#!/usr/bin/env python from __future__ import print_function import hdr_parser, sys, re, os from string import Template if sys.version_info[0] >= 3: from io import StringIO else: from cStringIO import StringIO ignored_arg_types = ["RNG*"] gen_template_check_self = Template(""" if(!PyObject_TypeCheck(self, &pyopencv_${name}_Type)) return failmsgp("Incorrect type of self (must be '${name}' or its derivative)"); $cname* _self_ = ${amp}((pyopencv_${name}_t*)self)->v${get}; """) gen_template_check_self_algo = Template(""" if(!PyObject_TypeCheck(self, &pyopencv_${name}_Type)) return failmsgp("Incorrect type of self (must be '${name}' or its derivative)"); $cname* _self_ = dynamic_cast<$cname*>(${amp}((pyopencv_${name}_t*)self)->v.get()); """) gen_template_call_constructor_prelude = Template("""self = PyObject_NEW(pyopencv_${name}_t, &pyopencv_${name}_Type); new (&(self->v)) Ptr<$cname>(); // init Ptr with placement new if(self) """) gen_template_call_constructor = Template("""self->v.reset(new ${cname}${args})""") gen_template_simple_call_constructor_prelude = Template("""self = PyObject_NEW(pyopencv_${name}_t, &pyopencv_${name}_Type); if(self) """) gen_template_simple_call_constructor = Template("""self->v = ${cname}${args}""") gen_template_parse_args = Template("""const char* keywords[] = { $kw_list, NULL }; if( PyArg_ParseTupleAndKeywords(args, kw, "$fmtspec", (char**)keywords, $parse_arglist)$code_cvt )""") gen_template_func_body = Template("""$code_decl $code_parse { ${code_prelude}ERRWRAP2($code_fcall); $code_ret; } """) py_major_version = sys.version_info[0] if py_major_version >= 3: head_init_str = "PyVarObject_HEAD_INIT(&PyType_Type, 0)" else: head_init_str = """PyObject_HEAD_INIT(&PyType_Type) 0,""" gen_template_simple_type_decl = Template(""" struct pyopencv_${name}_t { PyObject_HEAD ${cname} v; }; static PyTypeObject pyopencv_${name}_Type = { %s MODULESTR".$wname", sizeof(pyopencv_${name}_t), }; static void pyopencv_${name}_dealloc(PyObject* self) { PyObject_Del(self); } template<> PyObject* pyopencv_from(const ${cname}& r) { pyopencv_${name}_t *m = PyObject_NEW(pyopencv_${name}_t, &pyopencv_${name}_Type); m->v = r; return (PyObject*)m; } template<> bool pyopencv_to(PyObject* src, ${cname}& dst, const char* name) { if( src == NULL || src == Py_None ) return true; if(!PyObject_TypeCheck(src, &pyopencv_${name}_Type)) { failmsg("Expected ${cname} for argument '%%s'", name); return false; } dst = ((pyopencv_${name}_t*)src)->v; return true; } """ % head_init_str) gen_template_type_decl = Template(""" struct pyopencv_${name}_t { PyObject_HEAD Ptr<${cname1}> v; }; static PyTypeObject pyopencv_${name}_Type = { %s MODULESTR".$wname", sizeof(pyopencv_${name}_t), }; static void pyopencv_${name}_dealloc(PyObject* self) { ((pyopencv_${name}_t*)self)->v.release(); PyObject_Del(self); } template<> PyObject* pyopencv_from(const Ptr<${cname}>& r) { pyopencv_${name}_t *m = PyObject_NEW(pyopencv_${name}_t, &pyopencv_${name}_Type); new (&(m->v)) Ptr<$cname1>(); // init Ptr with placement new m->v = r; return (PyObject*)m; } template<> bool pyopencv_to(PyObject* src, Ptr<${cname}>& dst, const char* name) { if( src == NULL || src == Py_None ) return true; if(!PyObject_TypeCheck(src, &pyopencv_${name}_Type)) { failmsg("Expected ${cname} for argument '%%s'", name); return false; } dst = ((pyopencv_${name}_t*)src)->v.dynamicCast<${cname}>(); return true; } """ % head_init_str) gen_template_map_type_cvt = Template(""" template<> bool pyopencv_to(PyObject* src, ${cname}& dst, const char* name); """) gen_template_set_prop_from_map = Template(""" if( PyMapping_HasKeyString(src, (char*)"$propname") ) { tmp = PyMapping_GetItemString(src, (char*)"$propname"); ok = tmp && pyopencv_to(tmp, dst.