   : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>;
2920defm SQSHL    : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>;
2921defm SQSUB    : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>;
2922defm SRHADD   : SIMDThreeSameVectorBHS<0,0b00010,"srhadd",int_aarch64_neon_srhadd>;
2923defm SRSHL    : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>;
2924defm SSHL     : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>;
2925defm SUB      : SIMDThreeSameVector<1,0b10000,"sub", sub>;
2926defm UABA     : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
2927      TriOpFrag<(add node:$LHS, (int_aarch64_neon_uabd node:$MHS, node:$RHS))> >;
2928defm UABD     : SIMDThreeSameVectorBHS<1,0b01110,"uabd", int_aarch64_neon_uabd>;
2929defm UHADD    : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", int_aarch64_neon_uhadd>;
2930defm UHSUB    : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>;
2931defm UMAXP    : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>;
2932defm UMAX     : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>;
2933defm UMINP    : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>;
2934defm UMIN     : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>;
2935defm UQADD    : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>;
2936defm UQRSHL   : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>;
2937defm UQSHL    : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>;
2938defm UQSUB    : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>;
2939defm URHADD   : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", int_aarch64_neon_urhadd>;
2940defm URSHL    : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>;
2941defm USHL     : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>;
2942defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah",
2943                                                  int_aarch64_neon_sqadd>;
2944defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh",
2945                                                    int_aarch64_neon_sqsub>;
2946
2947defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
2948defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
2949                                  BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
2950defm BIF : SIMDLogicalThreeVector<1, 0b11, "bif">;
2951defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>;
2952defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl",
2953    TriOpFrag<(or (and node:$LHS, node:$MHS), (and (vnot node:$LHS), node:$RHS))>>;
2954defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
2955defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
2956                                  BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
2957defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;
2958
2959
2960def : Pat<(AArch64bsl (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
2961          (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
2962def : Pat<(AArch64bsl (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
2963          (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
2964def : Pat<(AArch64bsl (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
2965          (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
2966def : Pat<(AArch64bsl (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
2967          (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
2968
2969def : Pat<(AArch64bsl (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
2970          (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
2971def : Pat<(AArch64bsl (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
2972          (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
2973def : Pat<(AArch64bsl (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
2974          (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
2975def : Pat<(AArch64bsl (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
2976          (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
2977
2978def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
2979                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>;
2980def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}",
2981                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
2982def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}",
2983                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
2984def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}",
2985                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
2986
2987def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}",
2988                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>;
2989def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}",
2990                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
2991def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}",
2992                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
2993def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}",
2994                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
2995
2996def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
2997                "|cmls.8b\t$dst, $src1, $src2}",
2998                (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
2999def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
3000                "|cmls.16b\t$dst, $src1, $src2}",
3001                (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
3002def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
3003                "|cmls.4h\t$dst, $src1, $src2}",
3004                (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
3005def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
3006                "|cmls.8h\t$dst, $src1, $src2}",
3007                (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
3008def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
3009                "|cmls.2s\t$dst, $src1, $src2}",
3010                (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
3011def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
3012                "|cmls.4s\t$dst, $src1, $src2}",
3013                (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
3014def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
3015                "|cmls.2d\t$dst, $src1, $src2}",
3016                (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
3017
3018def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
3019                "|cmlo.8b\t$dst, $src1, $src2}",
3020                (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
3021def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
3022                "|cmlo.16b\t$dst, $src1, $src2}",
3023                (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
3024def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
3025                "|cmlo.4h\t$dst, $src1, $src2}",
3026                (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
3027def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
3028                "|cmlo.8h\t$dst, $src1, $src2}",
3029                (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
3030def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
3031                "|cmlo.2s\t$dst, $src1, $src2}",
3032                (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
3033def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
3034                "|cmlo.4s\t$dst, $src1, $src2}",
3035                (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
3036def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
3037                "|cmlo.2d\t$dst, $src1, $src2}",
3038                (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
3039
3040def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
3041                "|cmle.8b\t$dst, $src1, $src2}",
3042                (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
3043def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
3044                "|cmle.16b\t$dst, $src1, $src2}",
3045                (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
3046def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
3047                "|cmle.4h\t$dst, $src1, $src2}",
3048                (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
3049def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
3050                "|cmle.8h\t$dst, $src1, $src2}",
3051                (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
3052def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
3053                "|cmle.2s\t$dst, $src1, $src2}",
3054                (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
3055def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
3056                "|cmle.4s\t$dst, $src1, $src2}",
3057                (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
3058def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
3059                "|cmle.2d\t$dst, $src1, $src2}",
3060                (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
3061
3062def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
3063                "|cmlt.8b\t$dst, $src1, $src2}",
3064                (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
3065def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
3066                "|cmlt.16b\t$dst, $src1, $src2}",
3067                (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
3068def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
3069                "|cmlt.4h\t$dst, $src1, $src2}",
3070                (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
3071def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
3072                "|cmlt.8h\t$dst, $src1, $src2}",
3073                (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
3074def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
3075                "|cmlt.2s\t$dst, $src1, $src2}",
3076                (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
3077def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
3078                "|cmlt.4s\t$dst, $src1, $src2}",
3079                (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
3080def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
3081                "|cmlt.2d\t$dst, $src1, $src2}",
3082                (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
3083
3084let Predicates = [HasNEON, HasFullFP16] in {
3085def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" #
3086                "|fcmle.4h\t$dst, $src1, $src2}",
3087                (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
3088def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" #
3089                "|fcmle.8h\t$dst, $src1, $src2}",
3090                (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
3091}
3092def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
3093                "|fcmle.2s\t$dst, $src1, $src2}",
3094                (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
3095def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
3096                "|fcmle.4s\t$dst, $src1, $src2}",
3097                (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
3098def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
3099                "|fcmle.2d\t$dst, $src1, $src2}",
3100                (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
3101
3102let Predicates = [HasNEON, HasFullFP16] in {
3103def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" #
3104                "|fcmlt.4h\t$dst, $src1, $src2}",
3105                (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
3106def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" #
3107                "|fcmlt.8h\t$dst, $src1, $src2}",
3108                (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
3109}
3110def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
3111                "|fcmlt.2s\t$dst, $src1, $src2}",
3112                (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
3113def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
3114                "|fcmlt.4s\t$dst, $src1, $src2}",
3115                (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
3116def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
3117                "|fcmlt.2d\t$dst, $src1, $src2}",
3118                (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
3119
3120let Predicates = [HasNEON, HasFullFP16] in {
3121def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" #
3122                "|facle.4h\t$dst, $src1, $src2}",
3123                (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
3124def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" #
3125                "|facle.8h\t$dst, $src1, $src2}",
3126                (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
3127}
3128def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
3129                "|facle.2s\t$dst, $src1, $src2}",
3130                (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
3131def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
3132                "|facle.4s\t$dst, $src1, $src2}",
3133                (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
3134def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
3135                "|facle.2d\t$dst, $src1, $src2}",
3136                (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
3137
3138let Predicates = [HasNEON, HasFullFP16] in {
3139def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" #
3140                "|faclt.4h\t$dst, $src1, $src2}",
3141                (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
3142def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" #
3143                "|faclt.8h\t$dst, $src1, $src2}",
3144                (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
3145}
3146def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
3147                "|faclt.2s\t$dst, $src1, $src2}",
3148                (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
3149def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
3150                "|faclt.4s\t$dst, $src1, $src2}",
3151                (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
3152def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
3153                "|faclt.2d\t$dst, $src1, $src2}",
3154                (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
3155
3156//===----------------------------------------------------------------------===//
3157// Advanced SIMD three scalar instructions.
3158//===----------------------------------------------------------------------===//
3159
3160defm ADD      : SIMDThreeScalarD<0, 0b10000, "add", add>;
3161defm CMEQ     : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>;
3162defm CMGE     : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>;
3163defm CMGT     : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>;
3164defm CMHI     : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>;
3165defm CMHS     : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>;
3166defm CMTST    : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>;
3167defm FABD     : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>;
3168def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3169          (FABD64 FPR64:$Rn, FPR64:$Rm)>;
3170defm FACGE    : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge",
3171                                     int_aarch64_neon_facge>;
3172defm FACGT    : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt",
3173                                     int_aarch64_neon_facgt>;
3174defm FCMEQ    : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
3175defm FCMGE    : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
3176defm FCMGT    : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
3177defm FMULX    : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx>;
3178defm FRECPS   : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps>;
3179defm FRSQRTS  : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts>;
3180defm SQADD    : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>;
3181defm SQDMULH  : SIMDThreeScalarHS<  0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>;
3182defm SQRDMULH : SIMDThreeScalarHS<  1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
3183defm SQRSHL   : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>;
3184defm SQSHL    : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>;
3185defm SQSUB    : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>;
3186defm SRSHL    : SIMDThreeScalarD<   0, 0b01010, "srshl", int_aarch64_neon_srshl>;
3187defm SSHL     : SIMDThreeScalarD<   0, 0b01000, "sshl", int_aarch64_neon_sshl>;
3188defm SUB      : SIMDThreeScalarD<   1, 0b10000, "sub", sub>;
3189defm UQADD    : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>;
3190defm UQRSHL   : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>;
3191defm UQSHL    : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>;
3192defm UQSUB    : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>;
3193defm URSHL    : SIMDThreeScalarD<   1, 0b01010, "urshl", int_aarch64_neon_urshl>;
3194defm USHL     : SIMDThreeScalarD<   1, 0b01000, "ushl", int_aarch64_neon_ushl>;
3195let Predicates = [HasV8_1a] in {
3196  defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">;
3197  defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">;
3198  def : Pat<(i32 (int_aarch64_neon_sqadd
3199                   (i32 FPR32:$Rd),
3200                   (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
3201                                                   (i32 FPR32:$Rm))))),
3202            (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
3203  def : Pat<(i32 (int_aarch64_neon_sqsub
3204                   (i32 FPR32:$Rd),
3205                   (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
3206                                                   (i32 FPR32:$Rm))))),
3207            (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
3208}
3209
3210def : InstAlias<"cmls $dst, $src1, $src2",
3211                (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3212def : InstAlias<"cmle $dst, $src1, $src2",
3213                (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3214def : InstAlias<"cmlo $dst, $src1, $src2",
3215                (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3216def : InstAlias<"cmlt $dst, $src1, $src2",
3217                (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3218def : InstAlias<"fcmle $dst, $src1, $src2",
3219                (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
3220def : InstAlias<"fcmle $dst, $src1, $src2",
3221                (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3222def : InstAlias<"fcmlt $dst, $src1, $src2",
3223                (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
3224def : InstAlias<"fcmlt $dst, $src1, $src2",
3225                (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3226def : InstAlias<"facle $dst, $src1, $src2",
3227                (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
3228def : InstAlias<"facle $dst, $src1, $src2",
3229                (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3230def : InstAlias<"faclt $dst, $src1, $src2",
3231                (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
3232def : InstAlias<"faclt $dst, $src1, $src2",
3233                (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3234
3235//===----------------------------------------------------------------------===//
3236// Advanced SIMD three scalar instructions (mixed operands).
3237//===----------------------------------------------------------------------===//
3238defm SQDMULL  : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
3239                                       int_aarch64_neon_sqdmulls_scalar>;
3240defm SQDMLAL  : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
3241defm SQDMLSL  : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;
3242
3243def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd),
3244                   (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
3245                                                        (i32 FPR32:$Rm))))),
3246          (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
3247def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd),
3248                   (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
3249                                                        (i32 FPR32:$Rm))))),
3250          (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
3251
3252//===----------------------------------------------------------------------===//
3253// Advanced SIMD two scalar instructions.
