/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <openssl/rand.h> #include <assert.h> #include <limits.h> #include <string.h> #include <openssl/chacha.h> #include <openssl/cpu.h> #include <openssl/mem.h> #include "internal.h" #include "../internal.h" /* It's assumed that the operating system always has an unfailing source of * entropy which is accessed via |CRYPTO_sysrand|. (If the operating system * entropy source fails, it's up to |CRYPTO_sysrand| to abort the process—we * don't try to handle it.) * * In addition, the hardware may provide a low-latency RNG. Intel's rdrand * instruction is the canonical example of this. When a hardware RNG is * available we don't need to worry about an RNG failure arising from fork()ing * the process or moving a VM, so we can keep thread-local RNG state and XOR * the hardware entropy in. * * (We assume that the OS entropy is safe from fork()ing and VM duplication. * This might be a bit of a leap of faith, esp on Windows, but there's nothing * that we can do about it.) */ /* rand_thread_state contains the per-thread state for the RNG. This is only * used if the system has support for a hardware RNG. */ struct rand_thread_state { uint8_t key[32]; uint64_t calls_used; size_t bytes_used; uint8_t partial_block[64]; unsigned partial_block_used; }; /* kMaxCallsPerRefresh is the maximum number of |RAND_bytes| calls that we'll * serve before reading a new key from the operating system. This only applies * if we have a hardware RNG. */ static const unsigned kMaxCallsPerRefresh = 1024; /* kMaxBytesPerRefresh is the maximum number of bytes that we'll return from * |RAND_bytes| before reading a new key from the operating system. This only * applies if we have a hardware RNG. */ static const uint64_t kMaxBytesPerRefresh = 1024 * 1024; /* rand_thread_state_free frees a |rand_thread_state|. This is called when a * thread exits. */ static void rand_thread_state_free(void *state) { if (state == NULL) { return; } OPENSSL_cleanse(state, sizeof(struct rand_thread_state)); OPENSSL_free(state); } #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) /* These functions are defined in asm/rdrand-x86_64.pl */ extern int CRYPTO_rdrand(uint8_t out[8]); extern int CRYPTO_rdrand_multiple8_buf(uint8_t *buf, size_t len); static int have_rdrand(void) { return (OPENSSL_ia32cap_P[1] & (1u << 30)) != 0; } static int hwrand(uint8_t *buf, size_t len) { if (!have_rdrand()) { return 0; } const size_t len_multiple8 = len & ~7; if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) { return 0; } len -= len_multiple8; if (len != 0) { assert(len < 8); uint8_t rand_buf[8]; if (!CRYPTO_rdrand(rand_buf)) { return 0; } memcpy(buf + len_multiple8, rand_buf, len); } return 1; } #else static int hwrand(uint8_t *buf, size_t len) { return 0; } #endif int RAND_bytes(uint8_t *buf, size_t len) { if (len == 0) { return 1; } if (!hwrand(buf, len)) { /* Without a hardware RNG to save us from address-space duplication, the OS * entropy is used directly. */ CRYPTO_sysrand(buf, len); return 1; } struct rand_thread_state *state = CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND); if (state == NULL) { state = OPENSSL_malloc(sizeof(struct rand_thread_state)); if (state == NULL || !CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state, rand_thread_state_free)) { CRYPTO_sysrand(buf, len); return 1; } memset(state->partial_block, 0, sizeof(state->partial_block)); state->calls_used = kMaxCallsPerRefresh; } if (state->calls_used >= kMaxCallsPerRefresh || state->bytes_used >= kMaxBytesPerRefresh) { CRYPTO_sysrand(state->key, sizeof(state->key)); state->calls_used = 0; state->bytes_used = 0; state->partial_block_used = sizeof(state->partial_block); } if (len >= sizeof(state->partial_block)) { size_t remaining = len; while (remaining > 0) { /* kMaxBytesPerCall is only 2GB, while ChaCha can handle 256GB. But this * is sufficient and easier on 32-bit. */ static const size_t kMaxBytesPerCall = 0x80000000; size_t todo = remaining; if (todo > kMaxBytesPerCall) { todo = kMaxBytesPerCall; } uint8_t nonce[12]; memset(nonce, 0, 4); memcpy(nonce + 4, &state->calls_used, sizeof(state->calls_used)); CRYPTO_chacha_20(buf, buf, todo, state->key, nonce, 0); buf += todo; remaining -= todo; state->calls_used++; } } else { if (sizeof(state->partial_block) - state->partial_block_used < len) { uint8_t nonce[12]; memset(nonce, 0, 4); memcpy(nonce + 4, &state->calls_used, sizeof(state->calls_used)); CRYPTO_chacha_20(state->partial_block, state->partial_block, sizeof(state->partial_block), state->key, nonce, 0); state->partial_block_used = 0; } unsigned i; for (i = 0; i < len; i++) { buf[i] ^= state->partial_block[state->partial_block_used++]; } state->calls_used++; } state->bytes_used += len; return 1; } int RAND_pseudo_bytes(uint8_t *buf, size_t len) { return RAND_bytes(buf, len); } void RAND_seed(const void *buf, int num) { /* OpenSSH calls |RAND_seed| before jailing on the assumption that any needed * file descriptors etc will be opened. */ uint8_t unused; RAND_bytes(&unused, sizeof(unused)); } int RAND_load_file(const char *path, long num) { if (num < 0) { /* read the "whole file" */ return 1; } else if (num <= INT_MAX) { return (int) num; } else { return INT_MAX; } } void RAND_add(const void *buf, int num, double entropy) {} int RAND_egd(const char *path) { return 255; } int RAND_poll(void) { return 1; } int RAND_status(void) { return 1; } static const struct rand_meth_st kSSLeayMethod = { RAND_seed, RAND_bytes, RAND_cleanup, RAND_add, RAND_pseudo_bytes, RAND_status, }; RAND_METHOD *RAND_SSLeay(void) { return (RAND_METHOD*) &kSSLeayMethod; } void RAND_set_rand_method(const RAND_METHOD *method) {}