$propname); Py_DECREF(tmp); if(!ok) return false; }""") gen_template_type_impl = Template(""" static PyObject* pyopencv_${name}_repr(PyObject* self) { char str[1000]; sprintf(str, "<$wname %p>", self); return PyString_FromString(str); } ${getset_code} static PyGetSetDef pyopencv_${name}_getseters[] = {${getset_inits} {NULL} /* Sentinel */ }; ${methods_code} static PyMethodDef pyopencv_${name}_methods[] = { ${methods_inits} {NULL, NULL} }; static void pyopencv_${name}_specials(void) { pyopencv_${name}_Type.tp_base = ${baseptr}; pyopencv_${name}_Type.tp_dealloc = pyopencv_${name}_dealloc; pyopencv_${name}_Type.tp_repr = pyopencv_${name}_repr; pyopencv_${name}_Type.tp_getset = pyopencv_${name}_getseters; pyopencv_${name}_Type.tp_methods = pyopencv_${name}_methods;${extra_specials} } """) gen_template_get_prop = Template(""" static PyObject* pyopencv_${name}_get_${member}(pyopencv_${name}_t* p, void *closure) { return pyopencv_from(p->v${access}${member}); } """) gen_template_get_prop_algo = Template(""" static PyObject* pyopencv_${name}_get_${member}(pyopencv_${name}_t* p, void *closure) { return pyopencv_from(dynamic_cast<$cname*>(p->v.get())${access}${member}); } """) gen_template_set_prop = Template(""" static int pyopencv_${name}_set_${member}(pyopencv_${name}_t* p, PyObject *value, void *closure) { if (value == NULL) { PyErr_SetString(PyExc_TypeError, "Cannot delete the ${member} attribute"); return -1; } return pyopencv_to(value, p->v${access}${member}) ? 0 : -1; } """) gen_template_set_prop_algo = Template(""" static int pyopencv_${name}_set_${member}(pyopencv_${name}_t* p, PyObject *value, void *closure) { if (value == NULL) { PyErr_SetString(PyExc_TypeError, "Cannot delete the ${member} attribute"); return -1; } return pyopencv_to(value, dynamic_cast<$cname*>(p->v.get())${access}${member}) ? 0 : -1; } """) gen_template_prop_init = Template(""" {(char*)"${member}", (getter)pyopencv_${name}_get_${member}, NULL, (char*)"${member}", NULL},""") gen_template_rw_prop_init = Template(""" {(char*)"${member}", (getter)pyopencv_${name}_get_${member}, (setter)pyopencv_${name}_set_${member}, (char*)"${member}", NULL},""") simple_argtype_mapping = { "bool": ("bool", "b", "0"), "int": ("int", "i", "0"), "float": ("float", "f", "0.f"), "double": ("double", "d", "0"), "c_string": ("char*", "s", '(char*)""') } def normalize_class_name(name): return re.sub(r"^cv\.", "", name).replace(".", "_") class ClassProp(object): def __init__(self, decl): self.tp = decl[0].replace("*", "_ptr") self.name = decl[1] self.readonly = True if "/RW" in decl[3]: self.readonly = False class ClassInfo(object): def __init__(self, name, decl=None): self.cname = name.replace(".", "::") self.name = self.wname = normalize_class_name(name) self.ismap = False self.issimple = False self.isalgorithm = False self.methods = {} self.props = [] self.consts = {} self.base = None customname = False if decl: bases = decl[1].split()[1:] if len(bases) > 1: print("Note: Class %s has more than 1 base class (not supported by Python C extensions)" % (self.name,)) print(" Bases: ", " ".join(bases)) print(" Only the first base class will be used") #return sys.exit(-1) elif len(bases) == 1: self.base = bases[0].strip(",") if self.base.startswith("cv::"): self.base = self.base[4:] if self.base == "Algorithm": self.isalgorithm = True self.base = self.base.replace("::", "_") for m in decl[2]: if m.startswith("="): self.wname = m[1:] customname = True elif m == "/Map": self.ismap = True elif m == "/Simple": self.issimple = True self.props = [ClassProp(p) for p in decl[3]] if not customname and self.wname.startswith("Cv"): self.wname = self.wname[2:] def gen_map_code(self, all_classes): code = "static bool pyopencv_to(PyObject* src, %s& dst, const char* name)\n{\n PyObject* tmp;\n bool ok;\n" % (self.cname) code += "".join([gen_template_set_prop_from_map.substitute(propname=p.name,proptype=p.tp) for p in self.props]) if self.base: code += "\n return pyopencv_to(src, (%s&)dst, name);\n}\n" % all_classes[self.base].cname else: code += "\n return true;\n}\n" return code def gen_code(self, all_classes): if self.ismap: return self.gen_map_code(all_classes) getset_code = StringIO() getset_inits = StringIO() sorted_props = [(p.name, p) for p in self.props] sorted_props.sort() access_op = "->" if self.issimple: access_op = "." for pname, p in sorted_props: if self.isalgorithm: getset_code.write(gen_template_get_prop_algo.substitute(name=self.name, cname=self.cname, member=pname, membertype=p.tp, access=access_op)) else: getset_code.write(gen_template_get_prop.substitute(name=self.name, member=pname, membertype=p.tp, access=access_op)) if p.readonly: getset_inits.write(gen_template_prop_init.substitute(name=self.name, member=pname)) else: if self.isalgorithm: getset_code.write(gen_template_set_prop_algo.substitute(name=self.name, cname=self.cname, member=pname, membertype=p.tp, access=access_op)) else: getset_code.write(gen_template_set_prop.substitute(name=self.name, member=pname, membertype=p.tp, access=access_op)) getset_inits.write(gen_template_rw_prop_init.substitute(name=self.name, member=pname)) methods_code = StringIO() methods_inits = StringIO() sorted_methods = list(self.methods.items()) sorted_methods.sort() for mname, m in sorted_methods: methods_code.write(m.gen_code(all_classes)) methods_inits.write(m.get_tab_entry()) baseptr = "NULL" if self.base and self.base in all_classes: baseptr = "&pyopencv_" + all_classes[self.base].name + "_Type" code = gen_template_type_impl.substitute(name=self.name, wname=self.wname, cname=self.cname, getset_code=getset_code.getvalue(), getset_inits=getset_inits.getvalue(), methods_code=methods_code.getvalue(), methods_inits=methods_inits.getvalue(), baseptr=baseptr, extra_specials="") return code def handle_ptr(tp): if tp.startswith('Ptr_'): tp = 'Ptr<' + "::".join(tp.split('_')[1:]) + '>' return tp class ArgInfo(object): def __init__(self, arg_tuple): self.tp = handle_ptr(arg_tuple[0]) self.name = arg_tuple[1] self.defval = arg_tuple[2] self.isarray = False self.arraylen = 0 self.arraycvt = None self.inputarg = True self.outputarg = False self.returnarg = False for m in arg_tuple[3]: if m == "/O": self.inputarg = False self.outputarg = True self.returnarg = True elif m == "/IO": self.inputarg = True self.outputarg = True self.returnarg = True elif m.startswith("/A"): self.isarray = True self.arraylen = m[2:].strip() elif m.startswith("/CA"): self.isarray = True self.arraycvt = m[2:].strip() self.py_inputarg = False self.py_outputarg = False def isbig(self): return self.tp == "Mat" or self.tp == "vector_Mat"# or self.tp.startswith("vector") def crepr(self): return "ArgInfo(\"%s\", %d)" % (self.name, self.outputarg) class FuncVariant(object): def __init__(self, classname, name, decl, isconstructor): self.classname = classname self.name = self.wname = name self.isconstructor = isconstructor self.rettype = decl[4] if len(decl) >=5 else handle_ptr(decl[1]) if self.rettype == "void": self.rettype = "" self.args = [] self.array_counters = {} for a in decl[3]: ainfo = ArgInfo(a) if ainfo.isarray and not ainfo.arraycvt: c = ainfo.arraylen c_arrlist = self.array_counters.get(c, []) if c_arrlist: c_arrlist.append(ainfo.name) else: self.array_counters[c] = [ainfo.name] self.args.append(ainfo) self.init_pyproto() def init_pyproto(self): # string representation of argument list, with '[', ']' symbols denoting optional arguments, e.g. # "src1, src2[, dst[, mask]]" for cv.add argstr = "" # list of all input arguments of the Python function, with the argument numbers: # [("src1", 0), ("src2", 1), ("dst", 2), ("mask", 3)] # we keep an argument number to find the respective argument quickly, because # some of the arguments of C function may not present in the Python function (such as array counters) # or even go in a different order ("heavy" output parameters of the C function # become the first optional input parameters of the Python function, and thus they are placed right after # non-optional input parameters) arglist = [] # the list of "heavy" output parameters. Heavy parameters are the