/****************************************************************************** * * Copyright (C) 2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /****************************************************************************** * * HAL Adaptation Interface (HAI). This interface regulates the interaction * between standard Android HAL and Broadcom-specific HAL. It adapts * Broadcom-specific features to the Android framework. * ******************************************************************************/ #define LOG_TAG "NfcNciHal" #include "OverrideLog.h" #include "HalAdaptation.h" #include "SyncEvent.h" #include "config.h" #include "nfc_hal_int.h" #include "nfc_hal_post_reset.h" #include #include #include #include "buildcfg.h" #include "android_logmsg.h" extern void delete_hal_non_volatile_store (bool forceDelete); extern void verify_hal_non_volatile_store (); extern void resetConfig (); extern "C" { #include "userial.h" } extern void configureCrystalFrequency (); /////////////////////////////////////// // private declaration, definition static nfc_stack_callback_t* gAndroidHalCallback = NULL; static nfc_stack_data_callback_t* gAndroidHalDataCallback = NULL; static SyncEvent gOpenCompletedEvent; static SyncEvent gPostInitCompletedEvent; static SyncEvent gCloseCompletedEvent; UINT32 ScrProtocolTraceFlag = SCR_PROTO_TRACE_ALL; //0x017F00; static void BroadcomHalCallback (UINT8 event, tHAL_NFC_STATUS status); static void BroadcomHalDataCallback (UINT16 data_len, UINT8* p_data); static bool isColdBoot = true; extern tNFC_HAL_CFG *p_nfc_hal_cfg; extern const UINT8 nfca_version_string []; extern const UINT8 nfa_version_string []; tNFC_HAL_DM_PRE_SET_MEM nfc_hal_pre_set_mem_20795a1 [] = { {0x0016403c, 0x00000008}, {0x0016403c, 0x00000000}, {0x0014008c, 0x00000001}, {0, 0} }; extern tNFC_HAL_DM_PRE_SET_MEM *p_nfc_hal_dm_pre_set_mem; /////////////////////////////////////// int HaiInitializeLibrary (const bcm2079x_dev_t* device) { ALOGD ("%s: enter", __FUNCTION__); ALOGE ("%s: ver=%s nfa=%s", __FUNCTION__, nfca_version_string, nfa_version_string); int retval = EACCES; unsigned long freq = 0; unsigned long num = 0; char temp[120]; int8_t prop_value; UINT8 logLevel = 0; logLevel = InitializeGlobalAppLogLevel (); if ( GetNumValue ( NAME_GLOBAL_RESET, &num, sizeof ( num ) ) ) { if (num == 1) { // Send commands to disable boc p_nfc_hal_dm_pre_set_mem = nfc_hal_pre_set_mem_20795a1; } } configureCrystalFrequency (); verify_hal_non_volatile_store (); if ( GetNumValue ( NAME_PRESERVE_STORAGE, (char*)&num, sizeof ( num ) ) && (num == 1) ) ALOGD ("%s: preserve HAL NV store", __FUNCTION__); else { delete_hal_non_volatile_store (false); } if ( GetNumValue ( NAME_USE_RAW_NCI_TRACE, &num, sizeof ( num ) ) ) { if (num == 1) { // display protocol traces in raw format ProtoDispAdapterUseRawOutput (TRUE); } } // Initialize protocol logging level InitializeProtocolLogLevel (); tUSERIAL_OPEN_CFG cfg; struct tUART_CONFIG uart; if ( GetStrValue ( NAME_UART_PARITY, temp, sizeof ( temp ) ) ) { if ( strcmp ( temp, "even" ) == 0 ) uart.m_iParity = USERIAL_PARITY_EVEN; else if ( strcmp ( temp, "odd" ) == 0 ) uart.m_iParity = USERIAL_PARITY_ODD; else if ( strcmp ( temp, "none" ) == 0 ) uart.m_iParity = USERIAL_PARITY_NONE; } else uart.m_iParity = USERIAL_PARITY_NONE; if ( GetStrValue ( NAME_UART_STOPBITS, temp, sizeof ( temp ) ) ) { if ( strcmp ( temp, "1" ) == 