3254//===----------------------------------------------------------------------===//
3255
3256defm ABS    : SIMDTwoScalarD<    0, 0b01011, "abs", int_aarch64_neon_abs>;
3257defm CMEQ   : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>;
3258defm CMGE   : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>;
3259defm CMGT   : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>;
3260defm CMLE   : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>;
3261defm CMLT   : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>;
3262defm FCMEQ  : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
3263defm FCMGE  : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
3264defm FCMGT  : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
3265defm FCMLE  : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
3266defm FCMLT  : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
3267defm FCVTAS : SIMDFPTwoScalar<   0, 0, 0b11100, "fcvtas">;
3268defm FCVTAU : SIMDFPTwoScalar<   1, 0, 0b11100, "fcvtau">;
3269defm FCVTMS : SIMDFPTwoScalar<   0, 0, 0b11011, "fcvtms">;
3270defm FCVTMU : SIMDFPTwoScalar<   1, 0, 0b11011, "fcvtmu">;
3271defm FCVTNS : SIMDFPTwoScalar<   0, 0, 0b11010, "fcvtns">;
3272defm FCVTNU : SIMDFPTwoScalar<   1, 0, 0b11010, "fcvtnu">;
3273defm FCVTPS : SIMDFPTwoScalar<   0, 1, 0b11010, "fcvtps">;
3274defm FCVTPU : SIMDFPTwoScalar<   1, 1, 0b11010, "fcvtpu">;
3275def  FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
3276defm FCVTZS : SIMDFPTwoScalar<   0, 1, 0b11011, "fcvtzs">;
3277defm FCVTZU : SIMDFPTwoScalar<   1, 1, 0b11011, "fcvtzu">;
3278defm FRECPE : SIMDFPTwoScalar<   0, 1, 0b11101, "frecpe">;
3279defm FRECPX : SIMDFPTwoScalar<   0, 1, 0b11111, "frecpx">;
3280defm FRSQRTE : SIMDFPTwoScalar<  1, 1, 0b11101, "frsqrte">;
3281defm NEG    : SIMDTwoScalarD<    1, 0b01011, "neg",
3282                                 UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
3283defm SCVTF  : SIMDFPTwoScalarCVT<   0, 0, 0b11101, "scvtf", AArch64sitof>;
3284defm SQABS  : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
3285defm SQNEG  : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
3286defm SQXTN  : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>;
3287defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>;
3288defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
3289                                     int_aarch64_neon_suqadd>;
3290defm UCVTF  : SIMDFPTwoScalarCVT<   1, 0, 0b11101, "ucvtf", AArch64uitof>;
3291defm UQXTN  : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>;
3292defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
3293                                    int_aarch64_neon_usqadd>;
3294
3295def : Pat<(AArch64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>;
3296
3297def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))),
3298          (FCVTASv1i64 FPR64:$Rn)>;
3299def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))),
3300          (FCVTAUv1i64 FPR64:$Rn)>;
3301def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))),
3302          (FCVTMSv1i64 FPR64:$Rn)>;
3303def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))),
3304          (FCVTMUv1i64 FPR64:$Rn)>;
3305def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))),
3306          (FCVTNSv1i64 FPR64:$Rn)>;
3307def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))),
3308          (FCVTNUv1i64 FPR64:$Rn)>;
3309def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))),
3310          (FCVTPSv1i64 FPR64:$Rn)>;
3311def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))),
3312          (FCVTPUv1i64 FPR64:$Rn)>;
3313
3314def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))),
3315          (FRECPEv1i32 FPR32:$Rn)>;
3316def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))),
3317          (FRECPEv1i64 FPR64:$Rn)>;
3318def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))),
3319          (FRECPEv1i64 FPR64:$Rn)>;
3320
3321def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))),
3322          (FRECPXv1i32 FPR32:$Rn)>;
3323def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))),
3324          (FRECPXv1i64 FPR64:$Rn)>;
3325
3326def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))),
3327          (FRSQRTEv1i32 FPR32:$Rn)>;
3328def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))),
3329          (FRSQRTEv1i64 FPR64:$Rn)>;
3330def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))),
3331          (FRSQRTEv1i64 FPR64:$Rn)>;
3332
3333// If an integer is about to be converted to a floating point value,
3334// just load it on the floating point unit.
3335// Here are the patterns for 8 and 16-bits to float.
3336// 8-bits -> float.
3337multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy,
3338                             SDPatternOperator loadop, Instruction UCVTF,
3339                             ROAddrMode ro, Instruction LDRW, Instruction LDRX,
3340                             SubRegIndex sub> {
3341  def : Pat<(DstTy (uint_to_fp (SrcTy
3342                     (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm,
3343                                      ro.Wext:$extend))))),
3344           (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
3345                                 (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
3346                                 sub))>;
3347
3348  def : Pat<(DstTy (uint_to_fp (SrcTy
3349                     (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm,
3350                                      ro.Wext:$extend))))),
3351           (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
3352                                 (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
3353                                 sub))>;
3354}
3355
3356defm : UIntToFPROLoadPat<f32, i32, zextloadi8,
3357                         UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>;
3358def : Pat <(f32 (uint_to_fp (i32
3359               (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
3360           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
3361                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
3362def : Pat <(f32 (uint_to_fp (i32
3363                     (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
3364           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
3365                          (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
3366// 16-bits -> float.
3367defm : UIntToFPROLoadPat<f32, i32, zextloadi16,
3368                         UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>;
3369def : Pat <(f32 (uint_to_fp (i32
3370                  (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
3371           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
3372                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
3373def : Pat <(f32 (uint_to_fp (i32
3374                  (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
3375           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
3376                          (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
3377// 32-bits are handled in target specific dag combine:
3378// performIntToFpCombine.
3379// 64-bits integer to 32-bits floating point, not possible with
3380// UCVTF on floating point registers (both source and destination
3381// must have the same size).
3382
3383// Here are the patterns for 8, 16, 32, and 64-bits to double.
3384// 8-bits -> double.
3385defm : UIntToFPROLoadPat<f64, i32, zextloadi8,
3386                         UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>;
3387def : Pat <(f64 (uint_to_fp (i32
3388                    (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
3389           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3390                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
3391def : Pat <(f64 (uint_to_fp (i32
3392                  (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
3393           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3394                          (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
3395// 16-bits -> double.
3396defm : UIntToFPROLoadPat<f64, i32, zextloadi16,
3397                         UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>;
3398def : Pat <(f64 (uint_to_fp (i32
3399                  (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
3400           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3401                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
3402def : Pat <(f64 (uint_to_fp (i32
3403                  (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
3404           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3405                          (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
3406// 32-bits -> double.
3407defm : UIntToFPROLoadPat<f64, i32, load,
3408                         UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>;
3409def : Pat <(f64 (uint_to_fp (i32
3410                  (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
3411           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3412                          (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>;
3413def : Pat <(f64 (uint_to_fp (i32
3414                  (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))),
3415           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3416                          (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>;
3417// 64-bits -> double are handled in target specific dag combine:
3418// performIntToFpCombine.
3419
3420//===----------------------------------------------------------------------===//
3421// Advanced SIMD three different-sized vector instructions.
3422//===----------------------------------------------------------------------===//
3423
3424defm ADDHN  : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>;
3425defm SUBHN  : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>;
3426defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>;
3427defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>;
3428defm PMULL  : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>;
3429defm SABAL  : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
3430                                             int_aarch64_neon_sabd>;
3431defm SABDL   : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
3432                                          int_aarch64_neon_sabd>;
3433defm SADDL   : SIMDLongThreeVectorBHS<   0, 0b0000, "saddl",
3434            BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
3435defm SADDW   : SIMDWideThreeVectorBHS<   0, 0b0001, "saddw",
3436                 BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
3437defm SMLAL   : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
3438    TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
3439defm SMLSL   : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
3440    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
3441defm SMULL   : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>;
3442defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
3443                                               int_aarch64_neon_sqadd>;
3444defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
3445                                               int_aarch64_neon_sqsub>;
3446defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
3447                                     int_aarch64_neon_sqdmull>;
3448defm SSUBL   : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
3449                 BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
3450defm SSUBW   : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
3451                 BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
3452defm UABAL   : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
3453                                              int_aarch64_neon_uabd>;
3454defm UADDL   : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
3455                 BinOpFrag<(add (zext node:$LHS), (zext node:$RHS))>>;
3456defm UADDW   : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
3457                 BinOpFrag<(add node:$LHS, (zext node:$RHS))>>;
3458defm UMLAL   : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
3459    TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
3460defm UMLSL   : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
3461    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
3462defm UMULL   : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>;
3463defm USUBL   : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
3464                 BinOpFrag<(sub (zext node:$LHS), (zext node:$RHS))>>;
3465defm USUBW   : SIMDWideThreeVectorBHS<   1, 0b0011, "usubw",
3466                 BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>;
3467
3468// Additional patterns for SMULL and UMULL
3469multiclass Neon_mul_widen_patterns<SDPatternOperator opnode,
3470  Instruction INST8B, Instruction INST4H, Instruction INST2S> {
3471  def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
3472            (INST8B V64:$Rn, V64:$Rm)>;
3473  def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
3474            (INST4H V64:$Rn, V64:$Rm)>;
3475  def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
3476            (INST2S V64:$Rn, V64:$Rm)>;
3477}
3478
3479defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16,
3480  SMULLv4i16_v4i32, SMULLv2i32_v2i64>;
3481defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16,
3482  UMULLv4i16_v4i32, UMULLv2i32_v2i64>;
3483
3484// Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL
3485multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode,
3486  Instruction INST8B, Instruction INST4H, Instruction INST2S> {
3487  def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
3488            (INST8B V128:$Rd, V64:$Rn, V64:$Rm)>;
3489  def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
3490            (INST4H V128:$Rd, V64:$Rn, V64:$Rm)>;
3491  def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
3492            (INST2S  V128:$Rd, V64:$Rn, V64:$Rm)>;
3493}
3494
3495defm : Neon_mulacc_widen_patterns<
3496  TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
3497  SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
3498defm : Neon_mulacc_widen_patterns<
3499  TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
3500  UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
3501defm : Neon_mulacc_widen_patterns<
3502  TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
3503  SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
3504defm : Neon_mulacc_widen_patterns<
3505  TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
3506  UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
3507
3508// Patterns for 64-bit pmull
3509def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
3510          (PMULLv1i64 V64:$Rn, V64:$Rm)>;
3511def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)),
3512                                    (extractelt (v2i64 V128:$Rm), (i64 1))),
3513          (PMULLv2i64 V128:$Rn, V128:$Rm)>;
3514
3515// CodeGen patterns for addhn and subhn instructions, which can actually be
3516// written in LLVM IR without too much difficulty.
3517
3518// ADDHN
3519def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
3520          (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
3521def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3522                                           (i32 16))))),
3523          (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
3524def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3525                                           (i32 32))))),
3526          (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
3527def : Pat<(concat_vectors (v8i8 V64:$Rd),
3528                          (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3529                                                    (i32 8))))),
3530          (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3531                            V128:$Rn, V128:$Rm)>;
3532def : Pat<(concat_vectors (v4i16 V64:$Rd),
3533                          (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3534                                                    (i32 16))))),
3535          (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3536                            V128:$Rn, V128:$Rm)>;
3537def : Pat<(concat_vectors (v2i32 V64:$Rd),
3538                          (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3539                                                    (i32 32))))),
3540          (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3541                            V128:$Rn, V128:$Rm)>;
3542
3543// SUBHN
3544def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
3545          (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
3546def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3547                                           (i32 16))))),
3548          (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
3549def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3550                                           (i32 32))))),
3551          (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
3552def : Pat<(concat_vectors (v8i8 V64:$Rd),
3553                          (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3554                                                    (i32 8))))),
3555          (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3556                            V128:$Rn, V128:$Rm)>;
3557def : Pat<(concat_vectors (v4i16 V64:$Rd),
3558                          (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3559                                                    (i32 16))))),
3560          (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3561                            V128:$Rn, V128:$Rm)>;
3562def : Pat<(concat_vectors (v2i32 V64:$Rd),
3563                          (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3564                                                    (i32 32))))),
3565          (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3566                            V128:$Rn, V128:$Rm)>;
3567
3568//----------------------------------------------------------------------------
3569// AdvSIMD bitwise extract from vector instruction.
3570//----------------------------------------------------------------------------
3571
3572defm EXT : SIMDBitwiseExtract<"ext">;
3573
3574def : Pat<(v4i16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
3575          (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
3576def : Pat<(v8i16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
3577          (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
3578def : Pat<(v2i32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
3579          (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
3580def : Pat<(v2f32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
3581          (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
3582def : Pat<(v4i32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
3583          (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
3584def : Pat<(v4f32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
3585          (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
3586def : Pat<(v2i64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
3587          (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
3588def : Pat<(v2f64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
3589          (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
3590def : Pat<(v4f16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
3591          (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
3592def : Pat<(v8f16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
3593          (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
3594
3595// We use EXT to handle extract_subvector to copy the upper 64-bits of a
3596// 128-bit vector.