parameters # that can be expensive to allocate each time, such as vectors and matrices (see isbig). outarr_list = [] # the list of output parameters. Also includes input/output parameters. outlist = [] firstoptarg = 1000000 argno = -1 for a in self.args: argno += 1 if a.name in self.array_counters: continue if a.tp in ignored_arg_types: continue if a.returnarg: outlist.append((a.name, argno)) if (not a.inputarg) and a.isbig(): outarr_list.append((a.name, argno)) continue if not a.inputarg: continue if not a.defval: arglist.append((a.name, argno)) else: firstoptarg = min(firstoptarg, len(arglist)) # if there are some array output parameters before the first default parameter, they # are added as optional parameters before the first optional parameter if outarr_list: arglist += outarr_list outarr_list = [] arglist.append((a.name, argno)) if outarr_list: firstoptarg = min(firstoptarg, len(arglist)) arglist += outarr_list firstoptarg = min(firstoptarg, len(arglist)) noptargs = len(arglist) - firstoptarg argnamelist = [aname for aname, argno in arglist] argstr = ", ".join(argnamelist[:firstoptarg]) argstr = "[, ".join([argstr] + argnamelist[firstoptarg:]) argstr += "]" * noptargs if self.rettype: outlist = [("retval", -1)] + outlist elif self.isconstructor: assert outlist == [] outlist = [("self", -1)] if self.isconstructor: classname = self.classname if classname.startswith("Cv"): classname=classname[2:] outstr = "<%s object>" % (classname,) elif outlist: outstr = ", ".join([o[0] for o in outlist]) else: outstr = "None" self.py_docstring = "%s(%s) -> %s" % (self.wname, argstr, outstr) self.py_noptargs = noptargs self.py_arglist = arglist for aname, argno in arglist: self.args[argno].py_inputarg = True for aname, argno in outlist: if argno >= 0: self.args[argno].py_outputarg = True self.py_outlist = outlist class FuncInfo(object): def __init__(self, classname, name, cname, isconstructor, namespace): self.classname = classname self.name = name self.cname = cname self.isconstructor = isconstructor self.namespace = namespace self.variants = [] def add_variant(self, decl): self.variants.append(FuncVariant(self.classname, self.name, decl, self.isconstructor)) def get_wrapper_name(self): name = self.name if self.classname: classname = self.classname + "_" if "[" in name: name = "getelem" else: classname = "" return "pyopencv_" + self.namespace.replace('.','_') + '_' + classname + name def get_wrapper_prototype(self): full_fname = self.get_wrapper_name() if self.classname and not self.isconstructor: self_arg = "self" else: self_arg = "" return "static PyObject* %s(PyObject* %s, PyObject* args, PyObject* kw)" % (full_fname, self_arg) def get_tab_entry(self): docstring_list = [] have_empty_constructor = False for v in self.variants: s = v.py_docstring if (not v.py_arglist) and self.isconstructor: have_empty_constructor = True if s not in docstring_list: docstring_list.append(s) # if there are just 2 constructors: default one and some other, # we simplify the notation. # Instead of ClassName(args ...) -> object or ClassName() -> object # we write ClassName([args ...]) -> object if have_empty_constructor and len(self.variants) == 2: idx = self.variants[1].py_arglist != [] s = self.variants[idx].py_docstring p1 = s.find("(") p2 = s.rfind(")") docstring_list = [s[:p1+1] + "[" + s[p1+1:p2] + "]" + s[p2:]] return Template(' {"$py_funcname", (PyCFunction)$wrap_funcname, METH_VARARGS | METH_KEYWORDS, "$py_docstring"},\n' ).substitute(py_funcname = self.variants[0].wname, wrap_funcname=self.get_wrapper_name(), py_docstring = " or ".join(docstring_list)) def gen_code(self, all_classes): proto = self.get_wrapper_prototype() code = "%s\n{\n" % (proto,) code += " using namespace %s;\n\n" % self.namespace.replace('.', '::') selfinfo = ClassInfo("") ismethod = self.classname != "" and not self.isconstructor # full name is needed for error diagnostic in PyArg_ParseTupleAndKeywords fullname = self.name if