//===-- llvm/Bitcode/ReaderWriter.h - Bitcode reader/writers ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header defines interfaces to read and write LLVM bitcode files/streams. // //===----------------------------------------------------------------------===// #ifndef LLVM_BITCODE_READERWRITER_H #define LLVM_BITCODE_READERWRITER_H #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/FunctionInfo.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/MemoryBuffer.h" #include #include namespace llvm { class BitstreamWriter; class DataStreamer; class LLVMContext; class Module; class ModulePass; class raw_ostream; /// Read the header of the specified bitcode buffer and prepare for lazy /// deserialization of function bodies. If ShouldLazyLoadMetadata is true, /// lazily load metadata as well. If successful, this moves Buffer. On /// error, this *does not* move Buffer. ErrorOr> getLazyBitcodeModule(std::unique_ptr &&Buffer, LLVMContext &Context, bool ShouldLazyLoadMetadata = false); /// Read the header of the specified stream and prepare for lazy /// deserialization and streaming of function bodies. ErrorOr> getStreamedBitcodeModule(StringRef Name, std::unique_ptr Streamer, LLVMContext &Context); /// Read the header of the specified bitcode buffer and extract just the /// triple information. If successful, this returns a string. On error, this /// returns "". std::string getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context); /// Read the header of the specified bitcode buffer and extract just the /// producer string information. If successful, this returns a string. On /// error, this returns "". std::string getBitcodeProducerString(MemoryBufferRef Buffer, LLVMContext &Context); /// Read the specified bitcode file, returning the module. ErrorOr> parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context); /// Check if the given bitcode buffer contains a function summary block. bool hasFunctionSummary(MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler); /// Parse the specified bitcode buffer, returning the function info index. /// If IsLazy is true, parse the entire function summary into /// the index. Otherwise skip the function summary section, and only create /// an index object with a map from function name to function summary offset. /// The index is used to perform lazy function summary reading later. ErrorOr> getFunctionInfoIndex(MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false); /// This method supports lazy reading of function summary data from the /// combined index during function importing. When reading the combined index /// file, getFunctionInfoIndex is first invoked with IsLazy=true. /// Then this method is called for each function considered for importing, /// to parse the summary information for the given function name into /// the index. std::error_code readFunctionSummary( MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, StringRef FunctionName, std::unique_ptr Index); /// \brief Write the specified module to the specified raw output stream. /// /// For streams where it matters, the given stream should be in "binary" /// mode. /// /// If \c ShouldPreserveUseListOrder, encode the use-list order for each \a /// Value in \c M. These will be reconstructed exactly when \a M is /// deserialized. /// /// If \c EmitFunctionSummary, emit the function summary index (currently /// for use in ThinLTO optimization). void WriteBitcodeToFile(const Module *M, raw_ostream &Out, bool ShouldPreserveUseListOrder = false, bool EmitFunctionSummary = false); /// Write the specified function summary index to the given raw output stream, /// where it will be written in a new bitcode block. This is used when /// writing the combined index file for ThinLTO. void WriteFunctionSummaryToFile(const FunctionInfoIndex &Index, raw_ostream &Out); /// isBitcodeWrapper - Return true if the given bytes are the magic bytes /// for an LLVM IR bitcode wrapper. /// inline bool isBitcodeWrapper(const unsigned char *BufPtr, const unsigned char *BufEnd) { // See if you can find the hidden message in the magic bytes :-). // (Hint: it's a little-endian encoding.) return BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 && BufPtr[2] == 0x17 && BufPtr[3] == 0x0B; } /// isRawBitcode - Return true if the given bytes are the magic bytes for /// raw LLVM IR bitcode (without a wrapper). /// inline bool isRawBitcode(const unsigned char *BufPtr, const unsigned char *BufEnd) { // These bytes sort of have a hidden message, but it's not in // little-endian this time, and it's a little redundant. return BufPtr != BufEnd && BufPtr[0] == 'B' && BufPtr[1] == 'C' && BufPtr[2] == 0xc0 && BufPtr[3] == 0xde; } /// isBitcode - Return true if the given bytes are the magic bytes for /// LLVM IR bitcode, either with or without a wrapper. /// inline bool isBitcode(const unsigned char *BufPtr, const unsigned char *BufEnd) { return isBitcodeWrapper(BufPtr, BufEnd) || isRawBitcode(BufPtr, BufEnd); } /// SkipBitcodeWrapperHeader - Some systems wrap bc files with a special /// header for padding or other reasons. The format of this header is: /// /// struct bc_header { /// uint32_t Magic; // 0x0B17C0DE /// uint32_t Version; // Version, currently always 0. /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. /// uint32_t BitcodeSize; // Size of traditional bitcode file. /// ... potentially other gunk ... /// }; /// /// This function is called when we find a file with a matching magic number. /// In this case, skip down to the subsection of the file that is actually a /// BC file. /// If 'VerifyBufferSize' is true, check that the buffer is large enough to /// contain the whole bitcode file. inline bool SkipBitcodeWrapperHeader(const unsigned char *&BufPtr, const unsigned char *&BufEnd, bool VerifyBufferSize) { enum { KnownHeaderSize = 4*4, // Size of header we read. OffsetField = 2*4, // Offset in bytes to Offset field. SizeField = 3*4 // Offset in bytes to Size field. }; // Must contain the header! if (BufEnd-BufPtr < KnownHeaderSize) return true; unsigned Offset = support::endian::read32le(&BufPtr[OffsetField]); unsigned Size = support::endian::read32le(&BufPtr[SizeField]); // Verify that Offset+Size fits in the file. if (VerifyBufferSize && Offset+Size > unsigned(BufEnd-BufPtr)) return true; BufPtr += Offset; BufEnd = BufPtr+Size; return false; } const std::error_category &BitcodeErrorCategory(); enum class BitcodeError { InvalidBitcodeSignature = 1, CorruptedBitcode }; inline std::error_code make_error_code(BitcodeError E) { return std::error_code(static_cast(E), BitcodeErrorCategory()); } class BitcodeDiagnosticInfo : public DiagnosticInfo { const Twine &Msg; std::error_code EC; public: BitcodeDiagnosticInfo(std::error_code EC, DiagnosticSeverity Severity, const Twine &Msg); void print(DiagnosticPrinter &DP) const override; std::error_code getError() const { return EC; } static bool classof(const DiagnosticInfo *DI) { return DI->getKind() == DK_Bitcode; } }; } // End llvm namespace namespace std { template <> struct is_error_code_enum : std::true_type {}; } #endif