3597def : Pat<(v8i8  (extract_subvector V128:$Rn, (i64 8))),
3598          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
3599def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 4))),
3600          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
3601def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 2))),
3602          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
3603def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 1))),
3604          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
3605def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 4))),
3606          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
3607def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 2))),
3608          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
3609def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 1))),
3610          (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
3611
3612
3613//----------------------------------------------------------------------------
3614// AdvSIMD zip vector
3615//----------------------------------------------------------------------------
3616
3617defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>;
3618defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>;
3619defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>;
3620defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>;
3621defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>;
3622defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>;
3623
3624//----------------------------------------------------------------------------
3625// AdvSIMD TBL/TBX instructions
3626//----------------------------------------------------------------------------
3627
3628defm TBL : SIMDTableLookup<    0, "tbl">;
3629defm TBX : SIMDTableLookupTied<1, "tbx">;
3630
3631def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
3632          (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
3633def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
3634          (TBLv16i8One V128:$Ri, V128:$Rn)>;
3635
3636def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd),
3637                  (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
3638          (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
3639def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd),
3640                   (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
3641          (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;
3642
3643
3644//----------------------------------------------------------------------------
3645// AdvSIMD scalar CPY instruction
3646//----------------------------------------------------------------------------
3647
3648defm CPY : SIMDScalarCPY<"cpy">;
3649
3650//----------------------------------------------------------------------------
3651// AdvSIMD scalar pairwise instructions
3652//----------------------------------------------------------------------------
3653
3654defm ADDP    : SIMDPairwiseScalarD<0, 0b11011, "addp">;
3655defm FADDP   : SIMDFPPairwiseScalar<0, 0b01101, "faddp">;
3656defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">;
3657defm FMAXP   : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">;
3658defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">;
3659defm FMINP   : SIMDFPPairwiseScalar<1, 0b01111, "fminp">;
3660def : Pat<(v2i64 (AArch64saddv V128:$Rn)),
3661          (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
3662def : Pat<(v2i64 (AArch64uaddv V128:$Rn)),
3663          (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
3664def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))),
3665          (FADDPv2i32p V64:$Rn)>;
3666def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))),
3667          (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
3668def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))),
3669          (FADDPv2i64p V128:$Rn)>;
3670def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))),
3671          (FMAXNMPv2i32p V64:$Rn)>;
3672def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))),
3673          (FMAXNMPv2i64p V128:$Rn)>;
3674def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))),
3675          (FMAXPv2i32p V64:$Rn)>;
3676def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))),
3677          (FMAXPv2i64p V128:$Rn)>;
3678def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))),
3679          (FMINNMPv2i32p V64:$Rn)>;
3680def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))),
3681          (FMINNMPv2i64p V128:$Rn)>;
3682def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))),
3683          (FMINPv2i32p V64:$Rn)>;
3684def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))),
3685          (FMINPv2i64p V128:$Rn)>;
3686
3687//----------------------------------------------------------------------------
3688// AdvSIMD INS/DUP instructions
3689//----------------------------------------------------------------------------
3690
3691def DUPv8i8gpr  : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>;
3692def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>;
3693def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>;
3694def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>;
3695def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>;
3696def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>;
3697def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>;
3698
3699def DUPv2i64lane : SIMDDup64FromElement;
3700def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
3701def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
3702def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
3703def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
3704def DUPv8i8lane  : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
3705def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;
3706
3707def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))),
3708          (v2f32 (DUPv2i32lane
3709            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
3710            (i64 0)))>;
3711def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))),
3712          (v4f32 (DUPv4i32lane
3713            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
3714            (i64 0)))>;
3715def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
3716          (v2f64 (DUPv2i64lane
3717            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
3718            (i64 0)))>;
3719def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))),
3720          (v4f16 (DUPv4i16lane
3721            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
3722            (i64 0)))>;
3723def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))),
3724          (v8f16 (DUPv8i16lane
3725            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
3726            (i64 0)))>;
3727
3728def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
3729          (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
3730def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
3731          (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
3732
3733def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
3734          (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
3735def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
3736         (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
3737def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
3738          (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;
3739
3740// If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane
3741// instruction even if the types don't match: we just have to remap the lane
3742// carefully. N.b. this trick only applies to truncations.
3743def VecIndex_x2 : SDNodeXForm<imm, [{
3744  return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64);
3745}]>;
3746def VecIndex_x4 : SDNodeXForm<imm, [{
3747  return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64);
3748}]>;
3749def VecIndex_x8 : SDNodeXForm<imm, [{
3750  return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64);
3751}]>;
3752
3753multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
3754                            ValueType Src128VT, ValueType ScalVT,
3755                            Instruction DUP, SDNodeXForm IdxXFORM> {
3756  def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
3757                                                     imm:$idx)))),
3758            (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
3759
3760  def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
3761                                                     imm:$idx)))),
3762            (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
3763}
3764
3765defm : DUPWithTruncPats<v8i8,   v4i16, v8i16, i32, DUPv8i8lane,  VecIndex_x2>;
3766defm : DUPWithTruncPats<v8i8,   v2i32, v4i32, i32, DUPv8i8lane,  VecIndex_x4>;
3767defm : DUPWithTruncPats<v4i16,  v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;
3768
3769defm : DUPWithTruncPats<v16i8,  v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
3770defm : DUPWithTruncPats<v16i8,  v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
3771defm : DUPWithTruncPats<v8i16,  v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;
3772
3773multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
3774                               SDNodeXForm IdxXFORM> {
3775  def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn),
3776                                                         imm:$idx))))),
3777            (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
3778
3779  def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn),
3780                                                       imm:$idx))))),
3781            (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
3782}
3783
3784defm : DUPWithTrunci64Pats<v8i8,  DUPv8i8lane,   VecIndex_x8>;
3785defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane,  VecIndex_x4>;
3786defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane,  VecIndex_x2>;
3787
3788defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
3789defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
3790defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;
3791
3792// SMOV and UMOV definitions, with some extra patterns for convenience
3793defm SMOV : SMov;
3794defm UMOV : UMov;
3795
3796def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
3797          (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
3798def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
3799          (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
3800def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
3801          (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
3802def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
3803          (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
3804def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
3805          (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
3806def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
3807          (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;
3808
3809def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn),
3810            VectorIndexB:$idx)))), i8),
3811          (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
3812def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn),
3813            VectorIndexH:$idx)))), i16),
3814          (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
3815
3816// Extracting i8 or i16 elements will have the zero-extend transformed to
3817// an 'and' mask by type legalization since neither i8 nor i16 are legal types
3818// for AArch64. Match these patterns here since UMOV already zeroes out the high
3819// bits of the destination register.
3820def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
3821               (i32 0xff)),
3822          (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
3823def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
3824               (i32 0xffff)),
3825          (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;
3826
3827defm INS : SIMDIns;
3828
3829def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
3830          (SUBREG_TO_REG (i32 0),
3831                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
3832def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
3833          (SUBREG_TO_REG (i32 0),
3834                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
3835
3836def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
3837          (SUBREG_TO_REG (i32 0),
3838                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
3839def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
3840          (SUBREG_TO_REG (i32 0),
3841                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
3842
3843def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
3844            (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
3845                                  (i32 FPR32:$Rn), ssub))>;
3846def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
3847            (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
3848                                  (i32 FPR32:$Rn), ssub))>;
3849def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
3850            (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
3851                                  (i64 FPR64:$Rn), dsub))>;
3852
3853def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
3854          (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
3855def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
3856          (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
3857
3858def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
3859          (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
3860def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
3861          (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
3862def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
3863          (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
3864
3865def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn),
3866            (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
3867          (EXTRACT_SUBREG
3868            (INSvi16lane
3869              (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
3870              VectorIndexS:$imm,
3871              (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
3872              (i64 0)),
3873            dsub)>;
3874
3875def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn),
3876            (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
3877          (INSvi16lane
3878            V128:$Rn, VectorIndexH:$imm,
3879            (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
3880            (i64 0))>;
3881
3882def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
3883            (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
3884          (EXTRACT_SUBREG
3885            (INSvi32lane
3886              (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
3887              VectorIndexS:$imm,
3888              (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
3889              (i64 0)),
3890            dsub)>;
3891def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
3892            (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
3893          (INSvi32lane
3894            V128:$Rn, VectorIndexS:$imm,
3895            (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
3896            (i64 0))>;
3897def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
3898            (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
3899          (INSvi64lane
3900            V128:$Rn, VectorIndexD:$imm,
3901            (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
3902            (i64 0))>;
3903
3904// Copy an element at a constant index in one vector into a constant indexed
3905// element of another.
3906// FIXME refactor to a shared class/dev parameterized on vector type, vector
3907// index type and INS extension
3908def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane
3909                   (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
3910                   VectorIndexB:$idx2)),
3911          (v16i8 (INSvi8lane
3912                   V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
3913          )>;
3914def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane
3915                   (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
3916                   VectorIndexH:$idx2)),
3917          (v8i16 (INSvi16lane
3918                   V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
3919          )>;
3920def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane
3921                   (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
3922                   VectorIndexS:$idx2)),
3923          (v4i32 (INSvi32lane
3924                   V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
3925          )>;
3926def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane
3927                   (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
3928                   VectorIndexD:$idx2)),
3929          (v2i64 (INSvi64lane
3930                   V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
3931          )>;
3932
3933multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
3934                                ValueType VTScal, Instruction INS> {
3935  def : Pat<(VT128 (vector_insert V128:$src,
3936                        (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
3937                        imm:$Immd)),
3938            (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;
3939
3940  def : Pat<(VT128 (vector_insert V128:$src,
3941                        (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
3942                        imm:$Immd)),
3943            (INS V128:$src, imm:$Immd,
3944                 (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;
3945
3946  def : Pat<(VT64 (vector_insert V64:$src,
3947                        (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
3948                        imm:$Immd)),
3949            (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
3950                                 imm:$Immd, V128:$Rn, imm:$Immn),
3951                            dsub)>;
3952
3953  def : Pat<(VT64 (vector_insert V64:$src,
3954                        (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
3955                        imm:$Immd)),
3956            (EXTRACT_SUBREG
3957                (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
3958                     (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
3959                dsub)>;
3960}
3961
3962defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>;
3963defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
3964defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
3965
3966
3967// Floating point vector extractions are codegen'd as either a sequence of
3968// subregister extractions, or a MOV (aka CPY here, alias for DUP) if
3969// the lane number is anything other than zero.
3970def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
3971          (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
3972def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
3973          (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
3974def : Pat<(vector_extract (v8f16 V128:$Rn), 0),
3975          (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
3976
3977def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
3978          (f64 (CPYi64 V128:$Rn, VectorIndexD:$idx))>;
3979def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
3980          (f32 (CPYi32 V128:$Rn, VectorIndexS:$idx))>;
3981def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx),
3982          (f16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
3983
3984// All concat_vectors operations are canonicalised to act on i64 vectors for
3985// AArch64. In the general case we need an instruction, which had just as well be
3986// INS.
3987class ConcatPat<ValueType DstTy, ValueType SrcTy>
3988  : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
3989        (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
3990                     (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;
3991
3992def : ConcatPat<v2i64, v1i64>;
3993def : ConcatPat<v2f64, v1f64>;
3994def : ConcatPat<v4i32, v2i32>;
3995def : ConcatPat<v4f32, v2f32>;
3996def : ConcatPat<v8i16, v4i16>;
3997def : ConcatPat<v8f16, v4f16>;
3998def : ConcatPat<v16i8, v8i8>;
3999
4000// If the high lanes are undef, though, we can just ignore them:
4001class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
4002  : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
4003        (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;
4004
4005def : ConcatUndefPat<v2i64, v1i64>;
4006def : ConcatUndefPat<v2f64, v1f64>;
4007def : ConcatUndefPat<v4i32, v2i32>;
4008def : ConcatUndefPat<v4f32, v2f32>;
4009def : ConcatUndefPat<v8i16, v4i16>;
4010def : ConcatUndefPat<v16i8, v8i8>;
4011
4012//----------------------------------------------------------------------------
4013// AdvSIMD across lanes instructions
4014//----------------------------------------------------------------------------
4015
4016defm ADDV    : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
4017defm SMAXV   : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
4018defm SMINV   : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
4019defm UMAXV   : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
4020defm UMINV   : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
4021defm SADDLV  : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
4022defm UADDLV  : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
4023defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>;
4024defm FMAXV   : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>;
4025defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>;
4026defm FMINV   : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>;
4027
4028// Patterns for across-vector intrinsics, that have a node equivalent, that
4029// returns a vector (with only the low lane defined) instead of a scalar.
4030// In effect, opNode is the same as (scalar_to_vector (IntNode)).
4031multiclass SIMDAcrossLanesIntrinsic<string baseOpc,
4032                                    SDPatternOperator opNode> {
4033// If a lane instruction caught the vector_extract around opNode, we can
4034// directly match the latter to the instruction.
4035def : Pat<(v8i8 (opNode V64:$Rn)),
4036          (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
4037           (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>;
4038def : Pat<(v16i8 (opNode V128:$Rn)),
4039          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4040           (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>;
4041def : Pat<(v4i16 (opNode V64:$Rn)),
4042          (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
4043           (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>;
4044def : Pat<(v8i16 (opNode V128:$Rn)),
4045          (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
4046           (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>;
4047def : Pat<(v4i32 (opNode V128:$Rn)),
4048          (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
4049           (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>;
4050
4051
4052// If none did, fallback to the explicit patterns, consuming the vector_extract.
4053def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)),
4054            (i32 0)), (i64 0))),
4055          (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
4056            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn),
4057            bsub), ssub)>;
4058def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))),
4059          (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4060            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn),
4061            bsub), ssub)>;
4062def : Pat<(i32 (vector_extract (insert_subvector undef,
4063            (v4i16 (opNode V64:$Rn)), (i32 0)), (i64 0))),
4064          (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
4065            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn),
4066            hsub), ssub)>;
4067def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))),
4068          (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
4069            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn),
4070            hsub), ssub)>;
4071def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))),
4072          (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
4073            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn),
4074            ssub), ssub)>;
4075
4076}
4077
4078multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc,
4079                                          SDPatternOperator opNode>
4080    : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
4081// If there is a sign extension after this intrinsic, consume it as smov already
4082// performed it
4083def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
4084            (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), i8)),
4085          (i32 (SMOVvi8to32
4086            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4087              (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
4088            (i64 0)))>;
4089def : Pat<(i32 (sext_inreg (i32 (vector_extract
4090            (opNode (v16i8 V128:$Rn)), (i64 0))), i8)),
4091          (i32 (SMOVvi8to32
4092            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4093             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
4094            (i64 0)))>;
4095def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
4096            (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), i16)),
4097          (i32 (SMOVvi16to32
4098           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4099            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
4100           (i64 0)))>;
4101def : Pat<(i32 (sext_inreg (i32 (vector_extract
4102            (opNode (v8i16 V128:$Rn)), (i64 0))), i16)),
4103          (i32 (SMOVvi16to32
4104            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4105             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
4106            (i64 0)))>;
4107}
4108
4109multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc,
4110                                            SDPatternOperator opNode>
4111    : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
4112// If there is a masking operation keeping only what has been actually
4113// generated, consume it.