self.classname: selfinfo = all_classes[self.classname] if not self.isconstructor: amp = "&" if selfinfo.issimple else "" if selfinfo.isalgorithm: code += gen_template_check_self_algo.substitute(name=selfinfo.name, cname=selfinfo.cname, amp=amp) else: get = "" if selfinfo.issimple else ".get()" code += gen_template_check_self.substitute(name=selfinfo.name, cname=selfinfo.cname, amp=amp, get=get) fullname = selfinfo.wname + "." + fullname all_code_variants = [] declno = -1 for v in self.variants: code_decl = "" code_ret = "" code_cvt_list = [] code_args = "(" all_cargs = [] parse_arglist = [] # declare all the C function arguments, # add necessary conversions from Python objects to code_cvt_list, # form the function/method call, # for the list of type mappings for a in v.args: if a.tp in ignored_arg_types: defval = a.defval if not defval and a.tp.endswith("*"): defval = 0 assert defval if not code_args.endswith("("): code_args += ", " code_args += defval all_cargs.append([[None, ""], ""]) continue tp1 = tp = a.tp amp = "" defval0 = "" if tp.endswith("*"): tp = tp1 = tp[:-1] amp = "&" if tp.endswith("*"): defval0 = "0" tp1 = tp.replace("*", "_ptr") if tp1.endswith("*"): print("Error: type with star: a.tp=%s, tp=%s, tp1=%s" % (a.tp, tp, tp1)) sys.exit(-1) amapping = simple_argtype_mapping.get(tp, (tp, "O", defval0)) parse_name = a.name if a.py_inputarg: if amapping[1] == "O": code_decl += " PyObject* pyobj_%s = NULL;\n" % (a.name,) parse_name = "pyobj_" + a.name if a.tp == 'char': code_cvt_list.append("convert_to_char(pyobj_%s, &%s, %s)"% (a.name, a.name, a.crepr())) else: code_cvt_list.append("pyopencv_to(pyobj_%s, %s, %s)" % (a.name, a.name, a.crepr())) all_cargs.append([amapping, parse_name]) defval = a.defval if not defval: defval = amapping[2] # "tp arg = tp();" is equivalent to "tp arg;" in the case of complex types if defval == tp + "()" and amapping[1] == "O": defval = "" if a.outputarg and not a.inputarg: defval = "" if defval: code_decl += " %s %s=%s;\n" % (amapping[0], a.name, defval) else: code_decl += " %s %s;\n" % (amapping[0], a.name) if not code_args.endswith("("): code_args += ", " code_args += amp + a.name code_args += ")" if self.isconstructor: code_decl += " pyopencv_%s_t* self = 0;\n" % selfinfo.name if selfinfo.issimple: templ_prelude = gen_template_simple_call_constructor_prelude templ = gen_template_simple_call_constructor else: templ_prelude = gen_template_call_constructor_prelude templ = gen_template_call_constructor code_prelude = templ_prelude.substitute(name=selfinfo.name, cname=selfinfo.cname) code_fcall = templ.substitute(name=selfinfo.name, cname=selfinfo.cname, args=code_args) else: code_prelude = "" code_fcall = "" if v.rettype: code_decl += " " + v.rettype + " retval;\n" code_fcall += "retval = " if ismethod: code_fcall += "_self_->" + self.cname else: code_fcall += self.cname code_fcall += code_args if code_cvt_list: code_cvt_list = [""] + code_cvt_list # add info about return value, if any, to all_cargs. if there non-void return value, # it is encoded in v.py_outlist as ("retval", -1) pair. # As [-1] in Python accesses the last element of a list, we automatically handle the return value by # adding the necessary info to the end of all_cargs list. if v.rettype: tp = v.rettype tp1 = tp.replace("*", "_ptr") amapping = simple_argtype_mapping.get(tp, (tp, "O", "0")) all_cargs.append(amapping) if v.args and v.py_arglist: # form the format spec for PyArg_ParseTupleAndKeywords fmtspec = "".join([all_cargs[argno][0][1] for aname, argno in v.py_arglist]) if v.py_noptargs > 0: fmtspec = fmtspec[:-v.py_noptargs] + "|" + fmtspec[-v.py_noptargs:] fmtspec += ":" + fullname # form the argument parse code that: # - declares the list of keyword parameters # - calls PyArg_ParseTupleAndKeywords # - converts complex arguments from PyObject's to native OpenCV types code_parse = gen_template_parse_args.substitute( kw_list = ", ".join(['"' + aname + '"' for aname, argno