/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkCodec.h" #include "SkCodecPriv.h" #include "SkColorPriv.h" #include "SkData.h" #include "SkJpegCodec.h" #include "SkMutex.h" #include "SkRawCodec.h" #include "SkRefCnt.h" #include "SkStream.h" #include "SkStreamPriv.h" #include "SkSwizzler.h" #include "SkTArray.h" #include "SkTaskGroup.h" #include "SkTemplates.h" #include "SkTypes.h" #include "dng_area_task.h" #include "dng_color_space.h" #include "dng_errors.h" #include "dng_exceptions.h" #include "dng_host.h" #include "dng_info.h" #include "dng_memory.h" #include "dng_render.h" #include "dng_stream.h" #include "src/piex.h" #include // for std::round,floor,ceil #include namespace { // Caluclates the number of tiles of tile_size that fit into the area in vertical and horizontal // directions. dng_point num_tiles_in_area(const dng_point &areaSize, const dng_point_real64 &tileSize) { // FIXME: Add a ceil_div() helper in SkCodecPriv.h return dng_point(static_cast((areaSize.v + tileSize.v - 1) / tileSize.v), static_cast((areaSize.h + tileSize.h - 1) / tileSize.h)); } int num_tasks_required(const dng_point& tilesInTask, const dng_point& tilesInArea) { return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) * ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h); } // Calculate the number of tiles to process per task, taking into account the maximum number of // tasks. It prefers to increase horizontally for better locality of reference. dng_point num_tiles_per_task(const int maxTasks, const dng_point &tilesInArea) { dng_point tilesInTask = {1, 1}; while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) { if (tilesInTask.h < tilesInArea.h) { ++tilesInTask.h; } else if (tilesInTask.v < tilesInArea.v) { ++tilesInTask.v; } else { ThrowProgramError("num_tiles_per_task calculation is wrong."); } } return tilesInTask; } std::vector compute_task_areas(const int maxTasks, const dng_rect& area, const dng_point& tileSize) { std::vector taskAreas; const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize); const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea); const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v, tilesPerTask.h * tileSize.h}; for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) { for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) { dng_rect taskArea; taskArea.t = area.t + v * tileSize.v; taskArea.l = area.l + h * tileSize.h; taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b); taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r); taskAreas.push_back(taskArea); } } return taskAreas; } class SkDngHost : public dng_host { public: explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {} void PerformAreaTask(dng_area_task& task, const dng_rect& area) override { // The area task gets split up into max_tasks sub-tasks. The max_tasks is defined by the // dng-sdks default implementation of dng_area_task::MaxThreads() which returns 8 or 32 // sub-tasks depending on the architecture. const int maxTasks = static_cast(task.MaxThreads()); SkTaskGroup taskGroup; // tileSize is typically 256x256 const dng_point tileSize(task.FindTileSize(area)); const std::vector taskAreas = compute_task_areas(maxTasks, area, tileSize); const int numTasks = static_cast(taskAreas.size()); SkMutex mutex; SkTArray exceptions; task.Start(numTasks, tileSize, &Allocator(), Sniffer()); for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) { taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] { try { task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer()); } catch (dng_exception& exception) { SkAutoMutexAcquire lock(mutex); exceptions.push_back(exception); } catch (...) { SkAutoMutexAcquire lock(mutex); exceptions.push_back(dng_exception(dng_error_unknown)); } }); } taskGroup.wait(); task.Finish(numTasks); // Currently we only re-throw the first catched exception. if (!exceptions.empty()) { Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr); } } uint32 PerformAreaTaskThreads() override { // FIXME: Need to get the real amount of available threads used in the SkTaskGroup. return kMaxMPThreads; } private: typedef dng_host INHERITED; }; // T must be unsigned type. template bool safe_add_to_size_t(T arg1, T arg2, size_t* result) { SkASSERT(arg1 >= 