4114def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
4115            (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), maski8_or_more)),
4116      (i32 (EXTRACT_SUBREG
4117        (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4118          (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
4119        ssub))>;
4120def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))),
4121            maski8_or_more)),
4122        (i32 (EXTRACT_SUBREG
4123          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4124            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
4125          ssub))>;
4126def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
4127            (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), maski16_or_more)),
4128          (i32 (EXTRACT_SUBREG
4129            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4130              (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
4131            ssub))>;
4132def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))),
4133            maski16_or_more)),
4134        (i32 (EXTRACT_SUBREG
4135          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4136            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
4137          ssub))>;
4138}
4139
4140defm : SIMDAcrossLanesSignedIntrinsic<"ADDV",  AArch64saddv>;
4141// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
4142def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))),
4143          (ADDPv2i32 V64:$Rn, V64:$Rn)>;
4144
4145defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>;
4146// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
4147def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))),
4148          (ADDPv2i32 V64:$Rn, V64:$Rn)>;
4149
4150defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>;
4151def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))),
4152          (SMAXPv2i32 V64:$Rn, V64:$Rn)>;
4153
4154defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>;
4155def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))),
4156          (SMINPv2i32 V64:$Rn, V64:$Rn)>;
4157
4158defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>;
4159def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))),
4160          (UMAXPv2i32 V64:$Rn, V64:$Rn)>;
4161
4162defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>;
4163def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))),
4164          (UMINPv2i32 V64:$Rn, V64:$Rn)>;
4165
4166multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
4167  def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
4168        (i32 (SMOVvi16to32
4169          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4170            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
4171          (i64 0)))>;
4172def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
4173        (i32 (SMOVvi16to32
4174          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4175           (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
4176          (i64 0)))>;
4177
4178def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
4179          (i32 (EXTRACT_SUBREG
4180           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4181            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
4182           ssub))>;
4183def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
4184        (i32 (EXTRACT_SUBREG
4185          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4186           (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
4187          ssub))>;
4188
4189def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
4190        (i64 (EXTRACT_SUBREG
4191          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4192           (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
4193          dsub))>;
4194}
4195
4196multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
4197                                                Intrinsic intOp> {
4198  def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
4199        (i32 (EXTRACT_SUBREG
4200          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4201            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
4202          ssub))>;
4203def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
4204        (i32 (EXTRACT_SUBREG
4205          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4206            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
4207          ssub))>;
4208
4209def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
4210          (i32 (EXTRACT_SUBREG
4211            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4212              (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
4213            ssub))>;
4214def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
4215        (i32 (EXTRACT_SUBREG
4216          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4217            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
4218          ssub))>;
4219
4220def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
4221        (i64 (EXTRACT_SUBREG
4222          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4223            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
4224          dsub))>;
4225}
4226
4227defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>;
4228defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>;
4229
4230// The vaddlv_s32 intrinsic gets mapped to SADDLP.
4231def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))),
4232          (i64 (EXTRACT_SUBREG
4233            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4234              (SADDLPv2i32_v1i64 V64:$Rn), dsub),
4235            dsub))>;
4236// The vaddlv_u32 intrinsic gets mapped to UADDLP.
4237def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))),
4238          (i64 (EXTRACT_SUBREG
4239            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4240              (UADDLPv2i32_v1i64 V64:$Rn), dsub),
4241            dsub))>;
4242
4243//------------------------------------------------------------------------------
4244// AdvSIMD modified immediate instructions
4245//------------------------------------------------------------------------------
4246
4247// AdvSIMD BIC
4248defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>;
4249// AdvSIMD ORR
4250defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>;
4251
4252def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
4253def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
4254def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
4255def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
4256
4257def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4258def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4259def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4260def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4261
4262def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
4263def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
4264def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
4265def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
4266
4267def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4268def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4269def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4270def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4271
4272// AdvSIMD FMOV
4273def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8,
4274                                              "fmov", ".2d",
4275                       [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4276def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64,  fpimm8,
4277                                              "fmov", ".2s",
4278                       [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4279def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8,
4280                                              "fmov", ".4s",
4281                       [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4282let Predicates = [HasNEON, HasFullFP16] in {
4283def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64,  fpimm8,
4284                                              "fmov", ".4h",
4285                       [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4286def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8,
4287                                              "fmov", ".8h",
4288                       [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4289} // Predicates = [HasNEON, HasFullFP16]
4290
4291// AdvSIMD MOVI
4292
4293// EDIT byte mask: scalar
4294let isReMaterializable = 1, isAsCheapAsAMove = 1 in
4295def MOVID      : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
4296                    [(set FPR64:$Rd, simdimmtype10:$imm8)]>;
4297// The movi_edit node has the immediate value already encoded, so we use
4298// a plain imm0_255 here.
4299def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)),
4300          (MOVID imm0_255:$shift)>;
4301
4302def : Pat<(v1i64 immAllZerosV), (MOVID (i32 0))>;
4303def : Pat<(v2i32 immAllZerosV), (MOVID (i32 0))>;
4304def : Pat<(v4i16 immAllZerosV), (MOVID (i32 0))>;
4305def : Pat<(v8i8  immAllZerosV), (MOVID (i32 0))>;
4306
4307def : Pat<(v1i64 immAllOnesV), (MOVID (i32 255))>;
4308def : Pat<(v2i32 immAllOnesV), (MOVID (i32 255))>;
4309def : Pat<(v4i16 immAllOnesV), (MOVID (i32 255))>;
4310def : Pat<(v8i8  immAllOnesV), (MOVID (i32 255))>;
4311
4312// EDIT byte mask: 2d
4313
4314// The movi_edit node has the immediate value already encoded, so we use
4315// a plain imm0_255 in the pattern
4316let isReMaterializable = 1, isAsCheapAsAMove = 1 in
4317def MOVIv2d_ns   : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128,
4318                                                simdimmtype10,
4319                                                "movi", ".2d",
4320                   [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>;
4321
4322
4323// Use movi.2d to materialize 0.0 if the HW does zero-cycle zeroing.
4324// Complexity is added to break a tie with a plain MOVI.
4325let AddedComplexity = 1 in {
4326def : Pat<(f32   fpimm0),
4327          (f32 (EXTRACT_SUBREG (v2i64 (MOVIv2d_ns (i32 0))), ssub))>,
4328      Requires<[HasZCZ]>;
4329def : Pat<(f64   fpimm0),
4330          (f64 (EXTRACT_SUBREG (v2i64 (MOVIv2d_ns (i32 0))), dsub))>,
4331      Requires<[HasZCZ]>;
4332}
4333
4334def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
4335def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
4336def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
4337def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;
4338
4339def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
4340def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
4341def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
4342def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;
4343
4344def : Pat<(v2f64 (AArch64dup (f64 fpimm0))), (MOVIv2d_ns (i32 0))>;
4345def : Pat<(v4f32 (AArch64dup (f32 fpimm0))), (MOVIv2d_ns (i32 0))>;
4346
4347// EDIT per word & halfword: 2s, 4h, 4s, & 8h
4348defm MOVI      : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;
4349
4350def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4351def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4352def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4353def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4354
4355def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4356def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4357def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4358def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4359
4360def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
4361          (MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
4362def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
4363          (MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
4364def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
4365          (MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
4366def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
4367          (MOVIv8i16 imm0_255:$imm8, imm:$shift)>;
4368
4369// EDIT per word: 2s & 4s with MSL shifter
4370def MOVIv2s_msl  : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
4371                      [(set (v2i32 V64:$Rd),
4372                            (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
4373def MOVIv4s_msl  : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
4374                      [(set (v4i32 V128:$Rd),
4375                            (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
4376
4377// Per byte: 8b & 16b
4378def MOVIv8b_ns   : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64,  imm0_255,
4379                                                 "movi", ".8b",
4380                       [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>;
4381def MOVIv16b_ns  : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255,
4382                                                 "movi", ".16b",
4383                       [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>;
4384
4385// AdvSIMD MVNI
4386
4387// EDIT per word & halfword: 2s, 4h, 4s, & 8h
4388defm MVNI      : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;
4389
4390def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4391def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4392def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4393def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4394
4395def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4396def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4397def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4398def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4399
4400def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
4401          (MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
4402def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
4403          (MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
4404def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
4405          (MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
4406def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
4407          (MVNIv8i16 imm0_255:$imm8, imm:$shift)>;
4408
4409// EDIT per word: 2s & 4s with MSL shifter
4410def MVNIv2s_msl   : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
4411                      [(set (v2i32 V64:$Rd),
4412                            (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
4413def MVNIv4s_msl   : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
4414                      [(set (v4i32 V128:$Rd),
4415                            (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
4416
4417//----------------------------------------------------------------------------
4418// AdvSIMD indexed element
4419//----------------------------------------------------------------------------
4420
4421let hasSideEffects = 0 in {
4422  defm FMLA  : SIMDFPIndexedTied<0, 0b0001, "fmla">;
4423  defm FMLS  : SIMDFPIndexedTied<0, 0b0101, "fmls">;
4424}
4425
4426// NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
4427// instruction expects the addend first, while the intrinsic expects it last.
4428
4429// On the other hand, there are quite a few valid combinatorial options due to
4430// the commutativity of multiplication and the fact that (-x) * y = x * (-y).
4431defm : SIMDFPIndexedTiedPatterns<"FMLA",
4432           TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
4433defm : SIMDFPIndexedTiedPatterns<"FMLA",
4434           TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;
4435
4436defm : SIMDFPIndexedTiedPatterns<"FMLS",
4437           TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
4438defm : SIMDFPIndexedTiedPatterns<"FMLS",
4439           TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
4440defm : SIMDFPIndexedTiedPatterns<"FMLS",
4441           TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
4442defm : SIMDFPIndexedTiedPatterns<"FMLS",
4443           TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;
4444
4445multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
4446  // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
4447  // and DUP scalar.
4448  def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
4449                           (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
4450                                           VectorIndexS:$idx))),
4451            (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
4452  def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
4453                           (v2f32 (AArch64duplane32
4454                                      (v4f32 (insert_subvector undef,
4455                                                 (v2f32 (fneg V64:$Rm)),
4456                                                 (i32 0))),
4457                                      VectorIndexS:$idx)))),
4458            (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
4459                               (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
4460                               VectorIndexS:$idx)>;
4461  def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
4462                           (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
4463            (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
4464                (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
4465
4466  // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
4467  // and DUP scalar.
4468  def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
4469                           (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
4470                                           VectorIndexS:$idx))),
4471            (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
4472                               VectorIndexS:$idx)>;
4473  def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
4474                           (v4f32 (AArch64duplane32
4475                                      (v4f32 (insert_subvector undef,
4476                                                 (v2f32 (fneg V64:$Rm)),
4477                                                 (i32 0))),
4478                                      VectorIndexS:$idx)))),
4479            (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
4480                               (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
4481                               VectorIndexS:$idx)>;
4482  def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
4483                           (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
4484            (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
4485                (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
4486
4487  // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
4488  // (DUPLANE from 64-bit would be trivial).
4489  def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
4490                           (AArch64duplane64 (v2f64 (fneg V128:$Rm)),
4491                                           VectorIndexD:$idx))),
4492            (FMLSv2i64_indexed
4493                V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
4494  def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
4495                           (AArch64dup (f64 (fneg FPR64Op:$Rm))))),
4496            (FMLSv2i64_indexed V128:$Rd, V128:$Rn,
4497                (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
4498
4499  // 2 variants for 32-bit scalar version: extract from .2s or from .4s
4500  def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
4501                         (vector_extract (v4f32 (fneg V128:$Rm)),
4502                                         VectorIndexS:$idx))),
4503            (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
4504                V128:$Rm, VectorIndexS:$idx)>;
4505  def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
4506                         (vector_extract (v4f32 (insert_subvector undef,
4507                                                    (v2f32 (fneg V64:$Rm)),
4508                                                    (i32 0))),
4509                                         VectorIndexS:$idx))),
4510            (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
4511                (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
4512
4513  // 1 variant for 64-bit scalar version: extract from .1d or from .2d
4514  def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
4515                         (vector_extract (v2f64 (fneg V128:$Rm)),
4516                                         VectorIndexS:$idx))),
4517            (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
4518                V128:$Rm, VectorIndexS:$idx)>;
4519}
4520
4521defm : FMLSIndexedAfterNegPatterns<
4522           TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
4523defm : FMLSIndexedAfterNegPatterns<
4524           TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;
4525
4526defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>;
4527defm FMUL  : SIMDFPIndexed<0, 0b1001, "fmul", fmul>;
4528
4529def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
4530          (FMULv2i32_indexed V64:$Rn,
4531            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
4532            (i64 0))>;
4533def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
4534          (FMULv4i32_indexed V128:$Rn,
4535            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
4536            (i64 0))>;
4537def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))),
4538          (FMULv2i64_indexed V128:$Rn,
4539            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
4540            (i64 0))>;
4541
4542defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>;
4543defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
4544defm MLA   : SIMDVectorIndexedHSTied<1, 0b0000, "mla",
4545              TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))>>;
4546defm MLS   : SIMDVectorIndexedHSTied<1, 0b0100, "mls",
4547              TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))>>;
4548defm MUL   : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
4549defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
4550    TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
4551defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
4552    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
4553defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
4554                int_aarch64_neon_smull>;
4555defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
4556                                           int_aarch64_neon_sqadd>;
4557defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
4558                                           int_aarch64_neon_sqsub>;
4559defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah",
4560                                          int_aarch64_neon_sqadd>;
4561defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh",
4562                                          int_aarch64_neon_sqsub>;
4563defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>;
4564defm UMLAL   : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
4565    TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
4566defm UMLSL   : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
4567    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
4568defm UMULL   : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
4569                int_aarch64_neon_umull>;
4570
4571// A scalar sqdmull with the second operand being a vector lane can be
4572// handled directly with the indexed instruction encoding.