in v.py_arglist]), fmtspec = fmtspec, parse_arglist = ", ".join(["&" + all_cargs[argno][1] for aname, argno in v.py_arglist]), code_cvt = " &&\n ".join(code_cvt_list)) else: code_parse = "if(PyObject_Size(args) == 0 && (kw == NULL || PyObject_Size(kw) == 0))" if len(v.py_outlist) == 0: code_ret = "Py_RETURN_NONE" elif len(v.py_outlist) == 1: if self.isconstructor: code_ret = "return (PyObject*)self" else: aname, argno = v.py_outlist[0] code_ret = "return pyopencv_from(%s)" % (aname,) else: # ther is more than 1 return parameter; form the tuple out of them fmtspec = "N"*len(v.py_outlist) backcvt_arg_list = [] for aname, argno in v.py_outlist: amapping = all_cargs[argno][0] backcvt_arg_list.append("%s(%s)" % (amapping[2], aname)) code_ret = "return Py_BuildValue(\"(%s)\", %s)" % \ (fmtspec, ", ".join(["pyopencv_from(" + aname + ")" for aname, argno in v.py_outlist])) all_code_variants.append(gen_template_func_body.substitute(code_decl=code_decl, code_parse=code_parse, code_prelude=code_prelude, code_fcall=code_fcall, code_ret=code_ret)) if len(all_code_variants)==1: # if the function/method has only 1 signature, then just put it code += all_code_variants[0] else: # try to execute each signature code += " PyErr_Clear();\n\n".join([" {\n" + v + " }\n" for v in all_code_variants]) code += "\n return NULL;\n}\n\n" return code class Namespace(object): def __init__(self): self.funcs = {} self.consts = {} class PythonWrapperGenerator(object): def __init__(self): self.clear() def clear(self): self.classes = {} self.namespaces = {} self.consts = {} self.code_include = StringIO() self.code_types = StringIO() self.code_funcs = StringIO() self.code_type_reg = StringIO() self.code_ns_reg = StringIO() self.class_idx = 0 def add_class(self, stype, name, decl): classinfo = ClassInfo(name, decl) classinfo.decl_idx = self.class_idx self.class_idx += 1 if classinfo.name in self.classes: print("Generator error: class %s (cname=%s) already exists" \ % (classinfo.name, classinfo.cname)) sys.exit(-1) self.classes[classinfo.name] = classinfo if classinfo.base: chunks = classinfo.base.split('_') base = '_'.join(chunks) while base not in self.classes and len(chunks)>1: del chunks[-2] base = '_'.join(chunks) if base not in self.classes: print("Generator error: unable to resolve base %s for %s" % (classinfo.base, classinfo.name)) sys.exit(-1) classinfo.base = base classinfo.isalgorithm |= self.classes[base].isalgorithm def split_decl_name(self, name): chunks = name.split('.') namespace = chunks[:-1] classes = [] while namespace and '.'.join(namespace) not in self.parser.namespaces: classes.insert(0, namespace.pop()) return namespace, classes, chunks[-1] def add_const(self, name, decl): cname = name.replace('.','::') namespace, classes, name = self.split_decl_name(name) namespace = '.'.join(namespace) name = '_'.join(classes+[name]) ns = self.namespaces.setdefault(namespace, Namespace()) if name in ns.consts: print("Generator error: constant %s (cname=%s) already exists" \ % (name, cname)) sys.exit(-1) ns.consts[name] = cname def add_func(self, decl): namespace, classes, barename = self.split_decl_name(decl[0]) cname = "::".join(namespace+classes+[barename]) name = barename classname = '' bareclassname = '' if classes: classname = normalize_class_name('.'.join(namespace+classes)) bareclassname = classes[-1] namespace = '.'