Lines Matching refs:is_classifier
280 is_classifier = r_type == CV_VAR_CATEGORICAL; in set_data()
301 work_var_count = var_count + (is_classifier ? 1 : 0) // for responses class_labels in set_data()
336 size = is_classifier ? (cat_var_count+1) : cat_var_count; in set_data()
341 …size = is_classifier ? (cat_var_count + 1)*params.max_categories : cat_var_count*params.max_catego… in set_data()
384 if (is_buf_16u && (cat_var_count || is_classifier)) in set_data()
421 (vi == var_count && is_classifier) ) // process categorical variable or response in set_data()
645 have_priors = is_classifier && params.priors; in set_data()
646 if( is_classifier ) in set_data()
1000 if( is_classifier ) in get_vectors()
1162 have_labels = have_priors = is_classifier = false; in clear()
1175 return is_classifier ? cat_count->data.i[cat_var_count] : 0; in get_num_classes()
1229 if (is_classifier) in get_class_labels()
1298 cvWriteInt( fs, "is_classifier", is_classifier ? 1 : 0 ); in write_params()
1307 if( is_classifier ) in write_params()
1341 if( cat_count && (cat_var_count > 0 || is_classifier) ) in write_params()
1362 is_classifier = (cvReadIntByName( fs, node, "is_classifier" ) != 0); in read_params()
1374 if( is_classifier ) in read_params()
1450 if( cat_var_count > 0 || is_classifier ) in read_params()
1459 cat_count->cols + cat_count->rows - 1 != cat_var_count + is_classifier || in read_params()
1465 ccount = cat_var_count + is_classifier; in read_params()
1694 if( can_split && data->is_classifier ) in try_split_node()
1929 if( data->is_classifier ) in operator ()()
2758 … int base_size = data->is_classifier ? m*cv_n*sizeof(int) : 2*cv_n*sizeof(double)+cv_n*sizeof(int); in calc_node_value()
2759 … int ext_size = n*(sizeof(int) + (data->is_classifier ? sizeof(int) : sizeof(int)+sizeof(float))); in calc_node_value()
2767 if( data->is_classifier ) in calc_node_value()
3328 bool is_classifier = var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL; in calc_error() local
3338 if ( is_classifier ) in calc_error()
3391 bool use_1se = data->params.use_1se_rule != 0 && data->is_classifier; in prune_cv()
3832 if( data->is_classifier ) in write_node()
4035 if( data->is_classifier ) in read_node()