/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Sen Liu, swjtuls1987@126.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #define tx (int)get_local_id(0) #define ty get_local_id(1) #define bx get_group_id(0) #define bdx (int)get_local_size(0) #define BORDER_SIZE 5 #define MAX_KSIZE_HALF 100 #ifndef polyN #define polyN 5 #endif #if USE_DOUBLE #ifdef cl_amd_fp64 #pragma OPENCL EXTENSION cl_amd_fp64:enable #elif defined (cl_khr_fp64) #pragma OPENCL EXTENSION cl_khr_fp64:enable #endif #define TYPE double #define VECTYPE double4 #else #define TYPE float #define VECTYPE float4 #endif __kernel void polynomialExpansion(__global __const float * src, int srcStep, __global float * dst, int dstStep, const int rows, const int cols, __global __const float * c_g, __global __const float * c_xg, __global __const float * c_xxg, __local float * smem, const VECTYPE ig) { const int y = get_global_id(1); const int x = bx * (bdx - 2*polyN) + tx - polyN; int xWarped; __local float *row = smem + tx; if (y < rows && y >= 0) { xWarped = min(max(x, 0), cols - 1); row[0] = src[mad24(y, srcStep, xWarped)] * c_g[0]; row[bdx] = 0.f; row[2*bdx] = 0.f; #pragma unroll for (int k = 1; k <= polyN; ++k) { float t0 = src[mad24(max(y - k, 0), srcStep, xWarped)]; float t1 = src[mad24(min(y + k, rows - 1), srcStep, xWarped)]; row[0] += c_g[k] * (t0 + t1); row[bdx] += c_xg[k] * (t1 - t0); row[2*bdx] += c_xxg[k] * (t0 + t1); } } barrier(CLK_LOCAL_MEM_FENCE); if (y < rows && y >= 0 && tx >= polyN && tx + polyN < bdx && x < cols) { TYPE b1 = c_g[0] * row[0]; TYPE b3 = c_g[0] * row[bdx]; TYPE b5 = c_g[0] * row[2*bdx]; TYPE b2 = 0, b4 = 0, b6 = 0; #pragma unroll for (int k = 1; k <= polyN; ++k) { b1 += (row[k] + row[-k]) * c_g[k]; b4 += (row[k] + row[-k]) * c_xxg[k]; b2 += (row[k] - row[-k]) * c_xg[k]; b3 += (row[k + bdx] + row[-k + bdx]) * c_g[k]; b6 += (row[k + bdx] - row[-k + bdx]) * c_xg[k]; b5 += (row[k + 2*bdx] + row[-k + 2*bdx]) * c_g[k]; } dst[mad24(y, dstStep, xWarped)] = (float)(b3*ig.s0); dst[mad24(rows + y, dstStep, xWarped)] = (float)(b2*ig.s0); dst[mad24(2*rows + y, dstStep, xWarped)] = (float)(b1*ig.s1 + b5*ig.s2); dst[mad24(3*rows + y, dstStep, xWarped)] = (float)(b1*ig.s1 + b4*ig.s2); dst[mad24(4*rows + y, dstStep, xWarped)] = (float)(b6*ig.s3); } } inline int idx_row_low(const int y, const int last_row) { return abs(y) % (last_row + 1); } inline int idx_row_high(const int y, const int last_row) { return abs(last_row - abs(last_row - y)) % (last_row + 1); } inline int idx_col_low(const int x, const int last_col) { return abs(x) % (last_col + 1); } inline int idx_col_high(const int x, const int last_col) { return abs(last_col - abs(last_col - x)) % (last_col + 1); } inline int idx_col(const int x, const int last_col) { return idx_col_low(idx_col_high(x, last_col), last_col); } __kernel void gaussianBlur(__global const float * src, int srcStep, __global float * dst, int dstStep, const int rows, const int cols, __global const float * c_gKer, const int ksizeHalf, __local float * smem) { const int y = get_global_id(1); const int x = get_global_id(0); __local float *row = smem + ty * (bdx + 2*ksizeHalf); if (y < rows) { // Vertical pass for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx) { int xExt = (int)(bx * bdx) + i - ksizeHalf; xExt = idx_col(xExt, cols - 1); row[i] = src[mad24(y, srcStep, xExt)] * c_gKer[0]; for (int j = 1; j <= ksizeHalf; ++j) row[i] += (src[mad24(idx_row_low(y - j, rows - 1), srcStep, xExt)] + src[mad24(idx_row_high(y + j, rows - 1), srcStep, xExt)]) * c_gKer[j]; } } barrier(CLK_LOCAL_MEM_FENCE); if (y < rows && y >= 0 && x < cols && x >= 0) { // Horizontal pass row += tx + ksizeHalf; float res = row[0] * c_gKer[0]; for (int i = 1; i <= ksizeHalf; ++i) res += (row[-i] + row[i]) * c_gKer[i]; dst[mad24(y, dstStep, x)] = res; } } __kernel void gaussianBlur5(__global const float * src, int srcStep, __global float * dst, int dstStep, const int rows, const int cols, __global const float * c_gKer, const int ksizeHalf, __local float * smem) { const int y = get_global_id(1); const int x = get_global_id(0); const int smw = bdx + 2*ksizeHalf; // shared memory "cols" __local volatile float *row = smem + 5 * ty * smw; if (y < rows) { // Vertical pass for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx) { int xExt = (int)(bx * bdx) + i - ksizeHalf; xExt = idx_col(xExt, cols - 1); #pragma unroll for (int k = 0; k < 5; ++k) row[k*smw + i] = src[mad24(k*rows + y, srcStep, xExt)] * c_gKer[0]; for (int j = 1; j <= ksizeHalf; ++j) #pragma unroll for (int k = 0; k < 5; ++k) row[k*smw + i] += (src[mad24(k*rows + idx_row_low(y - j, rows - 1), srcStep, xExt)] + src[mad24(k*rows + idx_row_high(y + j, rows - 1), srcStep, xExt)]) * c_gKer[j]; } } barrier(CLK_LOCAL_MEM_FENCE); if (y < rows && y >= 0 && x < cols && x >= 0) { // Horizontal pass row += tx + ksizeHalf; float res[5]; #pragma unroll for (int k = 0; k < 5; ++k) res[k] = row[k*smw] * c_gKer[0]; for (int i = 1; i <= ksizeHalf; ++i) #pragma unroll for (int k = 0; k < 5; ++k) res[k] += (row[k*smw - i] + row[k*smw + i]) * c_gKer[i]; #pragma unroll for (int k = 0; k < 5; ++k) dst[mad24(k*rows + y, dstStep, x)] = res[k]; } } __constant float c_border[BORDER_SIZE + 1] = { 0.14f, 0.14f, 0.4472f, 0.4472f, 0.4472f, 1.f }; __kernel void updateMatrices(__global const float * flowx, int xStep, __global const float * flowy, int yStep, const int rows, const int cols, __global const float * R0, int R0Step, __global const float * R1, int R1Step, __global float * M, int mStep) { const int y = get_global_id(1); const int x = get_global_id(0); if (y < rows && y >= 0 && x < cols && x >= 0) { float dx = flowx[mad24(y, xStep, x)]; float dy = flowy[mad24(y, yStep, x)]; float fx = x + dx; float fy = y + dy; int x1 = convert_int(floor(fx)); int y1 = convert_int(floor(fy)); fx -= x1; fy -= y1; float r2, r3, r4, r5, r6; if (x1 >= 0 && y1 >= 0 && x1 < cols - 1 && y1 < rows - 1) { float a00 = (1.f - fx) * (1.f - fy); float a01 = fx * (1.f - fy); float a10 = (1.f - fx) * fy; float a11 = fx * fy; r2 = a00 * R1[mad24(y1, R1Step, x1)] + a01 * R1[mad24(y1, R1Step, x1 + 1)] + a10 * R1[mad24(y1 + 1, R1Step, x1)] + a11 * R1[mad24(y1 + 1, R1Step, x1 + 1)]; r3 = a00 * R1[mad24(rows + y1, R1Step, x1)] + a01 * R1[mad24(rows + y1, R1Step, x1 + 1)] + a10 * R1[mad24(rows + y1 + 1, R1Step, x1)] + a11 * R1[mad24(rows + y1 + 1, R1Step, x1 + 1)]; r4 = a00 * R1[mad24(2*rows + y1, R1Step, x1)] + a01 * R1[mad24(2*rows + y1, R1Step, x1 + 1)] + a10 * R1[mad24(2*rows + y1 + 1, R1Step, x1)] + a11 * R1[mad24(2*rows + y1 + 1, R1Step, x1 + 1)]; r5 = a00 * R1[mad24(3*rows + y1, R1Step, x1)] + a01 * R1[mad24(3*rows + y1, R1Step, x1 + 1)] + a10 * R1[mad24(3*rows + y1 + 1, R1Step, x1)] + a11 * R1[mad24(3*rows + y1 + 1, R1Step, x1 + 1)]; r6 = a00 * R1[mad24(4*rows + y1, R1Step, x1)] + a01 * R1[mad24(4*rows + y1, R1Step, x1 + 1)] + a10 * R1[mad24(4*rows + y1 + 1, R1Step, x1)] + a11 * R1[mad24(4*rows + y1 + 1, R1Step, x1 + 1)]; r4 = (R0[mad24(2*rows + y, R0Step, x)] + r4) * 0.5f; r5 = (R0[mad24(3*rows + y, R0Step, x)] + r5) * 0.5f; r6 = (R0[mad24(4*rows + y, R0Step, x)] + r6) * 0.25f; } else { r2 = r3 = 0.f; r4 = R0[mad24(2*rows + y, R0Step, x)]; r5 = R0[mad24(3*rows + y, R0Step, x)]; r6 = R0[mad24(4*rows + y, R0Step, x)] * 0.5f; } r2 = (R0[mad24(y, R0Step, x)] - r2) * 0.5f; r3 = (R0[mad24(rows + y, R0Step, x)] - r3) * 0.5f; r2 += r4*dy + r6*dx; r3 += r6*dy + r5*dx; float scale = c_border[min(x, BORDER_SIZE)] * c_border[min(y, BORDER_SIZE)] * c_border[min(cols - x - 1, BORDER_SIZE)] * c_border[min(rows - y - 1, BORDER_SIZE)]; r2 *= scale; r3 *= scale; r4 *= scale; r5 *= scale; r6 *= scale; M[mad24(y, mStep, x)] = r4*r4 + r6*r6; M[mad24(rows + y, mStep, x)] = (r4 + r5)*r6; M[mad24(2*rows + y, mStep, x)] = r5*r5 + r6*r6; M[mad24(3*rows + y, mStep, x)] = r4*r2 + r6*r3; M[mad24(4*rows + y, mStep, x)] = r6*r2 + r5*r3; } } __kernel void boxFilter5(__global const float * src, int srcStep, __global float * dst, int dstStep, const int rows, const int cols, const int ksizeHalf, __local float * smem) { const int y = get_global_id(1); const int x = get_global_id(0); const float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf)); const int smw = bdx + 2*ksizeHalf; // shared memory "width" __local float *row = smem + 5 * ty * smw; if (y < rows) { // Vertical pass for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx) { int xExt = (int)(bx * bdx) + i - ksizeHalf; xExt = min(max(xExt, 0), cols - 1); #pragma unroll for (int k = 0; k < 5; ++k) row[k*smw + i] = src[mad24(k*rows + y, srcStep, xExt)]; for (int j = 1; j <= ksizeHalf; ++j) #pragma unroll for (int k = 0; k < 5; ++k) row[k*smw + i] += src[mad24(k*rows + max(y - j, 0), srcStep, xExt)] + src[mad24(k*rows + min(y + j, rows - 1), srcStep, xExt)]; } } barrier(CLK_LOCAL_MEM_FENCE); if (y < rows && y >= 0 && x < cols && x >= 0) { // Horizontal pass row += tx + ksizeHalf; float res[5]; #pragma unroll for (int k = 0; k < 5; ++k) res[k] = row[k*smw]; for (int i = 1; i <= ksizeHalf; ++i) #pragma unroll for (int k = 0; k < 5; ++k) res[k] += row[k*smw - i] + row[k*smw + i]; #pragma unroll for (int k = 0; k < 5; ++k) dst[mad24(k*rows + y, dstStep, x)] = res[k] * boxAreaInv; } } __kernel void updateFlow(__global const float * M, int mStep, __global float * flowx, int xStep, __global float * flowy, int yStep, const int rows, const int cols) { const int y = get_global_id(1); const int x = get_global_id(0); if (y < rows && y >= 0 && x < cols && x >= 0) { float g11 = M[mad24(y, mStep, x)]; float g12 = M[mad24(rows + y, mStep, x)]; float g22 = M[mad24(2*rows + y, mStep, x)]; float h1 = M[mad24(3*rows + y, mStep, x)]; float h2 = M[mad24(4*rows + y, mStep, x)]; float detInv = 1.f / (g11*g22 - g12*g12 + 1e-3f); flowx[mad24(y, xStep, x)] = (g11*h2 - g12*h1) * detInv; flowy[mad24(y, yStep, x)] = (g22*h1 - g12*h2) * detInv; } }