4573def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
4574                                          (vector_extract (v4i32 V128:$Vm),
4575                                                           VectorIndexS:$idx)),
4576          (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;
4577
4578//----------------------------------------------------------------------------
4579// AdvSIMD scalar shift instructions
4580//----------------------------------------------------------------------------
4581defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">;
4582defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">;
4583defm SCVTF  : SIMDFPScalarRShift<0, 0b11100, "scvtf">;
4584defm UCVTF  : SIMDFPScalarRShift<1, 0b11100, "ucvtf">;
4585// Codegen patterns for the above. We don't put these directly on the
4586// instructions because TableGen's type inference can't handle the truth.
4587// Having the same base pattern for fp <--> int totally freaks it out.
4588def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
4589          (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
4590def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
4591          (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
4592def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
4593          (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
4594def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
4595          (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
4596def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
4597                                            vecshiftR64:$imm)),
4598          (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
4599def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
4600                                            vecshiftR64:$imm)),
4601          (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
4602def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
4603          (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
4604def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
4605          (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
4606def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
4607          (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
4608def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
4609          (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
4610def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
4611                                            vecshiftR64:$imm)),
4612          (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
4613def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
4614                                            vecshiftR64:$imm)),
4615          (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
4616
4617defm SHL      : SIMDScalarLShiftD<   0, 0b01010, "shl", AArch64vshl>;
4618defm SLI      : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
4619defm SQRSHRN  : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
4620                                     int_aarch64_neon_sqrshrn>;
4621defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
4622                                     int_aarch64_neon_sqrshrun>;
4623defm SQSHLU   : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
4624defm SQSHL    : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
4625defm SQSHRN   : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
4626                                     int_aarch64_neon_sqshrn>;
4627defm SQSHRUN  : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
4628                                     int_aarch64_neon_sqshrun>;
4629defm SRI      : SIMDScalarRShiftDTied<   1, 0b01000, "sri">;
4630defm SRSHR    : SIMDScalarRShiftD<   0, 0b00100, "srshr", AArch64srshri>;
4631defm SRSRA    : SIMDScalarRShiftDTied<   0, 0b00110, "srsra",
4632    TriOpFrag<(add node:$LHS,
4633                   (AArch64srshri node:$MHS, node:$RHS))>>;
4634defm SSHR     : SIMDScalarRShiftD<   0, 0b00000, "sshr", AArch64vashr>;
4635defm SSRA     : SIMDScalarRShiftDTied<   0, 0b00010, "ssra",
4636    TriOpFrag<(add node:$LHS,
4637                   (AArch64vashr node:$MHS, node:$RHS))>>;
4638defm UQRSHRN  : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
4639                                     int_aarch64_neon_uqrshrn>;
4640defm UQSHL    : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
4641defm UQSHRN   : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
4642                                     int_aarch64_neon_uqshrn>;
4643defm URSHR    : SIMDScalarRShiftD<   1, 0b00100, "urshr", AArch64urshri>;
4644defm URSRA    : SIMDScalarRShiftDTied<   1, 0b00110, "ursra",
4645    TriOpFrag<(add node:$LHS,
4646                   (AArch64urshri node:$MHS, node:$RHS))>>;
4647defm USHR     : SIMDScalarRShiftD<   1, 0b00000, "ushr", AArch64vlshr>;
4648defm USRA     : SIMDScalarRShiftDTied<   1, 0b00010, "usra",
4649    TriOpFrag<(add node:$LHS,
4650                   (AArch64vlshr node:$MHS, node:$RHS))>>;
4651
4652//----------------------------------------------------------------------------
4653// AdvSIMD vector shift instructions
4654//----------------------------------------------------------------------------
4655defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>;
4656defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>;
4657defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf",
4658                                   int_aarch64_neon_vcvtfxs2fp>;
4659defm RSHRN   : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
4660                                         int_aarch64_neon_rshrn>;
4661defm SHL     : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>;
4662defm SHRN    : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
4663                          BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>;
4664defm SLI     : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", int_aarch64_neon_vsli>;
4665def : Pat<(v1i64 (int_aarch64_neon_vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
4666                                      (i32 vecshiftL64:$imm))),
4667          (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
4668defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
4669                                         int_aarch64_neon_sqrshrn>;
4670defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
4671                                         int_aarch64_neon_sqrshrun>;
4672defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
4673defm SQSHL  : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
4674defm SQSHRN  : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
4675                                         int_aarch64_neon_sqshrn>;
4676defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
4677                                         int_aarch64_neon_sqshrun>;
4678defm SRI     : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", int_aarch64_neon_vsri>;
4679def : Pat<(v1i64 (int_aarch64_neon_vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
4680                                      (i32 vecshiftR64:$imm))),
4681          (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
4682defm SRSHR   : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>;
4683defm SRSRA   : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
4684                 TriOpFrag<(add node:$LHS,
4685                                (AArch64srshri node:$MHS, node:$RHS))> >;
4686defm SSHLL   : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
4687                BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>;
4688
4689defm SSHR    : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>;
4690defm SSRA    : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
4691                TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>;
4692defm UCVTF   : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf",
4693                        int_aarch64_neon_vcvtfxu2fp>;
4694defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
4695                                         int_aarch64_neon_uqrshrn>;
4696defm UQSHL   : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
4697defm UQSHRN  : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
4698                                         int_aarch64_neon_uqshrn>;
4699defm URSHR   : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>;
4700defm URSRA   : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
4701                TriOpFrag<(add node:$LHS,
4702                               (AArch64urshri node:$MHS, node:$RHS))> >;
4703defm USHLL   : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
4704                BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>;
4705defm USHR    : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>;
4706defm USRA    : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
4707                TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >;
4708
4709// SHRN patterns for when a logical right shift was used instead of arithmetic
4710// (the immediate guarantees no sign bits actually end up in the result so it
4711// doesn't matter).
4712def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
4713          (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
4714def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
4715          (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
4716def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
4717          (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;
4718
4719def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
4720                                 (trunc (AArch64vlshr (v8i16 V128:$Rn),
4721                                                    vecshiftR16Narrow:$imm)))),
4722          (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
4723                           V128:$Rn, vecshiftR16Narrow:$imm)>;
4724def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
4725                                 (trunc (AArch64vlshr (v4i32 V128:$Rn),
4726                                                    vecshiftR32Narrow:$imm)))),
4727          (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
4728                           V128:$Rn, vecshiftR32Narrow:$imm)>;
4729def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
4730                                 (trunc (AArch64vlshr (v2i64 V128:$Rn),
4731                                                    vecshiftR64Narrow:$imm)))),
4732          (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
4733                           V128:$Rn, vecshiftR32Narrow:$imm)>;
4734
4735// Vector sign and zero extensions are implemented with SSHLL and USSHLL.
4736// Anyexts are implemented as zexts.
4737def : Pat<(v8i16 (sext   (v8i8 V64:$Rn))),  (SSHLLv8i8_shift  V64:$Rn, (i32 0))>;
4738def : Pat<(v8i16 (zext   (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
4739def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
4740def : Pat<(v4i32 (sext   (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
4741def : Pat<(v4i32 (zext   (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
4742def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
4743def : Pat<(v2i64 (sext   (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
4744def : Pat<(v2i64 (zext   (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
4745def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
4746// Also match an extend from the upper half of a 128 bit source register.
4747def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
4748          (USHLLv16i8_shift V128:$Rn, (i32 0))>;
4749def : Pat<(v8i16 (zext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
4750          (USHLLv16i8_shift V128:$Rn, (i32 0))>;
4751def : Pat<(v8i16 (sext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
4752          (SSHLLv16i8_shift V128:$Rn, (i32 0))>;
4753def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
4754          (USHLLv8i16_shift V128:$Rn, (i32 0))>;
4755def : Pat<(v4i32 (zext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
4756          (USHLLv8i16_shift V128:$Rn, (i32 0))>;
4757def : Pat<(v4i32 (sext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
4758          (SSHLLv8i16_shift V128:$Rn, (i32 0))>;
4759def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
4760          (USHLLv4i32_shift V128:$Rn, (i32 0))>;
4761def : Pat<(v2i64 (zext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
4762          (USHLLv4i32_shift V128:$Rn, (i32 0))>;
4763def : Pat<(v2i64 (sext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
4764          (SSHLLv4i32_shift V128:$Rn, (i32 0))>;
4765
4766// Vector shift sxtl aliases
4767def : InstAlias<"sxtl.8h $dst, $src1",
4768                (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
4769def : InstAlias<"sxtl $dst.8h, $src1.8b",
4770                (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
4771def : InstAlias<"sxtl.4s $dst, $src1",
4772                (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
4773def : InstAlias<"sxtl $dst.4s, $src1.4h",
4774                (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
4775def : InstAlias<"sxtl.2d $dst, $src1",
4776                (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
4777def : InstAlias<"sxtl $dst.2d, $src1.2s",
4778                (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
4779
4780// Vector shift sxtl2 aliases
4781def : InstAlias<"sxtl2.8h $dst, $src1",
4782                (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
4783def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
4784                (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
4785def : InstAlias<"sxtl2.4s $dst, $src1",
4786                (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
4787def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
4788                (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
4789def : InstAlias<"sxtl2.2d $dst, $src1",
4790                (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
4791def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
4792                (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
4793
4794// Vector shift uxtl aliases
4795def : InstAlias<"uxtl.8h $dst, $src1",
4796                (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
4797def : InstAlias<"uxtl $dst.8h, $src1.8b",
4798                (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
4799def : InstAlias<"uxtl.4s $dst, $src1",
4800                (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
4801def : InstAlias<"uxtl $dst.4s, $src1.4h",
4802                (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
4803def : InstAlias<"uxtl.2d $dst, $src1",
4804                (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
4805def : InstAlias<"uxtl $dst.2d, $src1.2s",
4806                (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
4807
4808// Vector shift uxtl2 aliases
4809def : InstAlias<"uxtl2.8h $dst, $src1",
4810                (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
4811def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
4812                (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
4813def : InstAlias<"uxtl2.4s $dst, $src1",
4814                (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
4815def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
4816                (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
4817def : InstAlias<"uxtl2.2d $dst, $src1",
4818                (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
4819def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
4820                (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
4821
4822// If an integer is about to be converted to a floating point value,
4823// just load it on the floating point unit.
4824// These patterns are more complex because floating point loads do not
4825// support sign extension.
4826// The sign extension has to be explicitly added and is only supported for
4827// one step: byte-to-half, half-to-word, word-to-doubleword.
4828// SCVTF GPR -> FPR is 9 cycles.
4829// SCVTF FPR -> FPR is 4 cyclces.
4830// (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
4831// Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
4832// and still being faster.
4833// However, this is not good for code size.
4834// 8-bits -> float. 2 sizes step-up.
4835class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
4836  : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))),
4837        (SCVTFv1i32 (f32 (EXTRACT_SUBREG
4838                            (SSHLLv4i16_shift
4839                              (f64
4840                                (EXTRACT_SUBREG
4841                                  (SSHLLv8i8_shift
4842                                    (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4843                                        INST,
4844                                        bsub),
4845                                    0),
4846                                  dsub)),
4847                               0),
4848                             ssub)))>, Requires<[NotForCodeSize, IsCyclone]>;
4849
4850def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
4851                          (LDRBroW  GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
4852def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext),
4853                          (LDRBroX  GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>;
4854def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset),
4855                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>;
4856def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset),
4857                          (LDURBi GPR64sp:$Rn, simm9:$offset)>;
4858
4859// 16-bits -> float. 1 size step-up.
4860class SExtLoadi16CVTf32Pat<dag addrmode, dag INST>
4861  : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))),
4862        (SCVTFv1i32 (f32 (EXTRACT_SUBREG
4863                            (SSHLLv4i16_shift
4864                                (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4865                                  INST,
4866                                  hsub),
4867                                0),
4868                            ssub)))>, Requires<[NotForCodeSize]>;
4869
4870def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
4871                           (LDRHroW   GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
4872def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
4873                           (LDRHroX   GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
4874def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
4875                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
4876def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
4877                           (LDURHi GPR64sp:$Rn, simm9:$offset)>;
4878
4879// 32-bits to 32-bits are handled in target specific dag combine:
4880// performIntToFpCombine.
4881// 64-bits integer to 32-bits floating point, not possible with
4882// SCVTF on floating point registers (both source and destination
4883// must have the same size).