0); SkASSERT(arg2 >= 0); if (arg1 >= 0 && arg2 <= std::numeric_limits::max() - arg1) { T sum = arg1 + arg2; if (sum <= std::numeric_limits::max()) { *result = static_cast(sum); return true; } } return false; } class SkDngMemoryAllocator : public dng_memory_allocator { public: ~SkDngMemoryAllocator() override {} dng_memory_block* Allocate(uint32 size) override { // To avoid arbitary allocation requests which might lead to out-of-memory, limit the // amount of memory that can be allocated at once. The memory limit is based on experiments // and supposed to be sufficient for all valid DNG images. if (size > 300 * 1024 * 1024) { // 300 MB ThrowMemoryFull(); } return dng_memory_allocator::Allocate(size); } }; bool is_asset_stream(const SkStream& stream) { return stream.hasLength() && stream.hasPosition(); } } // namespace class SkRawStream { public: virtual ~SkRawStream() {} /* * Gets the length of the stream. Depending on the type of stream, this may require reading to * the end of the stream. */ virtual uint64 getLength() = 0; virtual bool read(void* data, size_t offset, size_t length) = 0; /* * Creates an SkMemoryStream from the offset with size. * Note: for performance reason, this function is destructive to the SkRawStream. One should * abandon current object after the function call. */ virtual SkMemoryStream* transferBuffer(size_t offset, size_t size) = 0; }; class SkRawLimitedDynamicMemoryWStream : public SkDynamicMemoryWStream { public: virtual ~SkRawLimitedDynamicMemoryWStream() {} bool write(const void* buffer, size_t size) override { size_t newSize; if (!safe_add_to_size_t(this->bytesWritten(), size, &newSize) || newSize > kMaxStreamSize) { SkCodecPrintf("Error: Stream size exceeds the limit.\n"); return false; } return this->INHERITED::write(buffer, size); } private: // Most of valid RAW images will not be larger than 100MB. This limit is helpful to avoid // streaming too large data chunk. We can always adjust the limit here if we need. const size_t kMaxStreamSize = 100 * 1024 * 1024; // 100MB typedef SkDynamicMemoryWStream INHERITED; }; // Note: the maximum buffer size is 100MB (limited by SkRawLimitedDynamicMemoryWStream). class SkRawBufferedStream : public SkRawStream { public: // Will take the ownership of the stream. explicit SkRawBufferedStream(SkStream* stream) : fStream(stream) , fWholeStreamRead(false) { // Only use SkRawBufferedStream when the stream is not an asset stream. SkASSERT(!is_asset_stream(*stream)); } ~SkRawBufferedStream() override {} uint64 getLength() override { if (!this->bufferMoreData(kReadToEnd)) { // read whole stream ThrowReadFile(); } return fStreamBuffer.bytesWritten(); } bool read(void* data, size_t offset, size_t length) override { if (length == 0) { return true; } size_t sum; if (!safe_add_to_size_t(offset, length, &sum)) { return false; } return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length); } SkMemoryStream* transferBuffer(size_t offset, size_t size) override { SkAutoTUnref data(SkData::NewUninitialized(size)); if (offset > fStreamBuffer.bytesWritten()) { // If the offset is not buffered, read from fStream directly and skip the buffering. const size_t skipLength = offset - fStreamBuffer.bytesWritten(); if (fStream->skip(skipLength) != skipLength) { return nullptr; } const size_t bytesRead = fStream->read(data->writable_data(), size); if (bytesRead < size) { data.reset(SkData::NewSubset(data.get(), 0, bytesRead)); } } else { const size_t alreadyBuffered = SkTMin(fStreamBuffer.bytesWritten() - offset, size); if (alreadyBuffered > 0 && !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) { return nullptr; } const size_t remaining = size - alreadyBuffered; if (remaining) { auto* dst = static_cast(data->writable_data()) + alreadyBuffered; const size_t bytesRead = fStream->read(dst, remaining); size_t newSize; if (bytesRead < remaining) { if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) { return nullptr; } data.reset(SkData::NewSubset(data.get(), 0, newSize)); } } } return new SkMemoryStream(data); } private: // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream. bool bufferMoreData(size_t newSize) { if (newSize == kReadToEnd) { if (fWholeStreamRead) { // already read-to-end. return true; } // TODO: optimize for the