/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/core/core_c.h" namespace cvtest { static const int default_test_case_count = 500; static const int default_max_log_array_size = 9; ArrayTest::ArrayTest() { test_case_count = default_test_case_count; iplimage_allowed = true; cvmat_allowed = true; optional_mask = false; min_log_array_size = 0; max_log_array_size = default_max_log_array_size; element_wise_relative_error = true; test_array.resize(MAX_ARR); } ArrayTest::~ArrayTest() { clear(); } void ArrayTest::clear() { for( size_t i = 0; i < test_array.size(); i++ ) { for( size_t j = 0; j < test_array[i].size(); j++ ) cvRelease( &test_array[i][j] ); } BaseTest::clear(); } int ArrayTest::read_params( CvFileStorage* fs ) { int code = BaseTest::read_params( fs ); if( code < 0 ) return code; min_log_array_size = cvReadInt( find_param( fs, "min_log_array_size" ), min_log_array_size ); max_log_array_size = cvReadInt( find_param( fs, "max_log_array_size" ), max_log_array_size ); test_case_count = cvReadInt( find_param( fs, "test_case_count" ), test_case_count ); test_case_count = cvRound( test_case_count*ts->get_test_case_count_scale() ); min_log_array_size = clipInt( min_log_array_size, 0, 20 ); max_log_array_size = clipInt( max_log_array_size, min_log_array_size, 20 ); test_case_count = clipInt( test_case_count, 0, 100000 ); return code; } void ArrayTest::get_test_array_types_and_sizes( int /*test_case_idx*/, vector >& sizes, vector >& types ) { RNG& rng = ts->get_rng(); Size size; double val; size_t i, j; val = randReal(rng) * (max_log_array_size - min_log_array_size) + min_log_array_size; size.width = cvRound( exp(val*CV_LOG2) ); val = randReal(rng) * (max_log_array_size - min_log_array_size) + min_log_array_size; size.height = cvRound( exp(val*CV_LOG2) ); for( i = 0; i < test_array.size(); i++ ) { size_t sizei = test_array[i].size(); for( j = 0; j < sizei; j++ ) { sizes[i][j] = size; types[i][j] = CV_8UC1; } } } static const unsigned int icvTsTypeToDepth[] = { IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U, IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F, IPL_DEPTH_64F }; int ArrayTest::prepare_test_case( int test_case_idx ) { int code = 1; size_t max_arr = test_array.size(); vector > sizes(max_arr); vector > whole_sizes(max_arr); vector > types(max_arr); size_t i, j; RNG& rng = ts->get_rng(); bool is_image = false; for( i = 0; i < max_arr; i++ ) { size_t sizei = std::max(test_array[i].size(), (size_t)1); sizes[i].resize(sizei); types[i].resize(sizei); whole_sizes[i].resize(sizei); } get_test_array_types_and_sizes( test_case_idx, sizes, types ); for( i = 0; i < max_arr; i++ ) { size_t sizei = test_array[i].size(); for( j = 0; j < sizei; j++ ) { unsigned t = randInt(rng); bool create_mask = true, use_roi = false; CvSize size = sizes[i][j], whole_size = size; CvRect roi; is_image = !cvmat_allowed ? true : iplimage_allowed ? (t & 1) != 0 : false; create_mask = (t & 6) == 0; // ~ each of 3 tests will use mask use_roi = (t & 8) != 0; if( use_roi ) { whole_size.width += randInt(rng) % 10; whole_size.height += randInt(rng) % 10; } cvRelease( &test_array[i][j] ); if( size.width > 0 && size.height > 0 && types[i][j] >= 0 && (i != MASK || create_mask) ) { if( use_roi ) { roi.width = size.width; roi.height = size.height; if( whole_size.width > size.width ) roi.x = randInt(rng) % (whole_size.width - size.width); if( whole_size.height > size.height ) roi.y = randInt(rng) % (whole_size.height - size.height); } if( is_image ) { test_array[i][j] = cvCreateImage( whole_size, icvTsTypeToDepth[CV_MAT_DEPTH(types[i][j])], CV_MAT_CN(types[i][j]) ); if( use_roi ) cvSetImageROI( (IplImage*)test_array[i][j], roi ); } else { test_array[i][j] = cvCreateMat( whole_size.height, whole_size.width, types[i][j] ); if( use_roi ) { CvMat submat, *mat = (CvMat*)test_array[i][j]; cvGetSubRect( test_array[i][j], &submat, roi ); submat.refcount = mat->refcount; *mat = submat; } } } } } test_mat.resize(test_array.size()); for( i = 0; i < max_arr; i++ ) { size_t sizei = test_array[i].size(); test_mat[i].resize(sizei); for( j = 0; j < sizei; j++ ) { CvArr* arr = test_array[i][j]; test_mat[i][j] = cv::cvarrToMat(arr); if( !test_mat[i][j].empty() ) fill_array( test_case_idx, (int)i, (int)j, test_mat[i][j] ); } } return code; } void ArrayTest::get_minmax_bounds( int i, int /*j*/, int type, Scalar& low, Scalar& high ) { double l, u; int depth = CV_MAT_DEPTH(type); if( i == MASK ) { l = -2; u = 2; } else if( depth < CV_32S ) { l = getMinVal(type); u = getMaxVal(type); } else { u = depth == CV_32S ? 1000000 : 1000.; l = -u; } low = Scalar::all(l); high = Scalar::all(u); } void ArrayTest::fill_array( int /*test_case_idx*/, int i, int j, Mat& arr ) { if( i == REF_INPUT_OUTPUT ) cvtest::copy( test_mat[INPUT_OUTPUT][j], arr, Mat() ); else if( i == INPUT || i == INPUT_OUTPUT || i == MASK ) { Scalar low, high; get_minmax_bounds( i, j, arr.type(), low, high ); randUni( ts->get_rng(), arr, low, high ); } } double ArrayTest::get_success_error_level( int /*test_case_idx*/, int i, int j ) { int elem_depth = CV_MAT_DEPTH(cvGetElemType(test_array[i][j])); assert( i == OUTPUT || i == INPUT_OUTPUT ); return elem_depth < CV_32F ? 0 : elem_depth == CV_32F ? FLT_EPSILON*100: DBL_EPSILON*5000; } void ArrayTest::prepare_to_validation( int /*test_case_idx*/ ) { assert(0); } int ArrayTest::validate_test_results( int test_case_idx ) { static const char* arr_names[] = { "input", "input/output", "output", "ref input/output", "ref output", "temporary", "mask" }; size_t i, j; prepare_to_validation( test_case_idx ); for( i = 0; i < 2; i++ ) { int i0 = i == 0 ? OUTPUT : INPUT_OUTPUT; int i1 = i == 0 ? REF_OUTPUT : REF_INPUT_OUTPUT; size_t sizei = test_array[i0].size(); assert( sizei == test_array[i1].size() ); for( j = 0; j < sizei; j++ ) { double err_level; int code; if( !test_array[i1][j] ) continue; err_level = get_success_error_level( test_case_idx, i0, (int)j ); code = cmpEps2(ts, test_mat[i0][j], test_mat[i1][j], err_level, element_wise_relative_error, arr_names[i0]); if (code == 0) continue; for( i0 = 0; i0 < (int)test_array.size(); i0++ ) { size_t sizei0 = test_array[i0].size(); if( i0 == REF_INPUT_OUTPUT || i0 == OUTPUT || i0 == TEMP ) continue; for( i1 = 0; i1 < (int)sizei0; i1++ ) { const Mat& arr = test_mat[i0][i1]; if( !arr.empty() ) { string sizestr = vec2str(", ", &arr.size[0], arr.dims); ts->printf( TS::LOG, "%s array %d type=%sC%d, size=(%s)\n", arr_names[i0], i1, getTypeName(arr.depth()), arr.channels(), sizestr.c_str() ); } } } ts->set_failed_test_info( code ); return code; } } return 0; } } /* End of file. */