4884
4885// Here are the patterns for 8, 16, 32, and 64-bits to double.
4886// 8-bits -> double. 3 size step-up: give up.
4887// 16-bits -> double. 2 size step.
4888class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
4889  : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))),
4890           (SCVTFv1i64 (f64 (EXTRACT_SUBREG
4891                              (SSHLLv2i32_shift
4892                                 (f64
4893                                  (EXTRACT_SUBREG
4894                                    (SSHLLv4i16_shift
4895                                      (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4896                                        INST,
4897                                        hsub),
4898                                     0),
4899                                   dsub)),
4900                               0),
4901                             dsub)))>, Requires<[NotForCodeSize, IsCyclone]>;
4902
4903def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
4904                           (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
4905def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
4906                           (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
4907def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
4908                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
4909def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
4910                           (LDURHi GPR64sp:$Rn, simm9:$offset)>;
4911// 32-bits -> double. 1 size step-up.
4912class SExtLoadi32CVTf64Pat<dag addrmode, dag INST>
4913  : Pat <(f64 (sint_to_fp (i32 (load addrmode)))),
4914           (SCVTFv1i64 (f64 (EXTRACT_SUBREG
4915                              (SSHLLv2i32_shift
4916                                (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4917                                  INST,
4918                                  ssub),
4919                               0),
4920                             dsub)))>, Requires<[NotForCodeSize]>;
4921
4922def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext),
4923                           (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>;
4924def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext),
4925                           (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>;
4926def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset),
4927                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>;
4928def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset),
4929                           (LDURSi GPR64sp:$Rn, simm9:$offset)>;
4930
4931// 64-bits -> double are handled in target specific dag combine:
4932// performIntToFpCombine.
4933
4934
4935//----------------------------------------------------------------------------
4936// AdvSIMD Load-Store Structure
4937//----------------------------------------------------------------------------
4938defm LD1 : SIMDLd1Multiple<"ld1">;
4939defm LD2 : SIMDLd2Multiple<"ld2">;
4940defm LD3 : SIMDLd3Multiple<"ld3">;
4941defm LD4 : SIMDLd4Multiple<"ld4">;
4942
4943defm ST1 : SIMDSt1Multiple<"st1">;
4944defm ST2 : SIMDSt2Multiple<"st2">;
4945defm ST3 : SIMDSt3Multiple<"st3">;
4946defm ST4 : SIMDSt4Multiple<"st4">;
4947
4948class Ld1Pat<ValueType ty, Instruction INST>
4949  : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>;
4950
4951def : Ld1Pat<v16i8, LD1Onev16b>;
4952def : Ld1Pat<v8i16, LD1Onev8h>;
4953def : Ld1Pat<v4i32, LD1Onev4s>;
4954def : Ld1Pat<v2i64, LD1Onev2d>;
4955def : Ld1Pat<v8i8,  LD1Onev8b>;
4956def : Ld1Pat<v4i16, LD1Onev4h>;
4957def : Ld1Pat<v2i32, LD1Onev2s>;
4958def : Ld1Pat<v1i64, LD1Onev1d>;
4959
4960class St1Pat<ValueType ty, Instruction INST>
4961  : Pat<(store ty:$Vt, GPR64sp:$Rn),
4962        (INST ty:$Vt, GPR64sp:$Rn)>;
4963
4964def : St1Pat<v16i8, ST1Onev16b>;
4965def : St1Pat<v8i16, ST1Onev8h>;
4966def : St1Pat<v4i32, ST1Onev4s>;
4967def : St1Pat<v2i64, ST1Onev2d>;
4968def : St1Pat<v8i8,  ST1Onev8b>;
4969def : St1Pat<v4i16, ST1Onev4h>;
4970def : St1Pat<v2i32, ST1Onev2s>;
4971def : St1Pat<v1i64, ST1Onev1d>;
4972
4973//---
4974// Single-element
4975//---
4976
4977defm LD1R          : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
4978defm LD2R          : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
4979defm LD3R          : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
4980defm LD4R          : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
4981let mayLoad = 1, hasSideEffects = 0 in {
4982defm LD1 : SIMDLdSingleBTied<0, 0b000,       "ld1", VecListOneb,   GPR64pi1>;
4983defm LD1 : SIMDLdSingleHTied<0, 0b010, 0,    "ld1", VecListOneh,   GPR64pi2>;
4984defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes,   GPR64pi4>;
4985defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned,   GPR64pi8>;
4986defm LD2 : SIMDLdSingleBTied<1, 0b000,       "ld2", VecListTwob,   GPR64pi2>;
4987defm LD2 : SIMDLdSingleHTied<1, 0b010, 0,    "ld2", VecListTwoh,   GPR64pi4>;
4988defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos,   GPR64pi8>;
4989defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod,   GPR64pi16>;
4990defm LD3 : SIMDLdSingleBTied<0, 0b001,       "ld3", VecListThreeb, GPR64pi3>;
4991defm LD3 : SIMDLdSingleHTied<0, 0b011, 0,    "ld3", VecListThreeh, GPR64pi6>;
4992defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
4993defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
4994defm LD4 : SIMDLdSingleBTied<1, 0b001,       "ld4", VecListFourb,  GPR64pi4>;
4995defm LD4 : SIMDLdSingleHTied<1, 0b011, 0,    "ld4", VecListFourh,  GPR64pi8>;
4996defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours,  GPR64pi16>;
4997defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd,  GPR64pi32>;
4998}
4999
5000def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
5001          (LD1Rv8b GPR64sp:$Rn)>;
5002def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
5003          (LD1Rv16b GPR64sp:$Rn)>;
5004def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
5005          (LD1Rv4h GPR64sp:$Rn)>;
5006def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
5007          (LD1Rv8h GPR64sp:$Rn)>;
5008def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
5009          (LD1Rv2s GPR64sp:$Rn)>;
5010def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
5011          (LD1Rv4s GPR64sp:$Rn)>;
5012def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
5013          (LD1Rv2d GPR64sp:$Rn)>;
5014def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
5015          (LD1Rv1d GPR64sp:$Rn)>;
5016// Grab the floating point version too
5017def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
5018          (LD1Rv2s GPR64sp:$Rn)>;
5019def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
5020          (LD1Rv4s GPR64sp:$Rn)>;
5021def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
5022          (LD1Rv2d GPR64sp:$Rn)>;
5023def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
5024          (LD1Rv1d GPR64sp:$Rn)>;
5025def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
5026          (LD1Rv4h GPR64sp:$Rn)>;
5027def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
5028          (LD1Rv8h GPR64sp:$Rn)>;
5029
5030class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
5031                    ValueType VTy, ValueType STy, Instruction LD1>
5032  : Pat<(vector_insert (VTy VecListOne128:$Rd),
5033           (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
5034        (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>;
5035
5036def : Ld1Lane128Pat<extloadi8,  VectorIndexB, v16i8, i32, LD1i8>;
5037def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
5038def : Ld1Lane128Pat<load,       VectorIndexS, v4i32, i32, LD1i32>;
5039def : Ld1Lane128Pat<load,       VectorIndexS, v4f32, f32, LD1i32>;
5040def : Ld1Lane128Pat<load,       VectorIndexD, v2i64, i64, LD1i64>;
5041def : Ld1Lane128Pat<load,       VectorIndexD, v2f64, f64, LD1i64>;
5042def : Ld1Lane128Pat<load,       VectorIndexH, v8f16, f16, LD1i16>;
5043
5044class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
5045                   ValueType VTy, ValueType STy, Instruction LD1>
5046  : Pat<(vector_insert (VTy VecListOne64:$Rd),
5047           (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
5048        (EXTRACT_SUBREG
5049            (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
5050                          VecIndex:$idx, GPR64sp:$Rn),
5051            dsub)>;
5052
5053def : Ld1Lane64Pat<extloadi8,  VectorIndexB, v8i8,  i32, LD1i8>;
5054def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
5055def : Ld1Lane64Pat<load,       VectorIndexS, v2i32, i32, LD1i32>;
5056def : Ld1Lane64Pat<load,       VectorIndexS, v2f32, f32, LD1i32>;
5057def : Ld1Lane64Pat<load,       VectorIndexH, v4f16, f16, LD1i16>;
5058
5059
5060defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
5061defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
5062defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
5063defm LD4 : SIMDLdSt4SingleAliases<"ld4">;
5064
5065// Stores
5066defm ST1 : SIMDStSingleB<0, 0b000,       "st1", VecListOneb, GPR64pi1>;
5067defm ST1 : SIMDStSingleH<0, 0b010, 0,    "st1", VecListOneh, GPR64pi2>;
5068defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
5069defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
5070
5071let AddedComplexity = 19 in
5072class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
5073                    ValueType VTy, ValueType STy, Instruction ST1>
5074  : Pat<(scalar_store
5075             (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
5076             GPR64sp:$Rn),
5077        (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>;
5078
5079def : St1Lane128Pat<truncstorei8,  VectorIndexB, v16i8, i32, ST1i8>;
5080def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
5081def : St1Lane128Pat<store,         VectorIndexS, v4i32, i32, ST1i32>;
5082def : St1Lane128Pat<store,         VectorIndexS, v4f32, f32, ST1i32>;
5083def : St1Lane128Pat<store,         VectorIndexD, v2i64, i64, ST1i64>;
5084def : St1Lane128Pat<store,         VectorIndexD, v2f64, f64, ST1i64>;
5085def : St1Lane128Pat<store,         VectorIndexH, v8f16, f16, ST1i16>;
5086
5087let AddedComplexity = 19 in
5088class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
5089                   ValueType VTy, ValueType STy, Instruction ST1>
5090  : Pat<(scalar_store
5091             (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
5092             GPR64sp:$Rn),
5093        (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
5094             VecIndex:$idx, GPR64sp:$Rn)>;
5095
5096def : St1Lane64Pat<truncstorei8,  VectorIndexB, v8i8, i32, ST1i8>;
5097def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
5098def : St1Lane64Pat<store,         VectorIndexS, v2i32, i32, ST1i32>;
5099def : St1Lane64Pat<store,         VectorIndexS, v2f32, f32, ST1i32>;
5100def : St1Lane64Pat<store,         VectorIndexH, v4f16, f16, ST1i16>;
5101
5102multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
5103                             ValueType VTy, ValueType STy, Instruction ST1,
5104                             int offset> {
5105  def : Pat<(scalar_store
5106              (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
5107              GPR64sp:$Rn, offset),
5108        (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
5109             VecIndex:$idx, GPR64sp:$Rn, XZR)>;
5110
5111  def : Pat<(scalar_store
5112              (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
5113              GPR64sp:$Rn, GPR64:$Rm),
5114        (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
5115             VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
5116}
5117
5118defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
5119defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
5120                        2>;
5121defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
5122defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
5123defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
5124defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
5125defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>;
5126
5127multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
5128                             ValueType VTy, ValueType STy, Instruction ST1,
5129                             int offset> {
5130  def : Pat<(scalar_store
5131              (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
5132              GPR64sp:$Rn, offset),
5133        (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>;
5134
5135  def : Pat<(scalar_store
5136              (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
5137              GPR64sp:$Rn, GPR64:$Rm),
5138        (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
5139}
5140
5141defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
5142                         1>;
5143defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
5144                         2>;
5145defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
5146defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
5147defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
5148defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
5149defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>;
5150
5151let mayStore = 1, hasSideEffects = 0 in {
5152defm ST2 : SIMDStSingleB<1, 0b000,       "st2", VecListTwob,   GPR64pi2>;
5153defm ST2 : SIMDStSingleH<1, 0b010, 0,    "st2", VecListTwoh,   GPR64pi4>;
5154defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos,   GPR64pi8>;
5155defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod,   GPR64pi16>;
5156defm ST3 : SIMDStSingleB<0, 0b001,       "st3", VecListThreeb, GPR64pi3>;
5157defm ST3 : SIMDStSingleH<0, 0b011, 0,    "st3", VecListThreeh, GPR64pi6>;
5158defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
5159defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
5160defm ST4 : SIMDStSingleB<1, 0b001,       "st4", VecListFourb,  GPR64pi4>;
5161defm ST4 : SIMDStSingleH<1, 0b011, 0,    "st4", VecListFourh,  GPR64pi8>;
5162defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours,  GPR64pi16>;
5163defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd,  GPR64pi32>;
5164}
5165
5166defm ST1 : SIMDLdSt1SingleAliases<"st1">;
5167defm ST2 : SIMDLdSt2SingleAliases<"st2">;
5168defm ST3 : SIMDLdSt3SingleAliases<"st3">;
5169defm ST4 : SIMDLdSt4SingleAliases<"st4">;
5170
5171//----------------------------------------------------------------------------
5172// Crypto extensions
5173//----------------------------------------------------------------------------
5174
5175def AESErr   : AESTiedInst<0b0100, "aese",   int_aarch64_crypto_aese>;
5176def AESDrr   : AESTiedInst<0b0101, "aesd",   int_aarch64_crypto_aesd>;
5177def AESMCrr  : AESInst<    0b0110, "aesmc",  int_aarch64_crypto_aesmc>;
5178def AESIMCrr : AESInst<    0b0111, "aesimc", int_aarch64_crypto_aesimc>;
5179
5180def SHA1Crrr     : SHATiedInstQSV<0b000, "sha1c",   int_aarch64_crypto_sha1c>;
5181def SHA1Prrr     : SHATiedInstQSV<0b001, "sha1p",   int_aarch64_crypto_sha1p>;
5182def SHA1Mrrr     : SHATiedInstQSV<0b010, "sha1m",   int_aarch64_crypto_sha1m>;
5183def SHA1SU0rrr   : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>;
5184def SHA256Hrrr   : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>;
5185def SHA256H2rrr  : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>;
5186def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>;
5187
5188def SHA1Hrr     : SHAInstSS<    0b0000, "sha1h",    int_aarch64_crypto_sha1h>;
5189def SHA1SU1rr   : SHATiedInstVV<0b0001, "sha1su1",  int_aarch64_crypto_sha1su1>;
5190def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>;
5191
5192//----------------------------------------------------------------------------
5193// Compiler-pseudos
5194//----------------------------------------------------------------------------
5195// FIXME: Like for X86, these should go in their own separate .td file.