special case when the input is SkMemoryStream. return SkStreamCopy(&fStreamBuffer, fStream.get()); } if (newSize <= fStreamBuffer.bytesWritten()) { // already buffered to newSize return true; } if (fWholeStreamRead) { // newSize is larger than the whole stream. return false; } // Try to read at least 8192 bytes to avoid to many small reads. const size_t kMinSizeToRead = 8192; const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten(); const size_t sizeToRead = SkTMax(kMinSizeToRead, sizeRequested); SkAutoSTMalloc tempBuffer(sizeToRead); const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead); if (bytesRead < sizeRequested) { return false; } return fStreamBuffer.write(tempBuffer.get(), bytesRead); } SkAutoTDelete fStream; bool fWholeStreamRead; // Use a size-limited stream to avoid holding too huge buffer. SkRawLimitedDynamicMemoryWStream fStreamBuffer; const size_t kReadToEnd = 0; }; class SkRawAssetStream : public SkRawStream { public: // Will take the ownership of the stream. explicit SkRawAssetStream(SkStream* stream) : fStream(stream) { // Only use SkRawAssetStream when the stream is an asset stream. SkASSERT(is_asset_stream(*stream)); } ~SkRawAssetStream() override {} uint64 getLength() override { return fStream->getLength(); } bool read(void* data, size_t offset, size_t length) override { if (length == 0) { return true; } size_t sum; if (!safe_add_to_size_t(offset, length, &sum)) { return false; } return fStream->seek(offset) && (fStream->read(data, length) == length); } SkMemoryStream* transferBuffer(size_t offset, size_t size) override { if (fStream->getLength() < offset) { return nullptr; } size_t sum; if (!safe_add_to_size_t(offset, size, &sum)) { return nullptr; } // This will allow read less than the requested "size", because the JPEG codec wants to // handle also a partial JPEG file. const size_t bytesToRead = SkTMin(sum, fStream->getLength()) - offset; if (bytesToRead == 0) { return nullptr; } if (fStream->getMemoryBase()) { // directly copy if getMemoryBase() is available. SkAutoTUnref data(SkData::NewWithCopy( static_cast(fStream->getMemoryBase()) + offset, bytesToRead)); fStream.free(); return new SkMemoryStream(data); } else { SkAutoTUnref data(SkData::NewUninitialized(bytesToRead)); if (!fStream->seek(offset)) { return nullptr; } const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead); if (bytesRead < bytesToRead) { data.reset(SkData::NewSubset(data.get(), 0, bytesRead)); } return new SkMemoryStream(data); } } private: SkAutoTDelete fStream; }; class SkPiexStream : public ::piex::StreamInterface { public: // Will NOT take the ownership of the stream. explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {} ~SkPiexStream() override {} ::piex::Error GetData(const size_t offset, const size_t length, uint8* data) override { return fStream->read(static_cast(data), offset, length) ? ::piex::Error::kOk : ::piex::Error::kFail; } private: SkRawStream* fStream; }; class SkDngStream : public dng_stream { public: // Will NOT take the ownership of the stream. SkDngStream(SkRawStream* stream) : fStream(stream) {} ~SkDngStream() override {} uint64 DoGetLength() override { return fStream->getLength(); } void DoRead(void* data, uint32 count, uint64 offset) override { size_t sum; if (!safe_add_to_size_t(static_cast(count), offset, &sum) || !fStream->read(data, static_cast(offset), static_cast(count))) { ThrowReadFile(); } } private: SkRawStream* fStream; }; class SkDngImage { public: /* * Initializes the object with the information from Piex in a first attempt. This way it can * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern * which is essential for the demosaicing of the sensor image. * Note: this will take the ownership of the stream. */ static SkDngImage* NewFromStream(SkRawStream* stream) { SkAutoTDelete dngImage(new SkDngImage(stream)); if (!dngImage->isTiffHeaderValid()) { return nullptr; } if (!dngImage->initFromPiex()) { if (!dngImage->readDng()) { return nullptr; } } return dngImage.release(); } /* * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors * down to 80 pixels on the short edge. The rendered image will be close to the specified size, * but there is no guarantee that any of the edges will match the requested size. E.g. * 100% size: 