// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This file is an internal atomic implementation, use atomicops.h instead. #ifndef V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_ #define V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_ namespace v8 { namespace base { // Atomically execute: // result = *ptr; // if (*ptr == old_value) // *ptr = new_value; // return result; // // I.e., replace "*ptr" with "new_value" if "*ptr" used to be "old_value". // Always return the old value of "*ptr" // // This routine implies no memory barriers. inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { Atomic32 prev, tmp; __asm__ __volatile__(".set push\n" ".set noreorder\n" "1:\n" "ll %0, %5\n" // prev = *ptr "bne %0, %3, 2f\n" // if (prev != old_value) goto 2 "move %2, %4\n" // tmp = new_value "sc %2, %1\n" // *ptr = tmp (with atomic check) "beqz %2, 1b\n" // start again on atomic error "nop\n" // delay slot nop "2:\n" ".set pop\n" : "=&r" (prev), "=m" (*ptr), "=&r" (tmp) : "r" (old_value), "r" (new_value), "m" (*ptr) : "memory"); return prev; } // Atomically store new_value into *ptr, returning the previous value held in // *ptr. This routine implies no memory barriers. inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, Atomic32 new_value) { Atomic32 temp, old; __asm__ __volatile__(".set push\n" ".set noreorder\n" "1:\n" "ll %1, %2\n" // old = *ptr "move %0, %3\n" // temp = new_value "sc %0, %2\n" // *ptr = temp (with atomic check) "beqz %0, 1b\n" // start again on atomic error "nop\n" // delay slot nop ".set pop\n" : "=&r" (temp), "=&r" (old), "=m" (*ptr) : "r" (new_value), "m" (*ptr) : "memory"); return old; } // Atomically increment *ptr by "increment". Returns the new value of // *ptr with the increment applied. This routine implies no memory barriers. inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment) { Atomic32 temp, temp2; __asm__ __volatile__(".set push\n" ".set noreorder\n" "1:\n" "ll %0, %2\n" // temp = *ptr "addu %1, %0, %3\n" // temp2 = temp + increment "sc %1, %2\n" // *ptr = temp2 (with atomic check) "beqz %1, 1b\n" // start again on atomic error "addu %1, %0, %3\n" // temp2 = temp + increment ".set pop\n" : "=&r" (temp), "=&r" (temp2), "=m" (*ptr) : "Ir" (increment), "m" (*ptr) : "memory"); // temp2 now holds the final value. return temp2; } inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment) { MemoryBarrier(); Atomic32 res = NoBarrier_AtomicIncrement(ptr, increment); MemoryBarrier(); return res; } // "Acquire" operations // ensure that no later memory access can be reordered ahead of the operation. // "Release" operations ensure that no previous memory access can be reordered // after the operation. "Barrier" operations have both "Acquire" and "Release" // semantics. A MemoryBarrier() has "Barrier" semantics, but does no memory // access. inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { Atomic32 res = NoBarrier_CompareAndSwap(ptr, old_value, new_value); MemoryBarrier(); return res; } inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { MemoryBarrier(); return NoBarrier_CompareAndSwap(ptr, old_value, new_value); } inline void NoBarrier_Store(volatile Atomic8* ptr, Atomic8 value) { *ptr = value; } inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) { *ptr = value; } inline void MemoryBarrier() { __asm__ __volatile__("sync" : : : "memory"); } inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { *ptr = value; MemoryBarrier(); } inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { MemoryBarrier(); *ptr = value; } inline Atomic8 NoBarrier_Load(volatile const Atomic8* ptr) { return *ptr; } inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; } inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { Atomic32 value = *ptr; MemoryBarrier(); return value; } inline Atomic32 Release_Load(volatile const Atomic32* ptr) { MemoryBarrier(); return *ptr; } // 64-bit versions of the atomic ops. inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { Atomic64 prev, tmp; __asm__ __volatile__(".set push\n" ".set noreorder\n" "1:\n" "lld %0, %5\n" // prev = *ptr "bne %0, %3, 2f\n" // if (prev != old_value) goto 2 "move %2, %4\n" // tmp = new_value "scd %2, %1\n" // *ptr = tmp (with atomic check) "beqz %2, 1b\n" // start again on atomic error "nop\n" // delay slot nop "2:\n" ".set pop\n" : "=&r" (prev), "=m" (*ptr), "=&r" (tmp) : "r" (old_value), "r" (new_value), "m" (*ptr) : "memory"); return prev; } // Atomically store new_value into *ptr, returning the previous value held in // *ptr. This routine implies no memory barriers. inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr, Atomic64 new_value) { Atomic64 temp, old; __asm__ __volatile__(".set push\n" ".set noreorder\n" "1:\n" "lld %1, %2\n" // old = *ptr "move %0, %3\n" // temp = new_value "scd %0, %2\n" // *ptr = temp (with atomic check) "beqz %0, 1b\n" // start again on atomic error "nop\n" // delay slot nop ".set pop\n" : "=&r" (temp), "=&r" (old), "=m" (*ptr) : "r" (new_value), "m" (*ptr) : "memory"); return old; } // Atomically increment *ptr by "increment". Returns the new value of // *ptr with the increment applied. This routine implies no memory barriers. inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment) { Atomic64 temp, temp2; __asm__ __volatile__(".set push\n" ".set noreorder\n" "1:\n" "lld %0, %2\n" // temp = *ptr "daddu %1, %0, %3\n" // temp2 = temp + increment "scd %1, %2\n" // *ptr = temp2 (with atomic check) "beqz %1, 1b\n" // start again on atomic error "daddu %1, %0, %3\n" // temp2 = temp + increment ".set pop\n" : "=&r" (temp), "=&r" (temp2), "=m" (*ptr) : "Ir" (increment), "m" (*ptr) : "memory"); // temp2 now holds the final value. return temp2; } inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment) { MemoryBarrier(); Atomic64 res = NoBarrier_AtomicIncrement(ptr, increment); MemoryBarrier(); return res; } // "Acquire" operations // ensure that no later memory access can be reordered ahead of the operation. // "Release" operations ensure that no previous memory access can be reordered // after the operation. "Barrier" operations have both "Acquire" and "Release" // semantics. A MemoryBarrier() has "Barrier" semantics, but does no memory // access. inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { Atomic64 res = NoBarrier_CompareAndSwap(ptr, old_value, new_value); MemoryBarrier(); return res; } inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { MemoryBarrier(); return NoBarrier_CompareAndSwap(ptr, old_value, new_value); } inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) { *ptr = value; } inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) { *ptr = value; MemoryBarrier(); } inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) { MemoryBarrier(); *ptr = value; } inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) { return *ptr; } inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) { Atomic64 value = *ptr; MemoryBarrier(); return value; } inline Atomic64 Release_Load(volatile const Atomic64* ptr) { MemoryBarrier(); return *ptr; } } // namespace base } // namespace v8 #endif // V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_