5196
5197// Any instruction that defines a 32-bit result leaves the high half of the
5198// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
5199// be copying from a truncate. But any other 32-bit operation will zero-extend
5200// up to 64 bits.
5201// FIXME: X86 also checks for CMOV here. Do we need something similar?
5202def def32 : PatLeaf<(i32 GPR32:$src), [{
5203  return N->getOpcode() != ISD::TRUNCATE &&
5204         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
5205         N->getOpcode() != ISD::CopyFromReg;
5206}]>;
5207
5208// In the case of a 32-bit def that is known to implicitly zero-extend,
5209// we can use a SUBREG_TO_REG.
5210def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;
5211
5212// For an anyext, we don't care what the high bits are, so we can perform an
5213// INSERT_SUBREF into an IMPLICIT_DEF.
5214def : Pat<(i64 (anyext GPR32:$src)),
5215          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
5216
5217// When we need to explicitly zero-extend, we use a 32-bit MOV instruction and
5218// then assert the extension has happened.
5219def : Pat<(i64 (zext GPR32:$src)),
5220          (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
5221
5222// To sign extend, we use a signed bitfield move instruction (SBFM) on the
5223// containing super-reg.
5224def : Pat<(i64 (sext GPR32:$src)),
5225   (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
5226def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
5227def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
5228def : Pat<(i64 (sext_inreg GPR64:$src, i8)),  (SBFMXri GPR64:$src, 0, 7)>;
5229def : Pat<(i64 (sext_inreg GPR64:$src, i1)),  (SBFMXri GPR64:$src, 0, 0)>;
5230def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
5231def : Pat<(i32 (sext_inreg GPR32:$src, i8)),  (SBFMWri GPR32:$src, 0, 7)>;
5232def : Pat<(i32 (sext_inreg GPR32:$src, i1)),  (SBFMWri GPR32:$src, 0, 0)>;
5233
5234def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
5235          (SBFMWri GPR32:$Rn, (i64 (i32shift_a       imm0_31:$imm)),
5236                              (i64 (i32shift_sext_i8 imm0_31:$imm)))>;
5237def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
5238          (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
5239                              (i64 (i64shift_sext_i8 imm0_63:$imm)))>;
5240
5241def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
5242          (SBFMWri GPR32:$Rn, (i64 (i32shift_a        imm0_31:$imm)),
5243                              (i64 (i32shift_sext_i16 imm0_31:$imm)))>;
5244def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
5245          (SBFMXri GPR64:$Rn, (i64 (i64shift_a        imm0_63:$imm)),
5246                              (i64 (i64shift_sext_i16 imm0_63:$imm)))>;
5247
5248def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
5249          (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
5250                   (i64 (i64shift_a        imm0_63:$imm)),
5251                   (i64 (i64shift_sext_i32 imm0_63:$imm)))>;
5252
5253// sra patterns have an AddedComplexity of 10, so make sure we have a higher
5254// AddedComplexity for the following patterns since we want to match sext + sra
5255// patterns before we attempt to match a single sra node.
5256let AddedComplexity = 20 in {
5257// We support all sext + sra combinations which preserve at least one bit of the
5258// original value which is to be sign extended. E.g. we support shifts up to
5259// bitwidth-1 bits.
5260def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
5261          (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
5262def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
5263          (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
5264
5265def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
5266          (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
5267def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
5268          (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
5269
5270def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
5271          (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
5272                   (i64 imm0_31:$imm), 31)>;
5273} // AddedComplexity = 20
5274
5275// To truncate, we can simply extract from a subregister.
5276def : Pat<(i32 (trunc GPR64sp:$src)),
5277          (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;
5278
5279// __builtin_trap() uses the BRK instruction on AArch64.
5280def : Pat<(trap), (BRK 1)>;
5281
5282// Conversions within AdvSIMD types in the same register size are free.
5283// But because we need a consistent lane ordering, in big endian many
5284// conversions require one or more REV instructions.
5285//
5286// Consider a simple memory load followed by a bitconvert then a store.
5287//   v0 = load v2i32
5288//   v1 = BITCAST v2i32 v0 to v4i16
5289//        store v4i16 v2
5290//
5291// In big endian mode every memory access has an implicit byte swap. LDR and
5292// STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
5293// is, they treat the vector as a sequence of elements to be byte-swapped.
5294// The two pairs of instructions are fundamentally incompatible. We've decided
5295// to use LD1/ST1 only to simplify compiler implementation.
5296//
5297// LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
5298// the original code sequence:
5299//   v0 = load v2i32
5300//   v1 = REV v2i32                  (implicit)
5301//   v2 = BITCAST v2i32 v1 to v4i16
5302//   v3 = REV v4i16 v2               (implicit)
5303//        store v4i16 v3
5304//
5305// But this is now broken - the value stored is different to the value loaded
5306// due to lane reordering. To fix this, on every BITCAST we must perform two
5307// other REVs:
5308//   v0 = load v2i32
5309//   v1 = REV v2i32                  (implicit)
5310//   v2 = REV v2i32
5311//   v3 = BITCAST v2i32 v2 to v4i16
5312//   v4 = REV v4i16
5313//   v5 = REV v4i16 v4               (implicit)
5314//        store v4i16 v5
5315//
5316// This means an extra two instructions, but actually in most cases the two REV
5317// instructions can be combined into one. For example:
5318//   (REV64_2s (REV64_4h X)) === (REV32_4h X)
5319//
5320// There is also no 128-bit REV instruction. This must be synthesized with an
5321// EXT instruction.
5322//
5323// Most bitconverts require some sort of conversion. The only exceptions are:
5324//   a) Identity conversions -  vNfX <-> vNiX
5325//   b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
5326//
5327
5328// Natural vector casts (64 bit)
5329def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
5330def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
5331def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
5332def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>;
5333def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
5334def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
5335
5336def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
5337def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>;
5338def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
5339def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
5340def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
5341
5342def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>;
5343def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
5344def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
5345def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
5346def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
5347
5348def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
5349def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
5350def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
5351def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
5352def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
5353def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
5354def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
5355
5356def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
5357def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
5358def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
5359def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>;
5360def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
5361
5362// Natural vector casts (128 bit)
5363def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
5364def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
5365def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
5366def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>;
5367def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
5368def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
5369def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
5370
5371def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
5372def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>;
5373def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
5374def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
5375def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
5376def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
5377def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
5378
5379def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>;
5380def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
5381def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
5382def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
5383def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
5384def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
5385def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
5386
5387def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
5388def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
5389def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
5390def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
5391def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>;
5392def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
5393def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
5394
5395def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
5396def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
5397def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
5398def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>;
5399def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
5400def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
5401def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
5402
5403def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
5404def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
5405def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
5406def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
5407def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>;
5408def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
5409def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
5410
5411let Predicates = [IsLE] in {
5412def : Pat<(v8i8  (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5413def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5414def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5415def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5416def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5417
5418def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
5419          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5420def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
5421          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5422def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
5423          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5424def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
5425          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5426def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
5427          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5428def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
5429          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5430}
5431let Predicates = [IsBE] in {
5432def : Pat<(v8i8  (bitconvert GPR64:$Xn)),
5433                 (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5434def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
5435                 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5436def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
5437                 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5438def : Pat<(v4f16 (bitconvert GPR64:$Xn)),
5439                 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5440def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
5441                 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5442
5443def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
5444          (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5445def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
5446          (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5447def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
5448          (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5449def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
5450          (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5451def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
5452          (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5453}
5454def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5455def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5456def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
5457          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5458def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
5459          (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5460def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
5461          (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5462def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;
5463
5464def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
5465          (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
5466def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
5467          (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
5468def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
5469          (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5470def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
5471          (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
5472def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
5473          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5474
5475let Predicates = [IsLE] in {
5476def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
5477def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
5478def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))), (v1i64 FPR64:$src)>;
5479def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>;
5480def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
5481}
5482let Predicates = [IsBE] in {
5483def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
5484                             (v1i64 (REV64v2i32 FPR64:$src))>;
5485def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
5486                             (v1i64 (REV64v4i16 FPR64:$src))>;
5487def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))),
5488                             (v1i64 (REV64v8i8 FPR64:$src))>;
5489def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))),
5490                             (v1i64 (REV64v4i16 FPR64:$src))>;
5491def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
5492                             (v1i64 (REV64v2i32 FPR64:$src))>;
5493}
5494def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
5495def : Pat<(v1i64 (bitconvert (f64   FPR64:$src))), (v1i64 FPR64:$src)>;
5496
5497let Predicates = [IsLE] in {
5498def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
5499def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
5500def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))), (v2i32 FPR64:$src)>;
5501def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))), (v2i32 FPR64:$src)>;
5502def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
5503def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>;
5504}
5505let Predicates = [IsBE] in {
5506def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
5507                             (v2i32 (REV64v2i32 FPR64:$src))>;
5508def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
5509                             (v2i32 (REV32v4i16 FPR64:$src))>;
5510def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))),
5511                             (v2i32 (REV32v8i8 FPR64:$src))>;
5512def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))),
5513                             (v2i32 (REV64v2i32 FPR64:$src))>;
5514def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
5515                             (v2i32 (REV64v2i32 FPR64:$src))>;
5516def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))),
5517                             (v2i32 (REV64v4i16 FPR64:$src))>;
5518}
5519def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
5520
5521let Predicates = [IsLE] in {
5522def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
5523def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
5524def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))), (v4i16 FPR64:$src)>;
5525def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))), (v4i16 FPR64:$src)>;
5526def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>;
5527def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
5528def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
5529}
5530let Predicates = [IsBE] in {
5531def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
5532                             (v4i16 (REV64v4i16 FPR64:$src))>;
5533def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
5534                             (v4i16 (REV32v4i16 FPR64:$src))>;
5535def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))),
5536                             (v4i16 (REV16v8i8 FPR64:$src))>;
5537def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))),
5538                             (v4i16 (REV64v4i16 FPR64:$src))>;
5539def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))),
5540                             (v4i16 (REV32v4i16 FPR64:$src))>;
5541def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
5542                             (v4i16 (REV32v4i16 FPR64:$src))>;
5543def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
5544                             (v4i16 (REV64v4i16 FPR64:$src))>;
5545}
5546
5547let Predicates = [IsLE] in {
5548def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>;
5549def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
5550def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
5551def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))), (v4f16 FPR64:$src)>;
5552def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))), (v4f16 FPR64:$src)>;
5553def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>;
5554def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>;
5555}
5556let Predicates = [IsBE] in {
5557def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))),
5558                             (v4f16 (REV64v4i16 FPR64:$src))>;
5559def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))),
5560                             (v4f16 (REV64v4i16 FPR64:$src))>;
5561def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))),
5562                             (v4f16 (REV64v4i16 FPR64:$src))>;
5563def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))),
5564                             (v4f16 (REV16v8i8 FPR64:$src))>;
5565def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))),
5566                             (v4f16 (REV64v4i16 FPR64:$src))>;
5567def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))),
5568                             (v4f16 (REV64v4i16 FPR64:$src))>;
5569def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))),
5570                             (v4f16 (REV64v4i16 FPR64:$src))>;
5571}
5572
5573
5574
5575let Predicates = [IsLE] in {
5576def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))), (v8i8  FPR64:$src)>;
5577def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))), (v8i8  FPR64:$src)>;
5578def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))), (v8i8  FPR64:$src)>;
5579def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))), (v8i8  FPR64:$src)>;
5580def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))), (v8i8  FPR64:$src)>;
5581def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))), (v8i8  FPR64:$src)>;
5582def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))), (v8i8  FPR64:$src)>;
5583}
5584let Predicates = [IsBE] in {
5585def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))),
5586                             (v8i8 (REV64v8i8 FPR64:$src))>;
5587def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))),
5588                             (v8i8 (REV32v8i8 FPR64:$src))>;
5589def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))),
5590                             (v8i8 (REV16v8i8 FPR64:$src))>;
5591def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))),
5592                             (v8i8 (REV64v8i8 FPR64:$src))>;
5593def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))),
5594                             (v8i8 (REV32v8i8 FPR64:$src))>;
5595def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))),
5596                             (v8i8 (REV64v8i8 FPR64:$src))>;
5597def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))),
5598                             (v8i8 (REV16v8i8 FPR64:$src))>;
5599}
5600
5601let Predicates = [IsLE] in {
5602def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))), (f64   FPR64:$src)>;
5603def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))), (f64   FPR64:$src)>;
5604def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))), (f64   FPR64:$src)>;
5605def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))), (f64   FPR64:$src)>;
5606def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))), (f64   FPR64:$src)>;
5607}
5608let Predicates = [IsBE] in {