0 ) uart.m_iStopbits = USERIAL_STOPBITS_1; else if ( strcmp ( temp, "2" ) == 0 ) uart.m_iStopbits = USERIAL_STOPBITS_2; else if ( strcmp ( temp, "1.5" ) == 0 ) uart.m_iStopbits = USERIAL_STOPBITS_1_5; } else if ( GetNumValue ( NAME_UART_STOPBITS, &num, sizeof ( num ) ) ) { if ( num == 1 ) uart.m_iStopbits = USERIAL_STOPBITS_1; else if ( num == 2 ) uart.m_iStopbits = USERIAL_STOPBITS_2; } else uart.m_iStopbits = USERIAL_STOPBITS_1; if ( GetNumValue ( NAME_UART_DATABITS, &num, sizeof ( num ) ) ) { if ( 5 <= num && num <= 8 ) uart.m_iDatabits = ( 1 << ( num + 1 ) ); } else uart.m_iDatabits = USERIAL_DATABITS_8; if ( GetNumValue ( NAME_UART_BAUD, &num, sizeof ( num ) ) ) { if ( num == 300 ) uart.m_iBaudrate = USERIAL_BAUD_300; else if ( num == 600 ) uart.m_iBaudrate = USERIAL_BAUD_600; else if ( num == 1200 ) uart.m_iBaudrate = USERIAL_BAUD_1200; else if ( num == 2400 ) uart.m_iBaudrate = USERIAL_BAUD_2400; else if ( num == 9600 ) uart.m_iBaudrate = USERIAL_BAUD_9600; else if ( num == 19200 ) uart.m_iBaudrate = USERIAL_BAUD_19200; else if ( num == 57600 ) uart.m_iBaudrate = USERIAL_BAUD_57600; else if ( num == 115200 ) uart.m_iBaudrate = USERIAL_BAUD_115200; else if ( num == 230400 ) uart.m_iBaudrate = USERIAL_BAUD_230400; else if ( num == 460800 ) uart.m_iBaudrate = USERIAL_BAUD_460800; else if ( num == 921600 ) uart.m_iBaudrate = USERIAL_BAUD_921600; } else if ( GetStrValue ( NAME_UART_BAUD, temp, sizeof ( temp ) ) ) { if ( strcmp ( temp, "auto" ) == 0 ) uart.m_iBaudrate = USERIAL_BAUD_AUTO; } else uart.m_iBaudrate = USERIAL_BAUD_115200; memset (&cfg, 0, sizeof(tUSERIAL_OPEN_CFG)); cfg.fmt = uart.m_iDatabits | uart.m_iParity | uart.m_iStopbits; cfg.baud = uart.m_iBaudrate; ALOGD ("%s: uart config=0x%04x, %d\n", __func__, cfg.fmt, cfg.baud); USERIAL_Init(&cfg); if ( GetNumValue ( NAME_NFCC_ENABLE_TIMEOUT, &num, sizeof ( num ) ) ) { p_nfc_hal_cfg->nfc_hal_nfcc_enable_timeout = num; } if ( GetNumValue ( NAME_NFA_MAX_EE_SUPPORTED, &num, sizeof ( num ) ) && num == 0 ) { // Since NFA_MAX_EE_SUPPORTED is explicetly set to 0, no UICC support is needed. p_nfc_hal_cfg->nfc_hal_hci_uicc_support = 0; } prop_value = property_get_bool("nfc.bcm2079x.isColdboot", 0); if (prop_value) { isColdBoot = true; property_set("nfc.bcm2079x.isColdboot", "0"); } // Set 'first boot' flag based on static variable that will get set to false // after the stack has first initialized the EE. p_nfc_hal_cfg->nfc_hal_first_boot = isColdBoot ? TRUE : FALSE; HAL_NfcInitialize (); HAL_NfcSetTraceLevel (logLevel); // Initialize HAL's logging level retval = 0; ALOGD ("%s: exit %d", __FUNCTION__, retval); return retval; } int HaiTerminateLibrary () { int retval = EACCES; ALOGD ("%s: enter", __FUNCTION__); HAL_NfcTerminate (); gAndroidHalCallback = NULL; gAndroidHalDataCallback = NULL; GKI_shutdown (); resetConfig (); retval = 0; ALOGD ("%s: exit %d", __FUNCTION__, retval); return retval; } int HaiOpen (const bcm2079x_dev_t* device, nfc_stack_callback_t* halCallbackFunc, nfc_stack_data_callback_t* halDataCallbackFunc) { ALOGD ("%s: enter", __FUNCTION__); int retval = EACCES; gAndroidHalCallback = halCallbackFunc; gAndroidHalDataCallback = halDataCallbackFunc; SyncEventGuard guard (gOpenCompletedEvent); HAL_NfcOpen (BroadcomHalCallback, BroadcomHalDataCallback); gOpenCompletedEvent.wait (); retval = 0; ALOGD ("%s: exit %d", __FUNCTION__, retval); return retval; } void