// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_MIPS // Note on Mips implementation: // // The result_register() for mips is the 'v0' register, which is defined // by the ABI to contain function return values. However, the first // parameter to a function is defined to be 'a0'. So there are many // places where we have to move a previous result in v0 to a0 for the // next call: mov(a0, v0). This is not needed on the other architectures. #include "src/ast/scopes.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/debug/debug.h" #include "src/full-codegen/full-codegen.h" #include "src/ic/ic.h" #include "src/parsing/parser.h" #include "src/mips/code-stubs-mips.h" #include "src/mips/macro-assembler-mips.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) // A patch site is a location in the code which it is possible to patch. This // class has a number of methods to emit the code which is patchable and the // method EmitPatchInfo to record a marker back to the patchable code. This // marker is a andi zero_reg, rx, #yyyy instruction, and rx * 0x0000ffff + yyyy // (raw 16 bit immediate value is used) is the delta from the pc to the first // instruction of the patchable code. // The marker instruction is effectively a NOP (dest is zero_reg) and will // never be emitted by normal code. class JumpPatchSite BASE_EMBEDDED { public: explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) { #ifdef DEBUG info_emitted_ = false; #endif } ~JumpPatchSite() { DCHECK(patch_site_.is_bound() == info_emitted_); } // When initially emitting this ensure that a jump is always generated to skip // the inlined smi code. void EmitJumpIfNotSmi(Register reg, Label* target) { DCHECK(!patch_site_.is_bound() && !info_emitted_); Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); __ bind(&patch_site_); __ andi(at, reg, 0); // Always taken before patched. __ BranchShort(target, eq, at, Operand(zero_reg)); } // When initially emitting this ensure that a jump is never generated to skip // the inlined smi code. void EmitJumpIfSmi(Register reg, Label* target) { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); DCHECK(!patch_site_.is_bound() && !info_emitted_); __ bind(&patch_site_); __ andi(at, reg, 0); // Never taken before patched. __ BranchShort(target, ne, at, Operand(zero_reg)); } void EmitPatchInfo() { if (patch_site_.is_bound()) { int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_); Register reg = Register::from_code(delta_to_patch_site / kImm16Mask); __ andi(zero_reg, reg, delta_to_patch_site % kImm16Mask); #ifdef DEBUG info_emitted_ = true; #endif } else { __ nop(); // Signals no inlined code. } } private: MacroAssembler* masm_; Label patch_site_; #ifdef DEBUG bool info_emitted_; #endif }; // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right. The actual // argument count matches the formal parameter count expected by the // function. // // The live registers are: // o a1: the JS function object being called (i.e. ourselves) // o a3: the new target value // o cp: our context // o fp: our caller's frame pointer // o sp: stack pointer // o ra: return address // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-mips.h for its layout. void FullCodeGenerator::Generate() { CompilationInfo* info = info_; profiling_counter_ = isolate()->factory()->NewCell( Handle(Smi::FromInt(FLAG_interrupt_budget), isolate())); SetFunctionPosition(literal()); Comment cmnt(masm_, "[ function compiled by full code generator"); ProfileEntryHookStub::MaybeCallEntryHook(masm_); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { __ stop("stop-at"); } #endif if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) { int receiver_offset = info->scope()->num_parameters() * kPointerSize; __ lw(a2, MemOperand(sp, receiver_offset)); __ AssertNotSmi(a2); __ GetObjectType(a2, a2, a2); __ Check(ge, kSloppyFunctionExpectsJSReceiverReceiver, a2, Operand(FIRST_JS_RECEIVER_TYPE)); } // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm_, StackFrame::MANUAL); info->set_prologue_offset(masm_->pc_offset()); __ Prologue(info->GeneratePreagedPrologue()); { Comment cmnt(masm_, "[ Allocate locals"); int locals_count = info->scope()->num_stack_slots(); // Generators allocate locals, if any, in context slots. DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0); if (locals_count > 0) { if (locals_count >= 128) { Label ok; __ Subu(t5, sp, Operand(locals_count * kPointerSize)); __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); __ Branch(&ok, hs, t5, Operand(a2)); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); } __ LoadRoot(t5, Heap::kUndefinedValueRootIndex); int kMaxPushes = FLAG_optimize_for_size ? 4 : 32; if (locals_count >= kMaxPushes) { int loop_iterations = locals_count / kMaxPushes; __ li(a2, Operand(loop_iterations)); Label loop_header; __ bind(&loop_header); // Do pushes. __ Subu(sp, sp, Operand(kMaxPushes * kPointerSize)); for (int i = 0; i < kMaxPushes; i++) { __ sw(t5, MemOperand(sp, i * kPointerSize)); } // Continue loop if not done. __ Subu(a2, a2, Operand(1)); __ Branch(&loop_header, ne, a2, Operand(zero_reg)); } int remaining = locals_count % kMaxPushes; // Emit the remaining pushes. __ Subu(sp, sp, Operand(remaining * kPointerSize)); for (int i = 0; i < remaining; i++) { __ sw(t5, MemOperand(sp, i * kPointerSize)); } } } bool function_in_register_a1 = true; // Possibly allocate a local context. if (info->scope()->num_heap_slots() > 0) { Comment cmnt(masm_, "[ Allocate context"); // Argument to NewContext is the function, which is still in a1. bool need_write_barrier = true; int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (info->scope()->is_script_scope()) { __ push(a1); __ Push(info->scope()->GetScopeInfo(info->isolate())); __ CallRuntime(Runtime::kNewScriptContext); PrepareForBailoutForId(BailoutId::ScriptContext(), TOS_REG); // The new target value is not used, clobbering is safe. DCHECK_NULL(info->scope()->new_target_var()); } else { if (info->scope()->new_target_var() != nullptr) { __ push(a3); // Preserve new target. } if (slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(isolate(), slots); __ CallStub(&stub); // Result of FastNewContextStub is always in new space. need_write_barrier = false; } else { __ push(a1); __ CallRuntime(Runtime::kNewFunctionContext); } if (info->scope()->new_target_var() != nullptr) { __ pop(a3); // Restore new target. } } function_in_register_a1 = false; // Context is returned in v0. It replaces the context passed to us. // It's saved in the stack and kept live in cp. __ mov(cp, v0); __ sw(v0, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = info->scope()->num_parameters(); int first_parameter = info->scope()->has_this_declaration() ? -1 : 0; for (int i = first_parameter; i < num_parameters; i++) { Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ lw(a0, MemOperand(fp, parameter_offset)); // Store it in the context. MemOperand target = ContextMemOperand(cp, var->index()); __ sw(a0, target); // Update the write barrier. if (need_write_barrier) { __ RecordWriteContextSlot(cp, target.offset(), a0, a2, kRAHasBeenSaved, kDontSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(cp, a0, &done); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } } // Register holding this function and new target are both trashed in case we // bailout here. But since that can happen only when new target is not used // and we allocate a context, the value of |function_in_register| is correct. PrepareForBailoutForId(BailoutId::FunctionContext(), NO_REGISTERS); // Possibly set up a local binding to the this function which is used in // derived constructors with super calls. Variable* this_function_var = scope()->this_function_var(); if (this_function_var != nullptr) { Comment cmnt(masm_, "[ This function"); if (!function_in_register_a1) { __ lw(a1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); // The write barrier clobbers register again, keep it marked as such. } SetVar(this_function_var, a1, a0, a2); } // Possibly set up a local binding to the new target value. Variable* new_target_var = scope()->new_target_var(); if (new_target_var != nullptr) { Comment cmnt(masm_, "[ new.target"); SetVar(new_target_var, a3, a0, a2); } // Possibly allocate RestParameters int rest_index; Variable* rest_param = scope()->rest_parameter(&rest_index); if (rest_param) { Comment cmnt(masm_, "[ Allocate rest parameter array"); int num_parameters = info->scope()->num_parameters(); int offset = num_parameters * kPointerSize; __ li(RestParamAccessDescriptor::parameter_count(), Operand(Smi::FromInt(num_parameters))); __ Addu(RestParamAccessDescriptor::parameter_pointer(), fp, Operand(StandardFrameConstants::kCallerSPOffset + offset)); __ li(RestParamAccessDescriptor::rest_parameter_index(), Operand(Smi::FromInt(rest_index))); DCHECK(a1.is(RestParamAccessDescriptor::rest_parameter_index())); function_in_register_a1 = false; RestParamAccessStub stub(isolate()); __ CallStub(&stub); SetVar(rest_param, v0, a1, a2); } Variable* arguments = scope()->arguments(); if (arguments != NULL) { // Function uses arguments object. Comment cmnt(masm_, "[ Allocate arguments object"); DCHECK(a1.is(ArgumentsAccessNewDescriptor::function())); if (!function_in_register_a1) { // Load this again, if it's used by the local context below. __ lw(a1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } // Receiver is just before the parameters on the caller's stack. int num_parameters = info->scope()->num_parameters(); int offset = num_parameters * kPointerSize; __ li(ArgumentsAccessNewDescriptor::parameter_count(), Operand(Smi::FromInt(num_parameters))); __ Addu(ArgumentsAccessNewDescriptor::parameter_pointer(), fp, Operand(StandardFrameConstants::kCallerSPOffset + offset)); // Arguments to ArgumentsAccessStub: // function, parameter pointer, parameter count. // The stub will rewrite parameter pointer and parameter count if the // previous stack frame was an arguments adapter frame. bool is_unmapped = is_strict(language_mode()) || !has_simple_parameters(); ArgumentsAccessStub::Type type = ArgumentsAccessStub::ComputeType( is_unmapped, literal()->has_duplicate_parameters()); ArgumentsAccessStub stub(isolate(), type); __ CallStub(&stub); SetVar(arguments, v0, a1, a2); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter); } // Visit the declarations and body unless there is an illegal // redeclaration. if (scope()->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ Declarations"); VisitForEffect(scope()->GetIllegalRedeclaration()); } else { PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS); { Comment cmnt(masm_, "[ Declarations"); VisitDeclarations(scope()->declarations()); } // Assert that the declarations do not use ICs. Otherwise the debugger // won't be able to redirect a PC at an IC to the correct IC in newly // recompiled code. DCHECK_EQ(0, ic_total_count_); { Comment cmnt(masm_, "[ Stack check"); PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS); Label ok; __ LoadRoot(at, Heap::kStackLimitRootIndex); __ Branch(&ok, hs, sp, Operand(at)); Handle stack_check = isolate()->builtins()->StackCheck(); PredictableCodeSizeScope predictable(masm_, masm_->CallSize(stack_check, RelocInfo::CODE_TARGET)); __ Call(stack_check, RelocInfo::CODE_TARGET); __ bind(&ok); } { Comment cmnt(masm_, "[ Body"); DCHECK(loop_depth() == 0); VisitStatements(literal()->body()); DCHECK(loop_depth() == 0); } } // Always emit a 'return undefined' in case control fell off the end of // the body. { Comment cmnt(masm_, "[ return ;"); __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); } EmitReturnSequence(); } void FullCodeGenerator::ClearAccumulator() { DCHECK(Smi::FromInt(0) == 0); __ mov(v0, zero_reg); } void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) { __ li(a2, Operand(profiling_counter_)); __ lw(a3, FieldMemOperand(a2, Cell::kValueOffset)); __ Subu(a3, a3, Operand(Smi::FromInt(delta))); __ sw(a3, FieldMemOperand(a2, Cell::kValueOffset)); } void FullCodeGenerator::EmitProfilingCounterReset() { int reset_value = FLAG_interrupt_budget; if (info_->is_debug()) { // Detect debug break requests as soon as possible. reset_value = FLAG_interrupt_budget >> 4; } __ li(a2, Operand(profiling_counter_)); __ li(a3, Operand(Smi::FromInt(reset_value))); __ sw(a3, FieldMemOperand(a2, Cell::kValueOffset)); } void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt, Label* back_edge_target) { // The generated code is used in Deoptimizer::PatchStackCheckCodeAt so we need // to make sure it is constant. Branch may emit a skip-or-jump sequence // instead of the normal Branch. It seems that the "skip" part of that // sequence is about as long as this Branch would be so it is safe to ignore // that. Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); Comment cmnt(masm_, "[ Back edge bookkeeping"); Label ok; DCHECK(back_edge_target->is_bound()); int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target); int weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); EmitProfilingCounterDecrement(weight); __ slt(at, a3, zero_reg); __ beq(at, zero_reg, &ok); // Call will emit a li t9 first, so it is safe to use the delay slot. __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); // Record a mapping of this PC offset to the OSR id. This is used to find // the AST id from the unoptimized code in order to use it as a key into // the deoptimization input data found in the optimized code. RecordBackEdge(stmt->OsrEntryId()); EmitProfilingCounterReset(); __ bind(&ok); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); // Record a mapping of the OSR id to this PC. This is used if the OSR // entry becomes the target of a bailout. We don't expect it to be, but // we want it to work if it is. PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS); } void FullCodeGenerator::EmitReturnSequence() { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ Branch(&return_label_); } else { __ bind(&return_label_); if (FLAG_trace) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in v0. __ push(v0); __ CallRuntime(Runtime::kTraceExit); } // Pretend that the exit is a backwards jump to the entry. int weight = 1; if (info_->ShouldSelfOptimize()) { weight = FLAG_interrupt_budget / FLAG_self_opt_count; } else { int distance = masm_->pc_offset(); weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); } EmitProfilingCounterDecrement(weight); Label ok; __ Branch(&ok, ge, a3, Operand(zero_reg)); __ push(v0); __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); __ pop(v0); EmitProfilingCounterReset(); __ bind(&ok); // Make sure that the constant pool is not emitted inside of the return // sequence. { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); // Here we use masm_-> instead of the __ macro to avoid the code coverage // tool from instrumenting as we rely on the code size here. int32_t arg_count = info_->scope()->num_parameters() + 1; int32_t sp_delta = arg_count * kPointerSize; SetReturnPosition(literal()); masm_->mov(sp, fp); masm_->MultiPop(static_cast(fp.bit() | ra.bit())); masm_->Addu(sp, sp, Operand(sp_delta)); masm_->Jump(ra); } } } void FullCodeGenerator::StackValueContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); codegen()->GetVar(result_register(), var); __ push(result_register()); } void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); } void FullCodeGenerator::StackValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); __ push(result_register()); } void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (index == Heap::kUndefinedValueRootIndex || index == Heap::kNullValueRootIndex || index == Heap::kFalseValueRootIndex) { if (false_label_ != fall_through_) __ Branch(false_label_); } else if (index == Heap::kTrueValueRootIndex) { if (true_label_ != fall_through_) __ Branch(true_label_); } else { __ LoadRoot(result_register(), index); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::Plug(Handle lit) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Handle lit) const { __ li(result_register(), Operand(lit)); } void FullCodeGenerator::StackValueContext::Plug(Handle lit) const { // Immediates cannot be pushed directly. __ li(result_register(), Operand(lit)); __ push(result_register()); } void FullCodeGenerator::TestContext::Plug(Handle lit) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals. if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) { if (false_label_ != fall_through_) __ Branch(false_label_); } else if (lit->IsTrue() || lit->IsJSObject()) { if (true_label_ != fall_through_) __ Branch(true_label_); } else if (lit->IsString()) { if (String::cast(*lit)->length() == 0) { if (false_label_ != fall_through_) __ Branch(false_label_); } else { if (true_label_ != fall_through_) __ Branch(true_label_); } } else if (lit->IsSmi()) { if (Smi::cast(*lit)->value() == 0) { if (false_label_ != fall_through_) __ Branch(false_label_); } else { if (true_label_ != fall_through_) __ Branch(true_label_); } } else { // For simplicity we always test the accumulator register. __ li(result_register(), Operand(lit)); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); __ Drop(count); } void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( int count, Register reg) const { DCHECK(count > 0); __ Drop(count); __ Move(result_register(), reg); } void FullCodeGenerator::StackValueContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); if (count > 1) __ Drop(count - 1); __ sw(reg, MemOperand(sp, 0)); } void FullCodeGenerator::TestContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); // For simplicity we always test the accumulator register. __ Drop(count); __ Move(result_register(), reg); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == materialize_false); __ bind(materialize_true); } void FullCodeGenerator::AccumulatorValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ bind(materialize_true); __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); __ Branch(&done); __ bind(materialize_false); __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); __ bind(&done); } void FullCodeGenerator::StackValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ bind(materialize_true); __ LoadRoot(at, Heap::kTrueValueRootIndex); // Push the value as the following branch can clobber at in long branch mode. __ push(at); __ Branch(&done); __ bind(materialize_false); __ LoadRoot(at, Heap::kFalseValueRootIndex); __ push(at); __ bind(&done); } void FullCodeGenerator::TestContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == true_label_); DCHECK(materialize_false == false_label_); } void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(result_register(), value_root_index); } void FullCodeGenerator::StackValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(at, value_root_index); __ push(at); } void FullCodeGenerator::TestContext::Plug(bool flag) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (flag) { if (true_label_ != fall_through_) __ Branch(true_label_); } else { if (false_label_ != fall_through_) __ Branch(false_label_); } } void FullCodeGenerator::DoTest(Expression* condition, Label* if_true, Label* if_false, Label* fall_through) { __ mov(a0, result_register()); Handle ic = ToBooleanStub::GetUninitialized(isolate()); CallIC(ic, condition->test_id()); __ LoadRoot(at, Heap::kTrueValueRootIndex); Split(eq, result_register(), Operand(at), if_true, if_false, fall_through); } void FullCodeGenerator::Split(Condition cc, Register lhs, const Operand& rhs, Label* if_true, Label* if_false, Label* fall_through) { if (if_false == fall_through) { __ Branch(if_true, cc, lhs, rhs); } else if (if_true == fall_through) { __ Branch(if_false, NegateCondition(cc), lhs, rhs); } else { __ Branch(if_true, cc, lhs, rhs); __ Branch(if_false); } } MemOperand FullCodeGenerator::StackOperand(Variable* var) { DCHECK(var->IsStackAllocated()); // Offset is negative because higher indexes are at lower addresses. int offset = -var->index() * kPointerSize; // Adjust by a (parameter or local) base offset. if (var->IsParameter()) { offset += (info_->scope()->num_parameters() + 1) * kPointerSize; } else { offset += JavaScriptFrameConstants::kLocal0Offset; } return MemOperand(fp, offset); } MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); if (var->IsContextSlot()) { int context_chain_length = scope()->ContextChainLength(var->scope()); __ LoadContext(scratch, context_chain_length); return ContextMemOperand(scratch, var->index()); } else { return StackOperand(var); } } void FullCodeGenerator::GetVar(Register dest, Variable* var) { // Use destination as scratch. MemOperand location = VarOperand(var, dest); __ lw(dest, location); } void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0, Register scratch1) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); DCHECK(!scratch0.is(src)); DCHECK(!scratch0.is(scratch1)); DCHECK(!scratch1.is(src)); MemOperand location = VarOperand(var, scratch0); __ sw(src, location); // Emit the write barrier code if the location is in the heap. if (var->IsContextSlot()) { __ RecordWriteContextSlot(scratch0, location.offset(), src, scratch1, kRAHasBeenSaved, kDontSaveFPRegs); } } void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr, bool should_normalize, Label* if_true, Label* if_false) { // Only prepare for bailouts before splits if we're in a test // context. Otherwise, we let the Visit function deal with the // preparation to avoid preparing with the same AST id twice. if (!context()->IsTest()) return; Label skip; if (should_normalize) __ Branch(&skip); PrepareForBailout(expr, TOS_REG); if (should_normalize) { __ LoadRoot(t0, Heap::kTrueValueRootIndex); Split(eq, a0, Operand(t0), if_true, if_false, NULL); __ bind(&skip); } } void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) { // The variable in the declaration always resides in the current function // context. DCHECK_EQ(0, scope()->ContextChainLength(variable->scope())); if (generate_debug_code_) { // Check that we're not inside a with or catch context. __ lw(a1, FieldMemOperand(cp, HeapObject::kMapOffset)); __ LoadRoot(t0, Heap::kWithContextMapRootIndex); __ Check(ne, kDeclarationInWithContext, a1, Operand(t0)); __ LoadRoot(t0, Heap::kCatchContextMapRootIndex); __ Check(ne, kDeclarationInCatchContext, a1, Operand(t0)); } } void FullCodeGenerator::VisitVariableDeclaration( VariableDeclaration* declaration) { // If it was not possible to allocate the variable at compile time, we // need to "declare" it at runtime to make sure it actually exists in the // local context. VariableProxy* proxy = declaration->proxy(); VariableMode mode = declaration->mode(); Variable* variable = proxy->var(); bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY; switch (variable->location()) { case VariableLocation::GLOBAL: case VariableLocation::UNALLOCATED: globals_->Add(variable->name(), zone()); globals_->Add(variable->binding_needs_init() ? isolate()->factory()->the_hole_value() : isolate()->factory()->undefined_value(), zone()); break; case VariableLocation::PARAMETER: case VariableLocation::LOCAL: if (hole_init) { Comment cmnt(masm_, "[ VariableDeclaration"); __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); __ sw(t0, StackOperand(variable)); } break; case VariableLocation::CONTEXT: if (hole_init) { Comment cmnt(masm_, "[ VariableDeclaration"); EmitDebugCheckDeclarationContext(variable); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ sw(at, ContextMemOperand(cp, variable->index())); // No write barrier since the_hole_value is in old space. PrepareForBailoutForId(proxy->id(), NO_REGISTERS); } break; case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ VariableDeclaration"); __ li(a2, Operand(variable->name())); // Declaration nodes are always introduced in one of four modes. DCHECK(IsDeclaredVariableMode(mode)); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (hole_init) { __ LoadRoot(a0, Heap::kTheHoleValueRootIndex); } else { DCHECK(Smi::FromInt(0) == 0); __ mov(a0, zero_reg); // Smi::FromInt(0) indicates no initial value. } __ Push(a2, a0); __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes())); __ CallRuntime(Runtime::kDeclareLookupSlot); break; } } } void FullCodeGenerator::VisitFunctionDeclaration( FunctionDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case VariableLocation::GLOBAL: case VariableLocation::UNALLOCATED: { globals_->Add(variable->name(), zone()); Handle function = Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_); // Check for stack-overflow exception. if (function.is_null()) return SetStackOverflow(); globals_->Add(function, zone()); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: { Comment cmnt(masm_, "[ FunctionDeclaration"); VisitForAccumulatorValue(declaration->fun()); __ sw(result_register(), StackOperand(variable)); break; } case VariableLocation::CONTEXT: { Comment cmnt(masm_, "[ FunctionDeclaration"); EmitDebugCheckDeclarationContext(variable); VisitForAccumulatorValue(declaration->fun()); __ sw(result_register(), ContextMemOperand(cp, variable->index())); int offset = Context::SlotOffset(variable->index()); // We know that we have written a function, which is not a smi. __ RecordWriteContextSlot(cp, offset, result_register(), a2, kRAHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); PrepareForBailoutForId(proxy->id(), NO_REGISTERS); break; } case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ FunctionDeclaration"); __ li(a2, Operand(variable->name())); __ Push(a2); // Push initial value for function declaration. VisitForStackValue(declaration->fun()); __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes())); __ CallRuntime(Runtime::kDeclareLookupSlot); break; } } } void FullCodeGenerator::DeclareGlobals(Handle pairs) { // Call the runtime to declare the globals. __ li(a1, Operand(pairs)); __ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags()))); __ Push(a1, a0); __ CallRuntime(Runtime::kDeclareGlobals); // Return value is ignored. } void FullCodeGenerator::DeclareModules(Handle descriptions) { // Call the runtime to declare the modules. __ Push(descriptions); __ CallRuntime(Runtime::kDeclareModules); // Return value is ignored. } void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { Comment cmnt(masm_, "[ SwitchStatement"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); // Keep the switch value on the stack until a case matches. VisitForStackValue(stmt->tag()); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); ZoneList* clauses = stmt->cases(); CaseClause* default_clause = NULL; // Can occur anywhere in the list. Label next_test; // Recycled for each test. // Compile all the tests with branches to their bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); clause->body_target()->Unuse(); // The default is not a test, but remember it as final fall through. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); __ bind(&next_test); next_test.Unuse(); // Compile the label expression. VisitForAccumulatorValue(clause->label()); __ mov(a0, result_register()); // CompareStub requires args in a0, a1. // Perform the comparison as if via '==='. __ lw(a1, MemOperand(sp, 0)); // Switch value. bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ or_(a2, a1, a0); patch_site.EmitJumpIfNotSmi(a2, &slow_case); __ Branch(&next_test, ne, a1, Operand(a0)); __ Drop(1); // Switch value is no longer needed. __ Branch(clause->body_target()); __ bind(&slow_case); } // Record position before stub call for type feedback. SetExpressionPosition(clause); Handle ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT, strength(language_mode())).code(); CallIC(ic, clause->CompareId()); patch_site.EmitPatchInfo(); Label skip; __ Branch(&skip); PrepareForBailout(clause, TOS_REG); __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(&next_test, ne, v0, Operand(at)); __ Drop(1); __ Branch(clause->body_target()); __ bind(&skip); __ Branch(&next_test, ne, v0, Operand(zero_reg)); __ Drop(1); // Switch value is no longer needed. __ Branch(clause->body_target()); } // Discard the test value and jump to the default if present, otherwise to // the end of the statement. __ bind(&next_test); __ Drop(1); // Switch value is no longer needed. if (default_clause == NULL) { __ Branch(nested_statement.break_label()); } else { __ Branch(default_clause->body_target()); } // Compile all the case bodies. for (int i = 0; i < clauses->length(); i++) { Comment cmnt(masm_, "[ Case body"); CaseClause* clause = clauses->at(i); __ bind(clause->body_target()); PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS); VisitStatements(clause->statements()); } __ bind(nested_statement.break_label()); PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); } void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { Comment cmnt(masm_, "[ ForInStatement"); SetStatementPosition(stmt, SKIP_BREAK); FeedbackVectorSlot slot = stmt->ForInFeedbackSlot(); Label loop, exit; ForIn loop_statement(this, stmt); increment_loop_depth(); // Get the object to enumerate over. If the object is null or undefined, skip // over the loop. See ECMA-262 version 5, section 12.6.4. SetExpressionAsStatementPosition(stmt->enumerable()); VisitForAccumulatorValue(stmt->enumerable()); __ mov(a0, result_register()); // Result as param to InvokeBuiltin below. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&exit, eq, a0, Operand(at)); Register null_value = t1; __ LoadRoot(null_value, Heap::kNullValueRootIndex); __ Branch(&exit, eq, a0, Operand(null_value)); PrepareForBailoutForId(stmt->PrepareId(), TOS_REG); __ mov(a0, v0); // Convert the object to a JS object. Label convert, done_convert; __ JumpIfSmi(a0, &convert); __ GetObjectType(a0, a1, a1); __ Branch(&done_convert, ge, a1, Operand(FIRST_JS_RECEIVER_TYPE)); __ bind(&convert); ToObjectStub stub(isolate()); __ CallStub(&stub); __ mov(a0, v0); __ bind(&done_convert); PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG); __ push(a0); // Check for proxies. Label call_runtime; __ GetObjectType(a0, a1, a1); __ Branch(&call_runtime, eq, a1, Operand(JS_PROXY_TYPE)); // Check cache validity in generated code. This is a fast case for // the JSObject::IsSimpleEnum cache validity checks. If we cannot // guarantee cache validity, call the runtime system to check cache // validity or get the property names in a fixed array. __ CheckEnumCache(null_value, &call_runtime); // The enum cache is valid. Load the map of the object being // iterated over and use the cache for the iteration. Label use_cache; __ lw(v0, FieldMemOperand(a0, HeapObject::kMapOffset)); __ Branch(&use_cache); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(a0); // Duplicate the enumerable object on the stack. __ CallRuntime(Runtime::kGetPropertyNamesFast); PrepareForBailoutForId(stmt->EnumId(), TOS_REG); // If we got a map from the runtime call, we can do a fast // modification check. Otherwise, we got a fixed array, and we have // to do a slow check. Label fixed_array; __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kMetaMapRootIndex); __ Branch(&fixed_array, ne, a2, Operand(at)); // We got a map in register v0. Get the enumeration cache from it. Label no_descriptors; __ bind(&use_cache); __ EnumLength(a1, v0); __ Branch(&no_descriptors, eq, a1, Operand(Smi::FromInt(0))); __ LoadInstanceDescriptors(v0, a2); __ lw(a2, FieldMemOperand(a2, DescriptorArray::kEnumCacheOffset)); __ lw(a2, FieldMemOperand(a2, DescriptorArray::kEnumCacheBridgeCacheOffset)); // Set up the four remaining stack slots. __ li(a0, Operand(Smi::FromInt(0))); // Push map, enumeration cache, enumeration cache length (as smi) and zero. __ Push(v0, a2, a1, a0); __ jmp(&loop); __ bind(&no_descriptors); __ Drop(1); __ jmp(&exit); // We got a fixed array in register v0. Iterate through that. __ bind(&fixed_array); __ EmitLoadTypeFeedbackVector(a1); __ li(a2, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate()))); int vector_index = SmiFromSlot(slot)->value(); __ sw(a2, FieldMemOperand(a1, FixedArray::OffsetOfElementAt(vector_index))); __ li(a1, Operand(Smi::FromInt(1))); // Smi(1) indicates slow check __ Push(a1, v0); // Smi and array __ lw(a1, FieldMemOperand(v0, FixedArray::kLengthOffset)); __ li(a0, Operand(Smi::FromInt(0))); __ Push(a1, a0); // Fixed array length (as smi) and initial index. // Generate code for doing the condition check. __ bind(&loop); SetExpressionAsStatementPosition(stmt->each()); // Load the current count to a0, load the length to a1. __ lw(a0, MemOperand(sp, 0 * kPointerSize)); __ lw(a1, MemOperand(sp, 1 * kPointerSize)); __ Branch(loop_statement.break_label(), hs, a0, Operand(a1)); // Get the current entry of the array into register a3. __ lw(a2, MemOperand(sp, 2 * kPointerSize)); __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize); __ addu(t0, a2, t0); // Array base + scaled (smi) index. __ lw(a3, MemOperand(t0)); // Current entry. // Get the expected map from the stack or a smi in the // permanent slow case into register a2. __ lw(a2, MemOperand(sp, 3 * kPointerSize)); // Check if the expected map still matches that of the enumerable. // If not, we may have to filter the key. Label update_each; __ lw(a1, MemOperand(sp, 4 * kPointerSize)); __ lw(t0, FieldMemOperand(a1, HeapObject::kMapOffset)); __ Branch(&update_each, eq, t0, Operand(a2)); // Convert the entry to a string or (smi) 0 if it isn't a property // any more. If the property has been removed while iterating, we // just skip it. __ Push(a1, a3); // Enumerable and current entry. __ CallRuntime(Runtime::kForInFilter); PrepareForBailoutForId(stmt->FilterId(), TOS_REG); __ mov(a3, result_register()); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(loop_statement.continue_label(), eq, a3, Operand(at)); // Update the 'each' property or variable from the possibly filtered // entry in register a3. __ bind(&update_each); __ mov(result_register(), a3); // Perform the assignment as if via '='. { EffectContext context(this); EmitAssignment(stmt->each(), stmt->EachFeedbackSlot()); PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS); } // Both Crankshaft and Turbofan expect BodyId to be right before stmt->body(). PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); // Generate code for the body of the loop. Visit(stmt->body()); // Generate code for the going to the next element by incrementing // the index (smi) stored on top of the stack. __ bind(loop_statement.continue_label()); __ pop(a0); __ Addu(a0, a0, Operand(Smi::FromInt(1))); __ push(a0); EmitBackEdgeBookkeeping(stmt, &loop); __ Branch(&loop); // Remove the pointers stored on the stack. __ bind(loop_statement.break_label()); __ Drop(5); // Exit and decrement the loop depth. PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ bind(&exit); decrement_loop_depth(); } void FullCodeGenerator::EmitNewClosure(Handle info, bool pretenure) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. If // we're running with the --always-opt or the --prepare-always-opt // flag, we need to use the runtime function so that the new function // we are creating here gets a chance to have its code optimized and // doesn't just get a copy of the existing unoptimized code. if (!FLAG_always_opt && !FLAG_prepare_always_opt && !pretenure && scope()->is_function_scope() && info->num_literals() == 0) { FastNewClosureStub stub(isolate(), info->language_mode(), info->kind()); __ li(a2, Operand(info)); __ CallStub(&stub); } else { __ Push(info); __ CallRuntime(pretenure ? Runtime::kNewClosure_Tenured : Runtime::kNewClosure); } context()->Plug(v0); } void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset, FeedbackVectorSlot slot) { DCHECK(NeedsHomeObject(initializer)); __ lw(StoreDescriptor::ReceiverRegister(), MemOperand(sp)); __ li(StoreDescriptor::NameRegister(), Operand(isolate()->factory()->home_object_symbol())); __ lw(StoreDescriptor::ValueRegister(), MemOperand(sp, offset * kPointerSize)); EmitLoadStoreICSlot(slot); CallStoreIC(); } void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer, int offset, FeedbackVectorSlot slot) { DCHECK(NeedsHomeObject(initializer)); __ Move(StoreDescriptor::ReceiverRegister(), v0); __ li(StoreDescriptor::NameRegister(), Operand(isolate()->factory()->home_object_symbol())); __ lw(StoreDescriptor::ValueRegister(), MemOperand(sp, offset * kPointerSize)); EmitLoadStoreICSlot(slot); CallStoreIC(); } void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy, TypeofMode typeof_mode, Label* slow) { Register current = cp; Register next = a1; Register temp = a2; Scope* s = scope(); while (s != NULL) { if (s->num_heap_slots() > 0) { if (s->calls_sloppy_eval()) { // Check that extension is "the hole". __ lw(temp, ContextMemOperand(current, Context::EXTENSION_INDEX)); __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow); } // Load next context in chain. __ lw(next, ContextMemOperand(current, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering cp. current = next; } // If no outer scope calls eval, we do not need to check more // context extensions. if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break; s = s->outer_scope(); } if (s->is_eval_scope()) { Label loop, fast; if (!current.is(next)) { __ Move(next, current); } __ bind(&loop); // Terminate at native context. __ lw(temp, FieldMemOperand(next, HeapObject::kMapOffset)); __ LoadRoot(t0, Heap::kNativeContextMapRootIndex); __ Branch(&fast, eq, temp, Operand(t0)); // Check that extension is "the hole". __ lw(temp, ContextMemOperand(next, Context::EXTENSION_INDEX)); __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow); // Load next context in chain. __ lw(next, ContextMemOperand(next, Context::PREVIOUS_INDEX)); __ Branch(&loop); __ bind(&fast); } // All extension objects were empty and it is safe to use a normal global // load machinery. EmitGlobalVariableLoad(proxy, typeof_mode); } MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, Label* slow) { DCHECK(var->IsContextSlot()); Register context = cp; Register next = a3; Register temp = t0; for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { if (s->num_heap_slots() > 0) { if (s->calls_sloppy_eval()) { // Check that extension is "the hole". __ lw(temp, ContextMemOperand(context, Context::EXTENSION_INDEX)); __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow); } __ lw(next, ContextMemOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering cp. context = next; } } // Check that last extension is "the hole". __ lw(temp, ContextMemOperand(context, Context::EXTENSION_INDEX)); __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow); // This function is used only for loads, not stores, so it's safe to // return an cp-based operand (the write barrier cannot be allowed to // destroy the cp register). return ContextMemOperand(context, var->index()); } void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy, TypeofMode typeof_mode, Label* slow, Label* done) { // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. Variable* var = proxy->var(); if (var->mode() == DYNAMIC_GLOBAL) { EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow); __ Branch(done); } else if (var->mode() == DYNAMIC_LOCAL) { Variable* local = var->local_if_not_shadowed(); __ lw(v0, ContextSlotOperandCheckExtensions(local, slow)); if (local->mode() == LET || local->mode() == CONST || local->mode() == CONST_LEGACY) { __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ subu(at, v0, at); // Sub as compare: at == 0 on eq. if (local->mode() == CONST_LEGACY) { __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); __ Movz(v0, a0, at); // Conditional move: return Undefined if TheHole. } else { // LET || CONST __ Branch(done, ne, at, Operand(zero_reg)); __ li(a0, Operand(var->name())); __ push(a0); __ CallRuntime(Runtime::kThrowReferenceError); } } __ Branch(done); } } void FullCodeGenerator::EmitGlobalVariableLoad(VariableProxy* proxy, TypeofMode typeof_mode) { Variable* var = proxy->var(); DCHECK(var->IsUnallocatedOrGlobalSlot() || (var->IsLookupSlot() && var->mode() == DYNAMIC_GLOBAL)); __ LoadGlobalObject(LoadDescriptor::ReceiverRegister()); __ li(LoadDescriptor::NameRegister(), Operand(var->name())); __ li(LoadDescriptor::SlotRegister(), Operand(SmiFromSlot(proxy->VariableFeedbackSlot()))); CallLoadIC(typeof_mode); } void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy, TypeofMode typeof_mode) { // Record position before possible IC call. SetExpressionPosition(proxy); PrepareForBailoutForId(proxy->BeforeId(), NO_REGISTERS); Variable* var = proxy->var(); // Three cases: global variables, lookup variables, and all other types of // variables. switch (var->location()) { case VariableLocation::GLOBAL: case VariableLocation::UNALLOCATED: { Comment cmnt(masm_, "[ Global variable"); EmitGlobalVariableLoad(proxy, typeof_mode); context()->Plug(v0); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: case VariableLocation::CONTEXT: { DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode); Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable" : "[ Stack variable"); if (NeedsHoleCheckForLoad(proxy)) { // Let and const need a read barrier. GetVar(v0, var); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ subu(at, v0, at); // Sub as compare: at == 0 on eq. if (var->mode() == LET || var->mode() == CONST) { // Throw a reference error when using an uninitialized let/const // binding in harmony mode. Label done; __ Branch(&done, ne, at, Operand(zero_reg)); __ li(a0, Operand(var->name())); __ push(a0); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&done); } else { // Uninitialized legacy const bindings are unholed. DCHECK(var->mode() == CONST_LEGACY); __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); __ Movz(v0, a0, at); // Conditional move: Undefined if TheHole. } context()->Plug(v0); break; } context()->Plug(var); break; } case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ Lookup variable"); Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done); __ bind(&slow); __ li(a1, Operand(var->name())); __ Push(cp, a1); // Context and name. Runtime::FunctionId function_id = typeof_mode == NOT_INSIDE_TYPEOF ? Runtime::kLoadLookupSlot : Runtime::kLoadLookupSlotNoReferenceError; __ CallRuntime(function_id); __ bind(&done); context()->Plug(v0); } } } void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); __ li(a1, Operand(expr->pattern())); __ li(a0, Operand(Smi::FromInt(expr->flags()))); FastCloneRegExpStub stub(isolate()); __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) { Expression* expression = (property == NULL) ? NULL : property->value(); if (expression == NULL) { __ LoadRoot(a1, Heap::kNullValueRootIndex); __ push(a1); } else { VisitForStackValue(expression); if (NeedsHomeObject(expression)) { DCHECK(property->kind() == ObjectLiteral::Property::GETTER || property->kind() == ObjectLiteral::Property::SETTER); int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3; EmitSetHomeObject(expression, offset, property->GetSlot()); } } } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); Handle constant_properties = expr->constant_properties(); __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); __ li(a1, Operand(constant_properties)); __ li(a0, Operand(Smi::FromInt(expr->ComputeFlags()))); if (MustCreateObjectLiteralWithRuntime(expr)) { __ Push(a3, a2, a1, a0); __ CallRuntime(Runtime::kCreateObjectLiteral); } else { FastCloneShallowObjectStub stub(isolate(), expr->properties_count()); __ CallStub(&stub); } PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG); // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in v0. bool result_saved = false; AccessorTable accessor_table(zone()); int property_index = 0; for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); if (property->is_computed_name()) break; if (property->IsCompileTimeValue()) continue; Literal* key = property->key()->AsLiteral(); Expression* value = property->value(); if (!result_saved) { __ push(v0); // Save result on stack. result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value())); // Fall through. case ObjectLiteral::Property::COMPUTED: // It is safe to use [[Put]] here because the boilerplate already // contains computed properties with an uninitialized value. if (key->value()->IsInternalizedString()) { if (property->emit_store()) { VisitForAccumulatorValue(value); __ mov(StoreDescriptor::ValueRegister(), result_register()); DCHECK(StoreDescriptor::ValueRegister().is(a0)); __ li(StoreDescriptor::NameRegister(), Operand(key->value())); __ lw(StoreDescriptor::ReceiverRegister(), MemOperand(sp)); EmitLoadStoreICSlot(property->GetSlot(0)); CallStoreIC(); PrepareForBailoutForId(key->id(), NO_REGISTERS); if (NeedsHomeObject(value)) { EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1)); } } else { VisitForEffect(value); } break; } // Duplicate receiver on stack. __ lw(a0, MemOperand(sp)); __ push(a0); VisitForStackValue(key); VisitForStackValue(value); if (property->emit_store()) { if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } __ li(a0, Operand(Smi::FromInt(SLOPPY))); // PropertyAttributes. __ push(a0); __ CallRuntime(Runtime::kSetProperty); } else { __ Drop(3); } break; case ObjectLiteral::Property::PROTOTYPE: // Duplicate receiver on stack. __ lw(a0, MemOperand(sp)); __ push(a0); VisitForStackValue(value); DCHECK(property->emit_store()); __ CallRuntime(Runtime::kInternalSetPrototype); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), NO_REGISTERS); break; case ObjectLiteral::Property::GETTER: if (property->emit_store()) { accessor_table.lookup(key)->second->getter = property; } break; case ObjectLiteral::Property::SETTER: if (property->emit_store()) { accessor_table.lookup(key)->second->setter = property; } break; } } // Emit code to define accessors, using only a single call to the runtime for // each pair of corresponding getters and setters. for (AccessorTable::Iterator it = accessor_table.begin(); it != accessor_table.end(); ++it) { __ lw(a0, MemOperand(sp)); // Duplicate receiver. __ push(a0); VisitForStackValue(it->first); EmitAccessor(it->second->getter); EmitAccessor(it->second->setter); __ li(a0, Operand(Smi::FromInt(NONE))); __ push(a0); __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked); } // Object literals have two parts. The "static" part on the left contains no // computed property names, and so we can compute its map ahead of time; see // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part // starts with the first computed property name, and continues with all // properties to its right. All the code from above initializes the static // component of the object literal, and arranges for the map of the result to // reflect the static order in which the keys appear. For the dynamic // properties, we compile them into a series of "SetOwnProperty" runtime // calls. This will preserve insertion order. for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); Expression* value = property->value(); if (!result_saved) { __ push(v0); // Save result on the stack result_saved = true; } __ lw(a0, MemOperand(sp)); // Duplicate receiver. __ push(a0); if (property->kind() == ObjectLiteral::Property::PROTOTYPE) { DCHECK(!property->is_computed_name()); VisitForStackValue(value); DCHECK(property->emit_store()); __ CallRuntime(Runtime::kInternalSetPrototype); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), NO_REGISTERS); } else { EmitPropertyKey(property, expr->GetIdForPropertyName(property_index)); VisitForStackValue(value); if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: case ObjectLiteral::Property::MATERIALIZED_LITERAL: case ObjectLiteral::Property::COMPUTED: if (property->emit_store()) { __ li(a0, Operand(Smi::FromInt(NONE))); __ push(a0); __ CallRuntime(Runtime::kDefineDataPropertyUnchecked); } else { __ Drop(3); } break; case ObjectLiteral::Property::PROTOTYPE: UNREACHABLE(); break; case ObjectLiteral::Property::GETTER: __ li(a0, Operand(Smi::FromInt(NONE))); __ push(a0); __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked); break; case ObjectLiteral::Property::SETTER: __ li(a0, Operand(Smi::FromInt(NONE))); __ push(a0); __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked); break; } } } if (expr->has_function()) { DCHECK(result_saved); __ lw(a0, MemOperand(sp)); __ push(a0); __ CallRuntime(Runtime::kToFastProperties); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(v0); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); Handle constant_elements = expr->constant_elements(); bool has_fast_elements = IsFastObjectElementsKind(expr->constant_elements_kind()); AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE; if (has_fast_elements && !FLAG_allocation_site_pretenuring) { // If the only customer of allocation sites is transitioning, then // we can turn it off if we don't have anywhere else to transition to. allocation_site_mode = DONT_TRACK_ALLOCATION_SITE; } __ mov(a0, result_register()); __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); __ li(a1, Operand(constant_elements)); if (MustCreateArrayLiteralWithRuntime(expr)) { __ li(a0, Operand(Smi::FromInt(expr->ComputeFlags()))); __ Push(a3, a2, a1, a0); __ CallRuntime(Runtime::kCreateArrayLiteral); } else { FastCloneShallowArrayStub stub(isolate(), allocation_site_mode); __ CallStub(&stub); } PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG); bool result_saved = false; // Is the result saved to the stack? ZoneList* subexprs = expr->values(); int length = subexprs->length(); // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. int array_index = 0; for (; array_index < length; array_index++) { Expression* subexpr = subexprs->at(array_index); if (subexpr->IsSpread()) break; // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; if (!result_saved) { __ push(v0); // array literal result_saved = true; } VisitForAccumulatorValue(subexpr); __ li(StoreDescriptor::NameRegister(), Operand(Smi::FromInt(array_index))); __ lw(StoreDescriptor::ReceiverRegister(), MemOperand(sp, 0)); __ mov(StoreDescriptor::ValueRegister(), result_register()); EmitLoadStoreICSlot(expr->LiteralFeedbackSlot()); Handle ic = CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); CallIC(ic); PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS); } // In case the array literal contains spread expressions it has two parts. The // first part is the "static" array which has a literal index is handled // above. The second part is the part after the first spread expression // (inclusive) and these elements gets appended to the array. Note that the // number elements an iterable produces is unknown ahead of time. if (array_index < length && result_saved) { __ Pop(v0); result_saved = false; } for (; array_index < length; array_index++) { Expression* subexpr = subexprs->at(array_index); __ Push(v0); if (subexpr->IsSpread()) { VisitForStackValue(subexpr->AsSpread()->expression()); __ InvokeBuiltin(Context::CONCAT_ITERABLE_TO_ARRAY_BUILTIN_INDEX, CALL_FUNCTION); } else { VisitForStackValue(subexpr); __ CallRuntime(Runtime::kAppendElement); } PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(v0); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { DCHECK(expr->target()->IsValidReferenceExpressionOrThis()); Comment cmnt(masm_, "[ Assignment"); SetExpressionPosition(expr, INSERT_BREAK); Property* property = expr->target()->AsProperty(); LhsKind assign_type = Property::GetAssignType(property); // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the register. VisitForStackValue(property->obj()); __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0)); } else { VisitForStackValue(property->obj()); } break; case NAMED_SUPER_PROPERTY: VisitForStackValue( property->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( property->obj()->AsSuperPropertyReference()->home_object()); __ Push(result_register()); if (expr->is_compound()) { const Register scratch = a1; __ lw(scratch, MemOperand(sp, kPointerSize)); __ Push(scratch, result_register()); } break; case KEYED_SUPER_PROPERTY: { const Register scratch = a1; VisitForStackValue( property->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( property->obj()->AsSuperPropertyReference()->home_object()); __ Move(scratch, result_register()); VisitForAccumulatorValue(property->key()); __ Push(scratch, result_register()); if (expr->is_compound()) { const Register scratch1 = t0; __ lw(scratch1, MemOperand(sp, 2 * kPointerSize)); __ Push(scratch1, scratch, result_register()); } break; } case KEYED_PROPERTY: // We need the key and receiver on both the stack and in v0 and a1. if (expr->is_compound()) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 1 * kPointerSize)); __ lw(LoadDescriptor::NameRegister(), MemOperand(sp, 0)); } else { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); } break; } // For compound assignments we need another deoptimization point after the // variable/property load. if (expr->is_compound()) { { AccumulatorValueContext context(this); switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()); PrepareForBailout(expr->target(), TOS_REG); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; case NAMED_SUPER_PROPERTY: EmitNamedSuperPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; case KEYED_SUPER_PROPERTY: EmitKeyedSuperPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; } } Token::Value op = expr->binary_op(); __ push(v0); // Left operand goes on the stack. VisitForAccumulatorValue(expr->value()); AccumulatorValueContext context(this); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr->binary_operation(), op, expr->target(), expr->value()); } else { EmitBinaryOp(expr->binary_operation(), op); } // Deoptimization point in case the binary operation may have side effects. PrepareForBailout(expr->binary_operation(), TOS_REG); } else { VisitForAccumulatorValue(expr->value()); } SetExpressionPosition(expr); // Store the value. switch (assign_type) { case VARIABLE: EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), expr->op(), expr->AssignmentSlot()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(v0); break; case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case NAMED_SUPER_PROPERTY: EmitNamedSuperPropertyStore(property); context()->Plug(v0); break; case KEYED_SUPER_PROPERTY: EmitKeyedSuperPropertyStore(property); context()->Plug(v0); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::VisitYield(Yield* expr) { Comment cmnt(masm_, "[ Yield"); SetExpressionPosition(expr); // Evaluate yielded value first; the initial iterator definition depends on // this. It stays on the stack while we update the iterator. VisitForStackValue(expr->expression()); switch (expr->yield_kind()) { case Yield::kSuspend: // Pop value from top-of-stack slot; box result into result register. EmitCreateIteratorResult(false); __ push(result_register()); // Fall through. case Yield::kInitial: { Label suspend, continuation, post_runtime, resume; __ jmp(&suspend); __ bind(&continuation); __ RecordGeneratorContinuation(); __ jmp(&resume); __ bind(&suspend); VisitForAccumulatorValue(expr->generator_object()); DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos())); __ li(a1, Operand(Smi::FromInt(continuation.pos()))); __ sw(a1, FieldMemOperand(v0, JSGeneratorObject::kContinuationOffset)); __ sw(cp, FieldMemOperand(v0, JSGeneratorObject::kContextOffset)); __ mov(a1, cp); __ RecordWriteField(v0, JSGeneratorObject::kContextOffset, a1, a2, kRAHasBeenSaved, kDontSaveFPRegs); __ Addu(a1, fp, Operand(StandardFrameConstants::kExpressionsOffset)); __ Branch(&post_runtime, eq, sp, Operand(a1)); __ push(v0); // generator object __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ bind(&post_runtime); __ pop(result_register()); EmitReturnSequence(); __ bind(&resume); context()->Plug(result_register()); break; } case Yield::kFinal: { VisitForAccumulatorValue(expr->generator_object()); __ li(a1, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorClosed))); __ sw(a1, FieldMemOperand(result_register(), JSGeneratorObject::kContinuationOffset)); // Pop value from top-of-stack slot, box result into result register. EmitCreateIteratorResult(true); EmitUnwindBeforeReturn(); EmitReturnSequence(); break; } case Yield::kDelegating: { VisitForStackValue(expr->generator_object()); // Initial stack layout is as follows: // [sp + 1 * kPointerSize] iter // [sp + 0 * kPointerSize] g Label l_catch, l_try, l_suspend, l_continuation, l_resume; Label l_next, l_call; Register load_receiver = LoadDescriptor::ReceiverRegister(); Register load_name = LoadDescriptor::NameRegister(); // Initial send value is undefined. __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); __ Branch(&l_next); // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; } __ bind(&l_catch); __ mov(a0, v0); __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw" __ lw(a3, MemOperand(sp, 1 * kPointerSize)); // iter __ Push(load_name, a3, a0); // "throw", iter, except __ jmp(&l_call); // try { received = %yield result } // Shuffle the received result above a try handler and yield it without // re-boxing. __ bind(&l_try); __ pop(a0); // result int handler_index = NewHandlerTableEntry(); EnterTryBlock(handler_index, &l_catch); const int try_block_size = TryCatch::kElementCount * kPointerSize; __ push(a0); // result __ jmp(&l_suspend); __ bind(&l_continuation); __ RecordGeneratorContinuation(); __ mov(a0, v0); __ jmp(&l_resume); __ bind(&l_suspend); const int generator_object_depth = kPointerSize + try_block_size; __ lw(a0, MemOperand(sp, generator_object_depth)); __ push(a0); // g __ Push(Smi::FromInt(handler_index)); // handler-index DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos())); __ li(a1, Operand(Smi::FromInt(l_continuation.pos()))); __ sw(a1, FieldMemOperand(a0, JSGeneratorObject::kContinuationOffset)); __ sw(cp, FieldMemOperand(a0, JSGeneratorObject::kContextOffset)); __ mov(a1, cp); __ RecordWriteField(a0, JSGeneratorObject::kContextOffset, a1, a2, kRAHasBeenSaved, kDontSaveFPRegs); __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 2); __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ pop(v0); // result EmitReturnSequence(); __ mov(a0, v0); __ bind(&l_resume); // received in a0 ExitTryBlock(handler_index); // receiver = iter; f = 'next'; arg = received; __ bind(&l_next); __ LoadRoot(load_name, Heap::knext_stringRootIndex); // "next" __ lw(a3, MemOperand(sp, 1 * kPointerSize)); // iter __ Push(load_name, a3, a0); // "next", iter, received // result = receiver[f](arg); __ bind(&l_call); __ lw(load_receiver, MemOperand(sp, kPointerSize)); __ lw(load_name, MemOperand(sp, 2 * kPointerSize)); __ li(LoadDescriptor::SlotRegister(), Operand(SmiFromSlot(expr->KeyedLoadFeedbackSlot()))); Handle ic = CodeFactory::KeyedLoadIC(isolate(), SLOPPY).code(); CallIC(ic, TypeFeedbackId::None()); __ mov(a0, v0); __ mov(a1, a0); __ sw(a1, MemOperand(sp, 2 * kPointerSize)); SetCallPosition(expr); __ li(a0, Operand(1)); __ Call( isolate()->builtins()->Call(ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ Drop(1); // The function is still on the stack; drop it. // if (!result.done) goto l_try; __ Move(load_receiver, v0); __ push(load_receiver); // save result __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done" __ li(LoadDescriptor::SlotRegister(), Operand(SmiFromSlot(expr->DoneFeedbackSlot()))); CallLoadIC(NOT_INSIDE_TYPEOF); // v0=result.done __ mov(a0, v0); Handle bool_ic = ToBooleanStub::GetUninitialized(isolate()); CallIC(bool_ic); __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(&l_try, ne, result_register(), Operand(at)); // result.value __ pop(load_receiver); // result __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value" __ li(LoadDescriptor::SlotRegister(), Operand(SmiFromSlot(expr->ValueFeedbackSlot()))); CallLoadIC(NOT_INSIDE_TYPEOF); // v0=result.value context()->DropAndPlug(2, v0); // drop iter and g break; } } } void FullCodeGenerator::EmitGeneratorResume(Expression *generator, Expression *value, JSGeneratorObject::ResumeMode resume_mode) { // The value stays in a0, and is ultimately read by the resumed generator, as // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it // is read to throw the value when the resumed generator is already closed. // a1 will hold the generator object until the activation has been resumed. VisitForStackValue(generator); VisitForAccumulatorValue(value); __ pop(a1); // Load suspended function and context. __ lw(cp, FieldMemOperand(a1, JSGeneratorObject::kContextOffset)); __ lw(t0, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); // Load receiver and store as the first argument. __ lw(a2, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset)); __ push(a2); // Push holes for the rest of the arguments to the generator function. __ lw(a3, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); __ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); __ LoadRoot(a2, Heap::kTheHoleValueRootIndex); Label push_argument_holes, push_frame; __ bind(&push_argument_holes); __ Subu(a3, a3, Operand(Smi::FromInt(1))); __ Branch(&push_frame, lt, a3, Operand(zero_reg)); __ push(a2); __ jmp(&push_argument_holes); // Enter a new JavaScript frame, and initialize its slots as they were when // the generator was suspended. Label resume_frame, done; __ bind(&push_frame); __ Call(&resume_frame); __ jmp(&done); __ bind(&resume_frame); // ra = return address. // fp = caller's frame pointer. // cp = callee's context, // t0 = callee's JS function. __ Push(ra, fp, cp, t0); // Adjust FP to point to saved FP. __ Addu(fp, sp, 2 * kPointerSize); // Load the operand stack size. __ lw(a3, FieldMemOperand(a1, JSGeneratorObject::kOperandStackOffset)); __ lw(a3, FieldMemOperand(a3, FixedArray::kLengthOffset)); __ SmiUntag(a3); // If we are sending a value and there is no operand stack, we can jump back // in directly. if (resume_mode == JSGeneratorObject::NEXT) { Label slow_resume; __ Branch(&slow_resume, ne, a3, Operand(zero_reg)); __ lw(a3, FieldMemOperand(t0, JSFunction::kCodeEntryOffset)); __ lw(a2, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset)); __ SmiUntag(a2); __ Addu(a3, a3, Operand(a2)); __ li(a2, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting))); __ sw(a2, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset)); __ Jump(a3); __ bind(&slow_resume); } // Otherwise, we push holes for the operand stack and call the runtime to fix // up the stack and the handlers. Label push_operand_holes, call_resume; __ bind(&push_operand_holes); __ Subu(a3, a3, Operand(1)); __ Branch(&call_resume, lt, a3, Operand(zero_reg)); __ push(a2); __ Branch(&push_operand_holes); __ bind(&call_resume); DCHECK(!result_register().is(a1)); __ Push(a1, result_register()); __ Push(Smi::FromInt(resume_mode)); __ CallRuntime(Runtime::kResumeJSGeneratorObject); // Not reached: the runtime call returns elsewhere. __ stop("not-reached"); __ bind(&done); context()->Plug(result_register()); } void FullCodeGenerator::EmitCreateIteratorResult(bool done) { Label allocate, done_allocate; __ Allocate(JSIteratorResult::kSize, v0, a2, a3, &allocate, TAG_OBJECT); __ jmp(&done_allocate); __ bind(&allocate); __ Push(Smi::FromInt(JSIteratorResult::kSize)); __ CallRuntime(Runtime::kAllocateInNewSpace); __ bind(&done_allocate); __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, a1); __ pop(a2); __ LoadRoot(a3, done ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex); __ LoadRoot(t0, Heap::kEmptyFixedArrayRootIndex); __ sw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset)); __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset)); __ sw(a2, FieldMemOperand(v0, JSIteratorResult::kValueOffset)); __ sw(a3, FieldMemOperand(v0, JSIteratorResult::kDoneOffset)); STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize); } void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { SetExpressionPosition(prop); Literal* key = prop->key()->AsLiteral(); DCHECK(!prop->IsSuperAccess()); __ li(LoadDescriptor::NameRegister(), Operand(key->value())); __ li(LoadDescriptor::SlotRegister(), Operand(SmiFromSlot(prop->PropertyFeedbackSlot()))); CallLoadIC(NOT_INSIDE_TYPEOF, language_mode()); } void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) { // Stack: receiver, home_object. SetExpressionPosition(prop); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); DCHECK(prop->IsSuperAccess()); __ Push(key->value()); __ Push(Smi::FromInt(language_mode())); __ CallRuntime(Runtime::kLoadFromSuper); } void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { SetExpressionPosition(prop); Handle ic = CodeFactory::KeyedLoadIC(isolate(), language_mode()).code(); __ li(LoadDescriptor::SlotRegister(), Operand(SmiFromSlot(prop->PropertyFeedbackSlot()))); CallIC(ic); } void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) { // Stack: receiver, home_object, key. SetExpressionPosition(prop); __ Push(Smi::FromInt(language_mode())); __ CallRuntime(Runtime::kLoadKeyedFromSuper); } void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, Token::Value op, Expression* left_expr, Expression* right_expr) { Label done, smi_case, stub_call; Register scratch1 = a2; Register scratch2 = a3; // Get the arguments. Register left = a1; Register right = a0; __ pop(left); __ mov(a0, result_register()); // Perform combined smi check on both operands. __ Or(scratch1, left, Operand(right)); STATIC_ASSERT(kSmiTag == 0); JumpPatchSite patch_site(masm_); patch_site.EmitJumpIfSmi(scratch1, &smi_case); __ bind(&stub_call); Handle code = CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code(); CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); __ jmp(&done); __ bind(&smi_case); // Smi case. This code works the same way as the smi-smi case in the type // recording binary operation stub, see switch (op) { case Token::SAR: __ GetLeastBitsFromSmi(scratch1, right, 5); __ srav(right, left, scratch1); __ And(v0, right, Operand(~kSmiTagMask)); break; case Token::SHL: { __ SmiUntag(scratch1, left); __ GetLeastBitsFromSmi(scratch2, right, 5); __ sllv(scratch1, scratch1, scratch2); __ Addu(scratch2, scratch1, Operand(0x40000000)); __ Branch(&stub_call, lt, scratch2, Operand(zero_reg)); __ SmiTag(v0, scratch1); break; } case Token::SHR: { __ SmiUntag(scratch1, left); __ GetLeastBitsFromSmi(scratch2, right, 5); __ srlv(scratch1, scratch1, scratch2); __ And(scratch2, scratch1, 0xc0000000); __ Branch(&stub_call, ne, scratch2, Operand(zero_reg)); __ SmiTag(v0, scratch1); break; } case Token::ADD: __ AddBranchOvf(v0, left, Operand(right), &stub_call); break; case Token::SUB: __ SubBranchOvf(v0, left, Operand(right), &stub_call); break; case Token::MUL: { __ SmiUntag(scratch1, right); __ Mul(scratch2, v0, left, scratch1); __ sra(scratch1, v0, 31); __ Branch(&stub_call, ne, scratch1, Operand(scratch2)); __ Branch(&done, ne, v0, Operand(zero_reg)); __ Addu(scratch2, right, left); __ Branch(&stub_call, lt, scratch2, Operand(zero_reg)); DCHECK(Smi::FromInt(0) == 0); __ mov(v0, zero_reg); break; } case Token::BIT_OR: __ Or(v0, left, Operand(right)); break; case Token::BIT_AND: __ And(v0, left, Operand(right)); break; case Token::BIT_XOR: __ Xor(v0, left, Operand(right)); break; default: UNREACHABLE(); } __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) { // Constructor is in v0. DCHECK(lit != NULL); __ push(v0); // No access check is needed here since the constructor is created by the // class literal. Register scratch = a1; __ lw(scratch, FieldMemOperand(v0, JSFunction::kPrototypeOrInitialMapOffset)); __ push(scratch); for (int i = 0; i < lit->properties()->length(); i++) { ObjectLiteral::Property* property = lit->properties()->at(i); Expression* value = property->value(); if (property->is_static()) { __ lw(scratch, MemOperand(sp, kPointerSize)); // constructor } else { __ lw(scratch, MemOperand(sp, 0)); // prototype } __ push(scratch); EmitPropertyKey(property, lit->GetIdForProperty(i)); // The static prototype property is read only. We handle the non computed // property name case in the parser. Since this is the only case where we // need to check for an own read only property we special case this so we do // not need to do this for every property. if (property->is_static() && property->is_computed_name()) { __ CallRuntime(Runtime::kThrowIfStaticPrototype); __ push(v0); } VisitForStackValue(value); if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: case ObjectLiteral::Property::MATERIALIZED_LITERAL: case ObjectLiteral::Property::PROTOTYPE: UNREACHABLE(); case ObjectLiteral::Property::COMPUTED: __ CallRuntime(Runtime::kDefineClassMethod); break; case ObjectLiteral::Property::GETTER: __ li(a0, Operand(Smi::FromInt(DONT_ENUM))); __ push(a0); __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked); break; case ObjectLiteral::Property::SETTER: __ li(a0, Operand(Smi::FromInt(DONT_ENUM))); __ push(a0); __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked); break; default: UNREACHABLE(); } } // Set both the prototype and constructor to have fast properties, and also // freeze them in strong mode. __ CallRuntime(Runtime::kFinalizeClassDefinition); } void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) { __ mov(a0, result_register()); __ pop(a1); Handle code = CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code(); JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code. CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); context()->Plug(v0); } void FullCodeGenerator::EmitAssignment(Expression* expr, FeedbackVectorSlot slot) { DCHECK(expr->IsValidReferenceExpressionOrThis()); Property* prop = expr->AsProperty(); LhsKind assign_type = Property::GetAssignType(prop); switch (assign_type) { case VARIABLE: { Variable* var = expr->AsVariableProxy()->var(); EffectContext context(this); EmitVariableAssignment(var, Token::ASSIGN, slot); break; } case NAMED_PROPERTY: { __ push(result_register()); // Preserve value. VisitForAccumulatorValue(prop->obj()); __ mov(StoreDescriptor::ReceiverRegister(), result_register()); __ pop(StoreDescriptor::ValueRegister()); // Restore value. __ li(StoreDescriptor::NameRegister(), Operand(prop->key()->AsLiteral()->value())); EmitLoadStoreICSlot(slot); CallStoreIC(); break; } case NAMED_SUPER_PROPERTY: { __ Push(v0); VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( prop->obj()->AsSuperPropertyReference()->home_object()); // stack: value, this; v0: home_object Register scratch = a2; Register scratch2 = a3; __ mov(scratch, result_register()); // home_object __ lw(v0, MemOperand(sp, kPointerSize)); // value __ lw(scratch2, MemOperand(sp, 0)); // this __ sw(scratch2, MemOperand(sp, kPointerSize)); // this __ sw(scratch, MemOperand(sp, 0)); // home_object // stack: this, home_object; v0: value EmitNamedSuperPropertyStore(prop); break; } case KEYED_SUPER_PROPERTY: { __ Push(v0); VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( prop->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(prop->key()); Register scratch = a2; Register scratch2 = a3; __ lw(scratch2, MemOperand(sp, 2 * kPointerSize)); // value // stack: value, this, home_object; v0: key, a3: value __ lw(scratch, MemOperand(sp, kPointerSize)); // this __ sw(scratch, MemOperand(sp, 2 * kPointerSize)); __ lw(scratch, MemOperand(sp, 0)); // home_object __ sw(scratch, MemOperand(sp, kPointerSize)); __ sw(v0, MemOperand(sp, 0)); __ Move(v0, scratch2); // stack: this, home_object, key; v0: value. EmitKeyedSuperPropertyStore(prop); break; } case KEYED_PROPERTY: { __ push(result_register()); // Preserve value. VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ mov(StoreDescriptor::NameRegister(), result_register()); __ Pop(StoreDescriptor::ValueRegister(), StoreDescriptor::ReceiverRegister()); EmitLoadStoreICSlot(slot); Handle ic = CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); CallIC(ic); break; } } context()->Plug(v0); } void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot( Variable* var, MemOperand location) { __ sw(result_register(), location); if (var->IsContextSlot()) { // RecordWrite may destroy all its register arguments. __ Move(a3, result_register()); int offset = Context::SlotOffset(var->index()); __ RecordWriteContextSlot( a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs); } } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op, FeedbackVectorSlot slot) { if (var->IsUnallocated()) { // Global var, const, or let. __ mov(StoreDescriptor::ValueRegister(), result_register()); __ li(StoreDescriptor::NameRegister(), Operand(var->name())); __ LoadGlobalObject(StoreDescriptor::ReceiverRegister()); EmitLoadStoreICSlot(slot); CallStoreIC(); } else if (var->mode() == LET && op != Token::INIT) { // Non-initializing assignment to let variable needs a write barrier. DCHECK(!var->IsLookupSlot()); DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label assign; MemOperand location = VarOperand(var, a1); __ lw(a3, location); __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); __ Branch(&assign, ne, a3, Operand(t0)); __ li(a3, Operand(var->name())); __ push(a3); __ CallRuntime(Runtime::kThrowReferenceError); // Perform the assignment. __ bind(&assign); EmitStoreToStackLocalOrContextSlot(var, location); } else if (var->mode() == CONST && op != Token::INIT) { // Assignment to const variable needs a write barrier. DCHECK(!var->IsLookupSlot()); DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label const_error; MemOperand location = VarOperand(var, a1); __ lw(a3, location); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ Branch(&const_error, ne, a3, Operand(at)); __ li(a3, Operand(var->name())); __ push(a3); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&const_error); __ CallRuntime(Runtime::kThrowConstAssignError); } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) { // Initializing assignment to const {this} needs a write barrier. DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label uninitialized_this; MemOperand location = VarOperand(var, a1); __ lw(a3, location); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ Branch(&uninitialized_this, eq, a3, Operand(at)); __ li(a0, Operand(var->name())); __ Push(a0); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&uninitialized_this); EmitStoreToStackLocalOrContextSlot(var, location); } else if (!var->is_const_mode() || (var->mode() == CONST && op == Token::INIT)) { if (var->IsLookupSlot()) { // Assignment to var. __ li(a1, Operand(var->name())); __ li(a0, Operand(Smi::FromInt(language_mode()))); __ Push(v0, cp, a1, a0); // Value, context, name, language mode. __ CallRuntime(Runtime::kStoreLookupSlot); } else { // Assignment to var or initializing assignment to let/const in harmony // mode. DCHECK((var->IsStackAllocated() || var->IsContextSlot())); MemOperand location = VarOperand(var, a1); if (generate_debug_code_ && var->mode() == LET && op == Token::INIT) { // Check for an uninitialized let binding. __ lw(a2, location); __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); __ Check(eq, kLetBindingReInitialization, a2, Operand(t0)); } EmitStoreToStackLocalOrContextSlot(var, location); } } else if (var->mode() == CONST_LEGACY && op == Token::INIT) { // Const initializers need a write barrier. DCHECK(!var->IsParameter()); // No const