5609def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))),
5610                             (f64 (REV64v2i32 FPR64:$src))>;
5611def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))),
5612                             (f64 (REV64v4i16 FPR64:$src))>;
5613def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))),
5614                             (f64 (REV64v2i32 FPR64:$src))>;
5615def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))),
5616                             (f64 (REV64v8i8 FPR64:$src))>;
5617def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))),
5618                             (f64 (REV64v4i16 FPR64:$src))>;
5619}
5620def : Pat<(f64   (bitconvert (v1i64 FPR64:$src))), (f64   FPR64:$src)>;
5621def : Pat<(f64   (bitconvert (v1f64 FPR64:$src))), (f64   FPR64:$src)>;
5622
5623let Predicates = [IsLE] in {
5624def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
5625def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
5626def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))), (v1f64 FPR64:$src)>;
5627def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
5628def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>;
5629}
5630let Predicates = [IsBE] in {
5631def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
5632                             (v1f64 (REV64v2i32 FPR64:$src))>;
5633def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
5634                             (v1f64 (REV64v4i16 FPR64:$src))>;
5635def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))),
5636                             (v1f64 (REV64v8i8 FPR64:$src))>;
5637def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
5638                             (v1f64 (REV64v2i32 FPR64:$src))>;
5639def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))),
5640                             (v1f64 (REV64v4i16 FPR64:$src))>;
5641}
5642def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
5643def : Pat<(v1f64 (bitconvert (f64   FPR64:$src))), (v1f64 FPR64:$src)>;
5644
5645let Predicates = [IsLE] in {
5646def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
5647def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
5648def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))), (v2f32 FPR64:$src)>;
5649def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
5650def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))), (v2f32 FPR64:$src)>;
5651def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>;
5652}
5653let Predicates = [IsBE] in {
5654def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
5655                             (v2f32 (REV64v2i32 FPR64:$src))>;
5656def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
5657                             (v2f32 (REV32v4i16 FPR64:$src))>;
5658def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))),
5659                             (v2f32 (REV32v8i8 FPR64:$src))>;
5660def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
5661                             (v2f32 (REV64v2i32 FPR64:$src))>;
5662def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))),
5663                             (v2f32 (REV64v2i32 FPR64:$src))>;
5664def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))),
5665                             (v2f32 (REV64v4i16 FPR64:$src))>;
5666}
5667def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
5668
5669let Predicates = [IsLE] in {
5670def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
5671def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
5672def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
5673def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
5674def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
5675def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>;
5676def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
5677}
5678let Predicates = [IsBE] in {
5679def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
5680                            (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
5681def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
5682                            (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
5683                                            (REV64v4i32 FPR128:$src), (i32 8)))>;
5684def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
5685                            (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
5686                                            (REV64v8i16 FPR128:$src), (i32 8)))>;
5687def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))),
5688                            (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
5689                                            (REV64v8i16 FPR128:$src), (i32 8)))>;
5690def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
5691                            (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
5692def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
5693                            (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
5694                                            (REV64v4i32 FPR128:$src), (i32 8)))>;
5695def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
5696                            (f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
5697                                            (REV64v16i8 FPR128:$src), (i32 8)))>;
5698}
5699
5700let Predicates = [IsLE] in {
5701def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))), (v2f64 FPR128:$src)>;
5702def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
5703def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
5704def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>;
5705def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
5706def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
5707}
5708let Predicates = [IsBE] in {
5709def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))),
5710                             (v2f64 (EXTv16i8 FPR128:$src,
5711                                              FPR128:$src, (i32 8)))>;
5712def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
5713                             (v2f64 (REV64v4i32 FPR128:$src))>;
5714def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
5715                             (v2f64 (REV64v8i16 FPR128:$src))>;
5716def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))),
5717                             (v2f64 (REV64v8i16 FPR128:$src))>;
5718def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
5719                             (v2f64 (REV64v16i8 FPR128:$src))>;
5720def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
5721                             (v2f64 (REV64v4i32 FPR128:$src))>;
5722}
5723def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
5724
5725let Predicates = [IsLE] in {
5726def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))), (v4f32 FPR128:$src)>;
5727def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
5728def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>;
5729def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
5730def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
5731def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
5732}
5733let Predicates = [IsBE] in {
5734def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))),
5735                             (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
5736                                    (REV64v4i32 FPR128:$src), (i32 8)))>;
5737def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
5738                             (v4f32 (REV32v8i16 FPR128:$src))>;
5739def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))),
5740                             (v4f32 (REV32v8i16 FPR128:$src))>;
5741def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
5742                             (v4f32 (REV32v16i8 FPR128:$src))>;
5743def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
5744                             (v4f32 (REV64v4i32 FPR128:$src))>;
5745def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
5746                             (v4f32 (REV64v4i32 FPR128:$src))>;
5747}
5748def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
5749
5750let Predicates = [IsLE] in {
5751def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))), (v2i64 FPR128:$src)>;
5752def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
5753def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
5754def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
5755def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
5756def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>;
5757}
5758let Predicates = [IsBE] in {
5759def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))),
5760                             (v2i64 (EXTv16i8 FPR128:$src,
5761                                              FPR128:$src, (i32 8)))>;
5762def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
5763                             (v2i64 (REV64v4i32 FPR128:$src))>;
5764def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
5765                             (v2i64 (REV64v8i16 FPR128:$src))>;
5766def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
5767                             (v2i64 (REV64v16i8 FPR128:$src))>;
5768def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
5769                             (v2i64 (REV64v4i32 FPR128:$src))>;
5770def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))),
5771                             (v2i64 (REV64v8i16 FPR128:$src))>;
5772}
5773def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
5774
5775let Predicates = [IsLE] in {
5776def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))), (v4i32 FPR128:$src)>;
5777def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
5778def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
5779def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
5780def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
5781def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>;
5782}
5783let Predicates = [IsBE] in {
5784def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))),
5785                             (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
5786                                              (REV64v4i32 FPR128:$src),
5787                                              (i32 8)))>;
5788def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
5789                             (v4i32 (REV64v4i32 FPR128:$src))>;
5790def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
5791                             (v4i32 (REV32v8i16 FPR128:$src))>;
5792def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
5793                             (v4i32 (REV32v16i8 FPR128:$src))>;
5794def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
5795                             (v4i32 (REV64v4i32 FPR128:$src))>;
5796def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))),
5797                             (v4i32 (REV32v8i16 FPR128:$src))>;
5798}
5799def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
5800
5801let Predicates = [IsLE] in {
5802def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))), (v8i16 FPR128:$src)>;
5803def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
5804def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
5805def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
5806def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
5807def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
5808def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>;
5809}
5810let Predicates = [IsBE] in {
5811def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))),
5812                             (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
5813                                              (REV64v8i16 FPR128:$src),
5814                                              (i32 8)))>;
5815def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
5816                             (v8i16 (REV64v8i16 FPR128:$src))>;
5817def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
5818                             (v8i16 (REV32v8i16 FPR128:$src))>;
5819def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
5820                             (v8i16 (REV16v16i8 FPR128:$src))>;
5821def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
5822                             (v8i16 (REV64v8i16 FPR128:$src))>;
5823def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
5824                             (v8i16 (REV32v8i16 FPR128:$src))>;
5825def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))),
5826                             (v8i16 (REV32v8i16 FPR128:$src))>;
5827}
5828
5829let Predicates = [IsLE] in {
5830def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))), (v8f16 FPR128:$src)>;
5831def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
5832def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
5833def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
5834def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
5835def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
5836def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
5837}
5838let Predicates = [IsBE] in {
5839def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))),
5840                             (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src),
5841                                              (REV64v8i16 FPR128:$src),
5842                                              (i32 8)))>;
5843def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))),
5844                             (v8f16 (REV64v8i16 FPR128:$src))>;
5845def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))),
5846                             (v8f16 (REV32v8i16 FPR128:$src))>;
5847def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))),
5848                             (v8f16 (REV64v8i16 FPR128:$src))>;
5849def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))),
5850                             (v8f16 (REV16v16i8 FPR128:$src))>;
5851def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))),
5852                             (v8f16 (REV64v8i16 FPR128:$src))>;
5853def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))),
5854                             (v8f16 (REV32v8i16 FPR128:$src))>;
5855}
5856
5857let Predicates = [IsLE] in {
5858def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))), (v16i8 FPR128:$src)>;
5859def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
5860def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
5861def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
5862def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
5863def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
5864def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>;
5865}
5866let Predicates = [IsBE] in {
5867def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))),
5868                             (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
5869                                              (REV64v16i8 FPR128:$src),
5870                                              (i32 8)))>;
5871def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
5872                             (v16i8 (REV64v16i8 FPR128:$src))>;
5873def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
5874                             (v16i8 (REV32v16i8 FPR128:$src))>;
5875def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
5876                             (v16i8 (REV16v16i8 FPR128:$src))>;
5877def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
5878                             (v16i8 (REV64v16i8 FPR128:$src))>;
5879def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
5880                             (v16i8 (REV32v16i8 FPR128:$src))>;
5881def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))),
5882                             (v16i8 (REV16v16i8 FPR128:$src))>;
5883}
5884
5885def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))),
5886           (EXTRACT_SUBREG V128:$Rn, dsub)>;
5887def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))),
5888           (EXTRACT_SUBREG V128:$Rn, dsub)>;
5889def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))),
5890           (EXTRACT_SUBREG V128:$Rn, dsub)>;
5891def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))),
5892           (EXTRACT_SUBREG V128:$Rn, dsub)>;
5893def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))),
5894           (EXTRACT_SUBREG V128:$Rn, dsub)>;
5895def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))),
5896           (EXTRACT_SUBREG V128:$Rn, dsub)>;
5897def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))),
5898           (EXTRACT_SUBREG V128:$Rn, dsub)>;
5899
5900def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
5901          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
5902def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
5903          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
5904def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
5905          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
5906def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
5907          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
5908
5909// A 64-bit subvector insert to the first 128-bit vector position
5910// is a subregister copy that needs no instruction.
5911def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (i32 0)),
5912          (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
5913def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (i32 0)),
5914          (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
5915def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (i32 0)),
5916          (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
5917def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (i32 0)),
5918          (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
5919def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (i32 0)),
5920          (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
5921def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (i32 0)),
5922          (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
5923def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (i32 0)),
5924          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
5925
5926// Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
5927// or v2f32.
5928def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
5929                    (vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
5930           (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
5931def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
5932                     (vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
5933           (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
5934    // vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
5935    // so we match on v4f32 here, not v2f32. This will also catch adding
5936    // the low two lanes of a true v4f32 vector.
5937def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
5938                (vector_extract (v4f32 FPR128:$Rn), (i64 1))),
5939          (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
5940
5941// Scalar 64-bit shifts in FPR64 registers.
5942def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
5943          (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
5944def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
5945          (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
5946def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
5947          (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
5948def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
5949          (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
5950
5951// Patterns for nontemporal/no-allocate stores.
5952// We have to resort to tricks to turn a single-input store into a store pair,
5953// because there is no single-input nontemporal store, only STNP.
5954let Predicates = [IsLE] in {
5955let AddedComplexity = 15 in {
5956class NTStore128Pat<ValueType VT> :
5957  Pat<(nontemporalstore (VT FPR128:$Rt),
5958        (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
5959      (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub),
5960              (CPYi64 FPR128:$Rt, (i64 1)),
5961              GPR64sp:$Rn, simm7s8:$offset)>;
5962
5963def : NTStore128Pat<v2i64>;
5964def : NTStore128Pat<v4i32>;
5965def : NTStore128Pat<v8i16>;
5966def : NTStore128Pat<v16i8>;
5967
5968class NTStore64Pat<ValueType VT> :
5969  Pat<(nontemporalstore (VT FPR64:$Rt),
5970        (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
5971      (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub),
5972              (CPYi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)),
5973              GPR64sp:$Rn, simm7s4:$offset)>;
5974
5975// FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64?
5976def : NTStore64Pat<v1f64>;
5977def : NTStore64Pat<v1i64>;
5978def : NTStore64Pat<v2i32>;
5979def : NTStore64Pat<v4i16>;
5980def : NTStore64Pat<v8i8>;
5981
5982def : Pat<(nontemporalstore GPR64:$Rt,
5983            (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
5984          (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32),
5985                  (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 0, 31), sub_32),
5986                  GPR64sp:$Rn, simm7s4:$offset)>;
5987} // AddedComplexity=10
5988} // Predicates = [IsLE]
5989
5990// Tail call return handling. These are all compiler pseudo-instructions,
5991// so no encoding information or anything like that.
5992let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
5993  def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff),[]>;
5994  def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>;
5995}
5996
5997def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)),
5998          (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>;
5999def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)),
6000          (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
6001def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
6002          (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
6003
6004include "AArch64InstrAtomics.td"
6005