4000 x 3000 * requested size: 1600 x 1200 * returned size could be: 2000 x 1500 */ dng_image* render(int width, int height) { if (!fHost || !fInfo || !fNegative || !fDngStream) { if (!this->readDng()) { return nullptr; } } // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension. const int preferredSize = SkTMax(width, height); try { // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available. SkAutoTDelete host(fHost.release()); SkAutoTDelete info(fInfo.release()); SkAutoTDelete negative(fNegative.release()); SkAutoTDelete dngStream(fDngStream.release()); host->SetPreferredSize(preferredSize); host->ValidateSizes(); negative->ReadStage1Image(*host, *dngStream, *info); if (info->fMaskIndex != -1) { negative->ReadTransparencyMask(*host, *dngStream, *info); } negative->ValidateRawImageDigest(*host); if (negative->IsDamaged()) { return nullptr; } const int32 kMosaicPlane = -1; negative->BuildStage2Image(*host); negative->BuildStage3Image(*host, kMosaicPlane); dng_render render(*host, *negative); render.SetFinalSpace(dng_space_sRGB::Get()); render.SetFinalPixelType(ttByte); dng_point stage3_size = negative->Stage3Image()->Size(); render.SetMaximumSize(SkTMax(stage3_size.h, stage3_size.v)); return render.Render(); } catch (...) { return nullptr; } } const SkImageInfo& getImageInfo() const { return fImageInfo; } bool isScalable() const { return fIsScalable; } bool isXtransImage() const { return fIsXtransImage; } private: // Quick check if the image contains a valid TIFF header as requested by DNG format. bool isTiffHeaderValid() const { const size_t kHeaderSize = 4; SkAutoSTMalloc header(kHeaderSize); if (!fStream->read(header.get(), 0 /* offset */, kHeaderSize)) { return false; } // Check if the header is valid (endian info and magic number "42"). return (header[0] == 0x49 && header[1] == 0x49 && header[2] == 0x2A && header[3] == 0x00) || (header[0] == 0x4D && header[1] == 0x4D && header[2] == 0x00 && header[3] == 0x2A); } void init(const int width, const int height, const dng_point& cfaPatternSize) { fImageInfo = SkImageInfo::Make(width, height, kN32_SkColorType, kOpaque_SkAlphaType); // The DNG SDK scales only during demosaicing, so scaling is only possible when // a mosaic info is available. fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0; fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false; } bool initFromPiex() { // Does not take the ownership of rawStream. SkPiexStream piexStream(fStream.get()); ::piex::PreviewImageData imageData; if (::piex::IsRaw(&piexStream) && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk) { // Verify the size information, as it is only optional information for PIEX. if (imageData.full_width == 0 || imageData.full_height == 0) { return false; } dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]); this->init(static_cast(imageData.full_width), static_cast(imageData.full_height), cfaPatternSize); return true; } return false; } bool readDng() { try { // Due to the limit of DNG SDK, we need to reset host and info. fHost.reset(new SkDngHost(&fAllocator)); fInfo.reset(new dng_info); fDngStream.reset(new SkDngStream(fStream)); fHost->ValidateSizes(); fInfo->Parse(*fHost, *fDngStream); fInfo->PostParse(*fHost); if (!fInfo->IsValidDNG()) { return false; } fNegative.reset(fHost->Make_dng_negative()); fNegative->Parse(*fHost, *fDngStream, *fInfo); fNegative->PostParse(*fHost, *fDngStream, *fInfo); fNegative->SynchronizeMetadata(); dng_point cfaPatternSize(0, 0); if (fNegative->GetMosaicInfo() != nullptr) { cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize; } this->init(static_cast(fNegative->DefaultCropSizeH().As_real64()), static_cast(fNegative->DefaultCropSizeV().As_real64()), cfaPatternSize); return true; } catch (...) { return false; } } SkDngImage(SkRawStream* stream) : fStream(stream) {} SkDngMemoryAllocator fAllocator; SkAutoTDelete fStream; SkAutoTDelete fHost; SkAutoTDelete fInfo; SkAutoTDelete fNegative; SkAutoTDelete fDngStream; SkImageInfo fImageInfo; bool fIsScalable; bool fIsXtransImage; }; /* * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases, * fallback to create SkRawCodec for DNG images. */ SkCodec* SkRawCodec::NewFromStream(SkStream* stream) { SkAutoTDelete rawStream; if (is_asset_stream(*stream)) { rawStream.reset(new SkRawAssetStream(stream)); } else { rawStream.reset(new SkRawBufferedStream(stream)); } // Does not take the ownership of rawStream. SkPiexStream piexStream(rawStream.get()); ::piex::PreviewImageData imageData; if (::piex::IsRaw(&piexStream)) { ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData); // Theoretically PIEX can return JPEG compressed image or uncompressed RGB image. We only // handle the JPEG compressed preview image here. if (error == ::piex::Error::kOk && imageData.preview.length > 0 && imageData.preview.format == ::piex::Image::kJpegCompressed) { // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this // function call. // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream. SkMemoryStream* memoryStream = rawStream->transferBuffer(imageData.preview.offset, imageData.preview.length); return memoryStream ? SkJpegCodec::NewFromStream(memoryStream) : nullptr; } else if (error == ::piex::Error::kFail) { return nullptr; } } // Takes the ownership of the rawStream. SkAutoTDelete dngImage(SkDngImage::NewFromStream(rawStream.release())); if (!dngImage) { return nullptr; } return new SkRawCodec(dngImage.release()); } SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& requestedInfo, void* dst, size_t dstRowBytes, const Options& options, SkPMColor ctable[], int* ctableCount, int* rowsDecoded) { if (!conversion_possible(requestedInfo, this->getInfo())) { SkCodecPrintf("Error: cannot convert input type to output type.\n"); return kInvalidConversion; } SkAutoTDelete swizzler(SkSwizzler::CreateSwizzler( SkSwizzler::kRGB, nullptr, requestedInfo, options)); SkASSERT(swizzler); const int width = requestedInfo.width(); const int height = requestedInfo.height(); SkAutoTDelete image(fDngImage->render(width, height)); if (!image) { return kInvalidInput; } // Because the DNG SDK can not guarantee to render to requested size, we allow a small // difference. Only the overlapping region will be converted. const float maxDiffRatio = 1.03f; const dng_point& imageSize = image->Size(); if (imageSize.h / width > maxDiffRatio || imageSize.h < width || imageSize.v / height > maxDiffRatio || imageSize.v < height) { return SkCodec::kInvalidScale; } void* dstRow = dst; SkAutoTMalloc srcRow(width * 3); dng_pixel_buffer buffer; buffer.fData = &srcRow[0]; buffer.fPlane = 0; buffer.fPlanes = 3; buffer.fColStep = buffer.fPlanes; buffer.fPlaneStep = 1; buffer.fPixelType = ttByte; buffer.fPixelSize = sizeof(uint8_t); buffer.fRowStep = width * 3; for (int i = 0; i < height; ++i) { buffer.fArea = dng_rect(i, 0, i + 1, width); try { image->Get(buffer, dng_image::edge_zero); } catch (...) { *rowsDecoded = i; return kIncompleteInput; } swizzler->swizzle(dstRow, &srcRow[0]); dstRow = SkTAddOffset(dstRow, dstRowBytes); } return kSuccess; } SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const { SkASSERT(desiredScale <= 1.f); const SkISize dim = this->getInfo().dimensions(); SkASSERT(dim.fWidth != 0 && dim.fHeight != 0); if (!fDngImage->isScalable()) { return dim; } // Limits the minimum size to be 80 on the short edge. const float shortEdge = static_cast(SkTMin(dim.fWidth, dim.fHeight)); if (desiredScale < 80.f / shortEdge) { desiredScale = 80.f / shortEdge; } // For Xtrans images, the integer-factor scaling does not support the half-size scaling case // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead. if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) { desiredScale = 1.f / 3.f; } // Round to integer-factors. const float finalScale = std::floor(1.f/ desiredScale); return SkISize::Make(static_cast(std::floor(dim.fWidth / finalScale)), static_cast(std::floor(dim.fHeight / finalScale))); } bool SkRawCodec::onDimensionsSupported(const SkISize& dim) { const SkISize fullDim = this->getInfo().dimensions(); const float fullShortEdge = static_cast(SkTMin(fullDim.fWidth, fullDim.fHeight)); const float shortEdge = static_cast(SkTMin(dim.fWidth, dim.fHeight)); SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge)); SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge)); return sizeFloor == dim || sizeCeil == dim; } SkRawCodec::~SkRawCodec() {} SkRawCodec::SkRawCodec(SkDngImage* dngImage) : INHERITED(dngImage->getImageInfo(), nullptr) , fDngImage(dngImage) {}