BroadcomHalCallback (UINT8 event, tHAL_NFC_STATUS status) { ALOGD ("%s: enter; event=0x%X", __FUNCTION__, event); switch (event) { case HAL_NFC_OPEN_CPLT_EVT: { ALOGD ("%s: HAL_NFC_OPEN_CPLT_EVT; status=0x%X", __FUNCTION__, status); SyncEventGuard guard (gOpenCompletedEvent); gOpenCompletedEvent.notifyOne (); break; } case HAL_NFC_POST_INIT_CPLT_EVT: { ALOGD ("%s: HAL_NFC_POST_INIT_CPLT_EVT", __FUNCTION__); SyncEventGuard guard (gPostInitCompletedEvent); gPostInitCompletedEvent.notifyOne (); break; } case HAL_NFC_CLOSE_CPLT_EVT: { ALOGD ("%s: HAL_NFC_CLOSE_CPLT_EVT", __FUNCTION__); SyncEventGuard guard (gCloseCompletedEvent); gCloseCompletedEvent.notifyOne (); break; } case HAL_NFC_ERROR_EVT: { ALOGD ("%s: HAL_NFC_ERROR_EVT", __FUNCTION__); { SyncEventGuard guard (gOpenCompletedEvent); gOpenCompletedEvent.notifyOne (); } { SyncEventGuard guard (gPostInitCompletedEvent); gPostInitCompletedEvent.notifyOne (); } { SyncEventGuard guard (gCloseCompletedEvent); gCloseCompletedEvent.notifyOne (); } break; } } gAndroidHalCallback (event, status); ALOGD ("%s: exit; event=0x%X", __FUNCTION__, event); } void BroadcomHalDataCallback (UINT16 data_len, UINT8* p_data) { ALOGD ("%s: enter; len=%u", __FUNCTION__, data_len); gAndroidHalDataCallback (data_len, p_data); } int HaiClose (const bcm2079x_dev_t* device) { ALOGD ("%s: enter", __FUNCTION__); int retval = EACCES; SyncEventGuard guard (gCloseCompletedEvent); HAL_NfcClose (); gCloseCompletedEvent.wait (); retval = 0; ALOGD ("%s: exit %d", __FUNCTION__, retval); return retval; } int HaiCoreInitialized (const bcm2079x_dev_t* device, uint8_t* coreInitResponseParams) { ALOGD ("%s: enter", __FUNCTION__); int retval = EACCES; SyncEventGuard guard (gPostInitCompletedEvent); HAL_NfcCoreInitialized (coreInitResponseParams); gPostInitCompletedEvent.wait (); retval = 0; ALOGD ("%s: exit %d", __FUNCTION__, retval); return retval; } int HaiWrite (const bcm2079x_dev_t* dev, uint16_t dataLen, const uint8_t* data) { ALOGD ("%s: enter; len=%u", __FUNCTION__, dataLen); int retval = EACCES; HAL_NfcWrite (dataLen, const_cast (data)); retval = 0; ALOGD ("%s: exit %d", __FUNCTION__, retval); return retval; } int HaiPreDiscover (const bcm2079x_dev_t* device) { ALOGD ("%s: enter", __FUNCTION__); int retval = EACCES; // This function is a clear indication that the stack is initializing // EE. So we can reset the cold-boot flag here. isColdBoot = false; retval = HAL_NfcPreDiscover () ? 1 : 0; ALOGD ("%s: exit %d", __FUNCTION__, retval); return retval; } int HaiControlGranted (const bcm2079x_dev_t* device) { ALOGD ("%s: enter", __FUNCTION__); int retval = EACCES; HAL_NfcControlGranted (); retval = 0; ALOGD ("%s: exit %d", __FUNCTION__, retval); return retval; } int HaiPowerCycle (const bcm2079x_dev_t* device) { ALOGD ("%s: enter", __FUNCTION__); int retval = EACCES; HAL_NfcPowerCycle (); retval = 0; ALOGD ("%s: exit %d", __FUNCTION__, retval); return retval; } int HaiGetMaxNfcee (const bcm2079x_dev_t* device, uint8_t* maxNfcee) { ALOGD ("%s: enter", __FUNCTION__); int retval = EACCES; // This function is a clear indication that the stack is initializing // EE. So we can reset the cold-boot flag here. isColdBoot = false; if ( maxNfcee ) { *maxNfcee = HAL_NfcGetMaxNfcee (); ALOGD("%s: max_ee from HAL to use %d", __FUNCTION__, *maxNfcee); retval = 0; } ALOGD ("%s: exit %d", __FUNCTION__, retval); return retval; }