.join(namespace) isconstructor = name == bareclassname isclassmethod = False for m in decl[2]: if m == "/S": isclassmethod = True elif m.startswith("="): name = m[1:] if isclassmethod: name = "_".join(classes+[name]) classname = '' elif isconstructor: name = "_".join(classes[:-1]+[name]) if classname and not isconstructor: cname = barename func_map = self.classes[classname].methods else: func_map = self.namespaces.setdefault(namespace, Namespace()).funcs func = func_map.setdefault(name, FuncInfo(classname, name, cname, isconstructor, namespace)) func.add_variant(decl) def gen_namespace(self, ns_name): ns = self.namespaces[ns_name] wname = normalize_class_name(ns_name) self.code_ns_reg.write('static PyMethodDef methods_%s[] = {\n'%wname) for name, func in sorted(ns.funcs.items()): self.code_ns_reg.write(func.get_tab_entry()) self.code_ns_reg.write(' {NULL, NULL}\n};\n\n') self.code_ns_reg.write('static ConstDef consts_%s[] = {\n'%wname) for name, cname in sorted(ns.consts.items()): self.code_ns_reg.write(' {"%s", %s},\n'%(name, cname)) compat_name = re.sub(r"([a-z])([A-Z])", r"\1_\2", name).upper() if name != compat_name: self.code_ns_reg.write(' {"%s", %s},\n'%(compat_name, cname)) self.code_ns_reg.write(' {NULL, 0}\n};\n\n') def gen_namespaces_reg(self): self.code_ns_reg.write('static void init_submodules(PyObject * root) \n{\n') for ns_name in sorted(self.namespaces): if ns_name.split('.')[0] == 'cv': wname = normalize_class_name(ns_name) self.code_ns_reg.write(' init_submodule(root, MODULESTR"%s", methods_%s, consts_%s);\n' % (ns_name[2:], wname, wname)) self.code_ns_reg.write('};\n') def save(self, path, name, buf): f = open(path + "/" + name, "wt") f.write(buf.getvalue()) f.close() def gen(self, srcfiles, output_path): self.clear() self.parser = hdr_parser.CppHeaderParser() # step 1: scan the headers and build more descriptive maps of classes, consts, functions for hdr in srcfiles: decls = self.parser.parse(hdr) if len(decls) == 0: continue self.code_include.write( '#include "{0}"\n'.format(hdr[hdr.rindex('opencv2/'):]) ) for decl in decls: name = decl[0] if name.startswith("struct") or name.startswith("class"): # class/struct p = name.find(" ") stype = name[:p] name = name[p+1:].strip() self.add_class(stype, name, decl) elif name.startswith("const"): # constant self.add_const(name.replace("const ", "").strip(), decl) else: # function self.add_func(decl) # step 2: generate code for the classes and their methods classlist = list(self.classes.items()) classlist.sort() for name, classinfo in classlist: if classinfo.ismap: self.code_types.write(gen_template_map_type_cvt.substitute(name=name, cname=classinfo.cname)) else: if classinfo.issimple: templ = gen_template_simple_type_decl else: templ = gen_template_type_decl self.code_types.write(templ.substitute(name=name, wname=classinfo.wname, cname=classinfo.cname, cname1=("cv::Algorithm" if classinfo.isalgorithm else classinfo.cname))) # register classes in the same order as they have been declared. # this way, base classes will be registered in Python before their derivatives. classlist1 = [(classinfo.decl_idx, name, classinfo) for name, classinfo in classlist] classlist1.sort() for decl_idx, name, classinfo in classlist1: code = classinfo.gen_code(self.classes) self.code_types.write(code) if not classinfo.ismap: self.code_type_reg.write("MKTYPE2(%s);\n" % (classinfo.name,) ) # step 3: generate the code for all the global functions for ns_name, ns in sorted(self.namespaces.items()): if ns_name.split('.')[0] != 'cv': continue for name, func in sorted(ns.funcs.items()): code = func.gen_code(self.classes) self.code_funcs.write(code) self.gen_namespace(ns_name) self.gen_namespaces_reg() # step 4: generate the code for constants constlist = list(self.consts.items()) constlist.sort() for name, constinfo in constlist: self.gen_const_reg(constinfo) # That's it. Now save all the files self.save(output_path, "pyopencv_generated_include.h", self.code_include) self.save(output_path, "pyopencv_generated_funcs.h", self.code_funcs) self.save(output_path, "pyopencv_generated_types.h", self.code_types) self.save(output_path, "pyopencv_generated_type_reg.h", self.code_type_reg) self.save(output_path, "pyopencv_generated_ns_reg.h", self.code_ns_reg) if __name__ == "__main__": srcfiles = hdr_parser.opencv_hdr_list dstdir = "/Users/vp/tmp" if len(sys.argv) > 1: dstdir = sys.argv[1] if len(sys.argv) > 2: srcfiles = open(sys.argv[2], 'r').read().split(';') generator = PythonWrapperGenerator() generator.gen(srcfiles, dstdir)