parameters. if (var->IsLookupSlot()) { __ li(a0, Operand(var->name())); __ Push(v0, cp, a0); // Context and name. __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot); } else { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label skip; MemOperand location = VarOperand(var, a1); __ lw(a2, location); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ Branch(&skip, ne, a2, Operand(at)); EmitStoreToStackLocalOrContextSlot(var, location); __ bind(&skip); } } else { DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT); if (is_strict(language_mode())) { __ CallRuntime(Runtime::kThrowConstAssignError); } // Silently ignore store in sloppy mode. } } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); DCHECK(prop != NULL); DCHECK(prop->key()->IsLiteral()); __ mov(StoreDescriptor::ValueRegister(), result_register()); __ li(StoreDescriptor::NameRegister(), Operand(prop->key()->AsLiteral()->value())); __ pop(StoreDescriptor::ReceiverRegister()); EmitLoadStoreICSlot(expr->AssignmentSlot()); CallStoreIC(); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(v0); } void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) { // Assignment to named property of super. // v0 : value // stack : receiver ('this'), home_object DCHECK(prop != NULL); Literal* key = prop->key()->AsLiteral(); DCHECK(key != NULL); __ Push(key->value()); __ Push(v0); __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict : Runtime::kStoreToSuper_Sloppy)); } void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) { // Assignment to named property of super. // v0 : value // stack : receiver ('this'), home_object, key DCHECK(prop != NULL); __ Push(v0); __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreKeyedToSuper_Strict : Runtime::kStoreKeyedToSuper_Sloppy)); } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. // Call keyed store IC. // The arguments are: // - a0 is the value, // - a1 is the key, // - a2 is the receiver. __ mov(StoreDescriptor::ValueRegister(), result_register()); __ Pop(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister()); DCHECK(StoreDescriptor::ValueRegister().is(a0)); Handle ic = CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); EmitLoadStoreICSlot(expr->AssignmentSlot()); CallIC(ic); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(v0); } void FullCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); SetExpressionPosition(expr); Expression* key = expr->key(); if (key->IsPropertyName()) { if (!expr->IsSuperAccess()) { VisitForAccumulatorValue(expr->obj()); __ Move(LoadDescriptor::ReceiverRegister(), v0); EmitNamedPropertyLoad(expr); } else { VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( expr->obj()->AsSuperPropertyReference()->home_object()); EmitNamedSuperPropertyLoad(expr); } } else { if (!expr->IsSuperAccess()) { VisitForStackValue(expr->obj()); VisitForAccumulatorValue(expr->key()); __ Move(LoadDescriptor::NameRegister(), v0); __ pop(LoadDescriptor::ReceiverRegister()); EmitKeyedPropertyLoad(expr); } else { VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( expr->obj()->AsSuperPropertyReference()->home_object()); VisitForStackValue(expr->key()); EmitKeyedSuperPropertyLoad(expr); } } PrepareForBailoutForId(expr->LoadId(), TOS_REG); context()->Plug(v0); } void FullCodeGenerator::CallIC(Handle code, TypeFeedbackId id) { ic_total_count_++; __ Call(code, RelocInfo::CODE_TARGET, id); } // Code common for calls using the IC. void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); // Get the target function. ConvertReceiverMode convert_mode; if (callee->IsVariableProxy()) { { StackValueContext context(this); EmitVariableLoad(callee->AsVariableProxy()); PrepareForBailout(callee, NO_REGISTERS); } // Push undefined as receiver. This is patched in the method prologue if it // is a sloppy mode method. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ push(at); convert_mode = ConvertReceiverMode::kNullOrUndefined; } else { // Load the function from the receiver. DCHECK(callee->IsProperty()); DCHECK(!callee->AsProperty()->IsSuperAccess()); __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0)); EmitNamedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); // Push the target function under the receiver. __ lw(at, MemOperand(sp, 0)); __ push(at); __ sw(v0, MemOperand(sp, kPointerSize)); convert_mode = ConvertReceiverMode::kNotNullOrUndefined; } EmitCall(expr, convert_mode); } void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) { SetExpressionPosition(expr); Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); // Load the function from the receiver. const Register scratch = a1; SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference(); VisitForAccumulatorValue(super_ref->home_object()); __ mov(scratch, v0); VisitForAccumulatorValue(super_ref->this_var()); __ Push(scratch, v0, v0, scratch); __ Push(key->value()); __ Push(Smi::FromInt(language_mode())); // Stack here: // - home_object // - this (receiver) // - this (receiver) <-- LoadFromSuper will pop here and below. // - home_object // - key // - language_mode __ CallRuntime(Runtime::kLoadFromSuper); // Replace home_object with target function. __ sw(v0, MemOperand(sp, kPointerSize)); // Stack here: // - target function // - this (receiver) EmitCall(expr); } // Code common for calls using the IC. void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, Expression* key) { // Load the key. VisitForAccumulatorValue(key); Expression* callee = expr->expression(); // Load the function from the receiver. DCHECK(callee->IsProperty()); __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0)); __ Move(LoadDescriptor::NameRegister(), v0); EmitKeyedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); // Push the target function under the receiver. __ lw(at, MemOperand(sp, 0)); __ push(at); __ sw(v0, MemOperand(sp, kPointerSize)); EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined); } void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); SetExpressionPosition(prop); // Load the function from the receiver. const Register scratch = a1; SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference(); VisitForAccumulatorValue(super_ref->home_object()); __ Move(scratch, v0); VisitForAccumulatorValue(super_ref->this_var()); __ Push(scratch, v0, v0, scratch); VisitForStackValue(prop->key()); __ Push(Smi::FromInt(language_mode())); // Stack here: // - home_object // - this (receiver) // - this (receiver) <-- LoadKeyedFromSuper will pop here and below. // - home_object // - key // - language_mode __ CallRuntime(Runtime::kLoadKeyedFromSuper); // Replace home_object with target function. __ sw(v0, MemOperand(sp, kPointerSize)); // Stack here: // - target function // - this (receiver) EmitCall(expr); } void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) { // Load the arguments. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } PrepareForBailoutForId(expr->CallId(), NO_REGISTERS); // Record source position of the IC call. SetCallPosition(expr); Handle ic = CodeFactory::CallIC(isolate(), arg_count, mode).code(); __ li(a3, Operand(SmiFromSlot(expr->CallFeedbackICSlot()))); __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); // Don't assign a type feedback id to the IC, since type feedback is provided // by the vector above. CallIC(ic); RecordJSReturnSite(expr); // Restore context register. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, v0); } void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) { // t3: copy of the first argument or undefined if it doesn't exist. if (arg_count > 0) { __ lw(t3, MemOperand(sp, arg_count * kPointerSize)); } else { __ LoadRoot(t3, Heap::kUndefinedValueRootIndex); } // t2: the receiver of the enclosing function. __ lw(t2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); // t1: the language mode. __ li(t1, Operand(Smi::FromInt(language_mode()))); // t0: the start position of the scope the calls resides in. __ li(t0, Operand(Smi::FromInt(scope()->start_position()))); // Do the runtime call. __ Push(t3, t2, t1, t0); __ CallRuntime(Runtime::kResolvePossiblyDirectEval); } // See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls. void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) { VariableProxy* callee = expr->expression()->AsVariableProxy(); if (callee->var()->IsLookupSlot()) { Label slow, done; SetExpressionPosition(callee); // Generate code for loading from variables potentially shadowed by // eval-introduced variables. EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done); __ bind(&slow); // Call the runtime to find the function to call (returned in v0) // and the object holding it (returned in v1). DCHECK(!context_register().is(a2)); __ li(a2, Operand(callee->name())); __ Push(context_register(), a2); __ CallRuntime(Runtime::kLoadLookupSlot); __ Push(v0, v1); // Function, receiver. PrepareForBailoutForId(expr->LookupId(), NO_REGISTERS); // If fast case code has been generated, emit code to push the // function and receiver and have the slow path jump around this // code. if (done.is_linked()) { Label call; __ Branch(&call); __ bind(&done); // Push function. __ push(v0); // The receiver is implicitly the global receiver. Indicate this // by passing the hole to the call function stub. __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); __ push(a1); __ bind(&call); } } else { VisitForStackValue(callee); // refEnv.WithBaseObject() __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); __ push(a2); // Reserved receiver slot. } } void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) { // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval // to resolve the function we need to call. Then we call the resolved // function using the given arguments. ZoneList* args = expr->arguments(); int arg_count = args->length(); PushCalleeAndWithBaseObject(expr); // Push the arguments. for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Push a copy of the function (found below the arguments) and // resolve eval. __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ push(a1); EmitResolvePossiblyDirectEval(arg_count); // Touch up the stack with the resolved function. __ sw(v0, MemOperand(sp, (arg_count + 1) * kPointerSize)); PrepareForBailoutForId(expr->EvalId(), NO_REGISTERS); // Record source position for debugger. SetCallPosition(expr); __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ li(a0, Operand(arg_count)); __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); RecordJSReturnSite(expr); // Restore context register. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, v0); } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push constructor on the stack. If it's not a function it's used as // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is // ignored.g DCHECK(!expr->expression()->IsSuperPropertyReference()); VisitForStackValue(expr->expression()); // Push the arguments ("left-to-right") on the stack. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetConstructCallPosition(expr); // Load function and argument count into a1 and a0. __ li(a0, Operand(arg_count)); __ lw(a1, MemOperand(sp, arg_count * kPointerSize)); // Record call targets in unoptimized code. __ EmitLoadTypeFeedbackVector(a2); __ li(a3, Operand(SmiFromSlot(expr->CallNewFeedbackSlot()))); CallConstructStub stub(isolate()); __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); PrepareForBailoutForId(expr->ReturnId(), TOS_REG); // Restore context register. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); context()->Plug(v0); } void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) { SuperCallReference* super_call_ref = expr->expression()->AsSuperCallReference(); DCHECK_NOT_NULL(super_call_ref); // Push the super constructor target on the stack (may be null, // but the Construct builtin can deal with that properly). VisitForAccumulatorValue(super_call_ref->this_function_var()); __ AssertFunction(result_register()); __ lw(result_register(), FieldMemOperand(result_register(), HeapObject::kMapOffset)); __ lw(result_register(), FieldMemOperand(result_register(), Map::kPrototypeOffset)); __ Push(result_register()); // Push the arguments ("left-to-right") on the stack. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetConstructCallPosition(expr); // Load new target into a3. VisitForAccumulatorValue(super_call_ref->new_target_var()); __ mov(a3, result_register()); // Load function and argument count into a1 and a0. __ li(a0, Operand(arg_count)); __ lw(a1, MemOperand(sp, arg_count * kPointerSize)); __ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); RecordJSReturnSite(expr); // Restore context register. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); context()->Plug(v0); } void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ SmiTst(v0, t0); Split(eq, t0, Operand(zero_reg), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(ge, a1, Operand(FIRST_JS_RECEIVER_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsSimdValue(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(SIMD128_VALUE_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a2); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ Branch(if_true, hs, a2, Operand(FIRST_FUNCTION_TYPE)); __ Branch(if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ CheckMap(v0, a1, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK); __ lw(a2, FieldMemOperand(v0, HeapNumber::kExponentOffset)); __ lw(a1, FieldMemOperand(v0, HeapNumber::kMantissaOffset)); __ li(t0, 0x80000000); Label not_nan; __ Branch(¬_nan, ne, a2, Operand(t0)); __ mov(t0, zero_reg); __ mov(a2, a1); __ bind(¬_nan); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a2, Operand(t0), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsArray(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(JS_ARRAY_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(JS_TYPED_ARRAY_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(JS_PROXY_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); // Load the two objects into registers and perform the comparison. VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ pop(a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, v0, Operand(a1), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitArguments(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); // ArgumentsAccessStub expects the key in a1 and the formal // parameter count in a0. VisitForAccumulatorValue(args->at(0)); __ mov(a1, v0); __ li(a0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT); __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); Label exit; // Get the number of formal parameters. __ li(v0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); // Check if the calling frame is an arguments adaptor frame. __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); __ Branch(&exit, ne, a3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Arguments adaptor case: Read the arguments length from the // adaptor frame. __ lw(v0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ bind(&exit); context()->Plug(v0); } void FullCodeGenerator::EmitClassOf(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); Label done, null, function, non_function_constructor; VisitForAccumulatorValue(args->at(0)); // If the object is not a JSReceiver, we return null. __ JumpIfSmi(v0, &null); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ GetObjectType(v0, v0, a1); // Map is now in v0. __ Branch(&null, lt, a1, Operand(FIRST_JS_RECEIVER_TYPE)); // Return 'Function' for JSFunction objects. __ Branch(&function, eq, a1, Operand(JS_FUNCTION_TYPE)); // Check if the constructor in the map is a JS function. Register instance_type = a2; __ GetMapConstructor(v0, v0, a1, instance_type); __ Branch(&non_function_constructor, ne, instance_type, Operand(JS_FUNCTION_TYPE)); // v0 now contains the constructor function. Grab the // instance class name from there. __ lw(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset)); __ lw(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset)); __ Branch(&done); // Functions have class 'Function'. __ bind(&function); __ LoadRoot(v0, Heap::kFunction_stringRootIndex); __ jmp(&done); // Objects with a non-function constructor have class 'Object'. __ bind(&non_function_constructor); __ LoadRoot(v0, Heap::kObject_stringRootIndex); __ jmp(&done); // Non-JS objects have class null. __ bind(&null); __ LoadRoot(v0, Heap::kNullValueRootIndex); // All done. __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitValueOf(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); // Load the object. Label done; // If the object is a smi return the object. __ JumpIfSmi(v0, &done); // If the object is not a value type, return the object. __ GetObjectType(v0, a1, a1); __ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE)); __ lw(v0, FieldMemOperand(v0, JSValue::kValueOffset)); __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitIsDate(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(1, args->length()); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = nullptr; Label* if_false = nullptr; Label* fall_through = nullptr; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(JS_DATE_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(3, args->length()); Register string = v0; Register index = a1; Register value = a2; VisitForStackValue(args->at(0)); // index VisitForStackValue(args->at(1)); // value VisitForAccumulatorValue(args->at(2)); // string __ Pop(index, value); if (FLAG_debug_code) { __ SmiTst(value, at); __ Check(eq, kNonSmiValue, at, Operand(zero_reg)); __ SmiTst(index, at); __ Check(eq, kNonSmiIndex, at, Operand(zero_reg)); __ SmiUntag(index, index); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; Register scratch = t5; __ EmitSeqStringSetCharCheck( string, index, value, scratch, one_byte_seq_type); __ SmiTag(index, index); } __ SmiUntag(value, value); __ Addu(at, string, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ SmiUntag(index); __ Addu(at, at, index); __ sb(value, MemOperand(at)); context()->Plug(string); } void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(3, args->length()); Register string = v0; Register index = a1; Register value = a2; VisitForStackValue(args->at(0)); // index VisitForStackValue(args->at(1)); // value VisitForAccumulatorValue(args->at(2)); // string __ Pop(index, value); if (FLAG_debug_code) { __ SmiTst(value, at); __ Check(eq, kNonSmiValue, at, Operand(zero_reg)); __ SmiTst(index, at); __ Check(eq, kNonSmiIndex, at, Operand(zero_reg)); __ SmiUntag(index, index); static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; Register scratch = t5; __ EmitSeqStringSetCharCheck( string, index, value, scratch, two_byte_seq_type); __ SmiTag(index, index); } __ SmiUntag(value, value); __ Addu(at, string, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ Addu(at, at, index); STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ sh(value, MemOperand(at)); context()->Plug(string); } void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); // Load the object. VisitForAccumulatorValue(args->at(1)); // Load the value. __ pop(a1); // v0 = value. a1 = object. Label done; // If the object is a smi, return the value. __ JumpIfSmi(a1, &done); // If the object is not a value type, return the value. __ GetObjectType(a1, a2, a2); __ Branch(&done, ne, a2, Operand(JS_VALUE_TYPE)); // Store the value. __ sw(v0, FieldMemOperand(a1, JSValue::kValueOffset)); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. __ mov(a2, v0); __ RecordWriteField( a1, JSValue::kValueOffset, a2, a3, kRAHasBeenSaved, kDontSaveFPRegs); __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitToInteger(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(1, args->length()); // Load the argument into v0 and convert it. VisitForAccumulatorValue(args->at(0)); // Convert the object to an integer. Label done_convert; __ JumpIfSmi(v0, &done_convert); __ Push(v0); __ CallRuntime(Runtime::kToInteger); __ bind(&done_convert); context()->Plug(v0); } void FullCodeGenerator::EmitToName(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(1, args->length()); // Load the argument into v0 and convert it. VisitForAccumulatorValue(args->at(0)); Label convert, done_convert; __ JumpIfSmi(v0, &convert); STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE); __ GetObjectType(v0, a1, a1); __ Branch(&done_convert, le, a1, Operand(LAST_NAME_TYPE)); __ bind(&convert); __ Push(v0); __ CallRuntime(Runtime::kToName); __ bind(&done_convert); context()->Plug(v0); } void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label done; StringCharFromCodeGenerator generator(v0, a1); generator.GenerateFast(masm_); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(a1); } void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); __ mov(a0, result_register()); Register object = a1; Register index = a0; Register result = v0; __ pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharCodeAtGenerator generator(object, index, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // NaN. __ LoadRoot(result, Heap::kNanValueRootIndex); __ jmp(&done); __ bind(&need_conversion); // Load the undefined value into the result register, which will // trigger conversion. __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); __ mov(a0, result_register()); Register object = a1; Register index = a0; Register scratch = a3; Register result = v0; __ pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharAtGenerator generator(object, index, scratch, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // the empty string. __ LoadRoot(result, Heap::kempty_stringRootIndex); __ jmp(&done); __ bind(&need_conversion); // Move smi zero into the result register, which will trigger // conversion. __ li(result, Operand(Smi::FromInt(0))); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitCall(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_LE(2, args->length()); // Push target, receiver and arguments onto the stack. for (Expression* const arg : *args) { VisitForStackValue(arg); } PrepareForBailoutForId(expr->CallId(), NO_REGISTERS); // Move target to a1. int const argc = args->length() - 2; __ lw(a1, MemOperand(sp, (argc + 1) * kPointerSize)); // Call the target. __ li(a0, Operand(argc)); __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); // Restore context register. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Discard the function left on TOS. context()->DropAndPlug(1, v0); } void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) { ZoneList* args = expr->arguments(); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ lw(a0, FieldMemOperand(v0, String::kHashFieldOffset)); __ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); __ AssertString(v0); __ lw(v0, FieldMemOperand(v0, String::kHashFieldOffset)); __ IndexFromHash(v0, v0); context()->Plug(v0); } void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(1, args->length()); VisitForAccumulatorValue(args->at(0)); __ AssertFunction(v0); __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); __ lw(v0, FieldMemOperand(v0, Map::kPrototypeOffset)); context()->Plug(v0); } void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) { Label bailout, done, one_char_separator, long_separator, non_trivial_array, not_size_one_array, loop, empty_separator_loop, one_char_separator_loop, one_char_separator_loop_entry, long_separator_loop; ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(1)); VisitForAccumulatorValue(args->at(0)); // All aliases of the same register have disjoint lifetimes. Register array = v0; Register elements = no_reg; // Will be v0. Register result = no_reg; // Will be v0. Register separator = a1; Register array_length = a2; Register result_pos = no_reg; // Will be a2. Register string_length = a3; Register string = t0; Register element = t1; Register elements_end = t2; Register scratch1 = t3; Register scratch2 = t5; Register scratch3 = t4; // Separator operand is on the stack. __ pop(separator); // Check that the array is a JSArray. __ JumpIfSmi(array, &bailout); __ GetObjectType(array, scratch1, scratch2); __ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE)); // Check that the array has fast elements. __ CheckFastElements(scratch1, scratch2, &bailout); // If the array has length zero, return the empty string. __ lw(array_length, FieldMemOperand(array, JSArray::kLengthOffset)); __ SmiUntag(array_length); __ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg)); __ LoadRoot(v0, Heap::kempty_stringRootIndex); __ Branch(&done); __ bind(&non_trivial_array); // Get the FixedArray containing array's elements. elements = array; __ lw(elements, FieldMemOperand(array, JSArray::kElementsOffset)); array = no_reg; // End of array's live range. // Check that all array elements are sequential one-byte strings, and // accumulate the sum of their lengths, as a smi-encoded value. __ mov(string_length, zero_reg); __ Addu(element, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ sll(elements_end, array_length, kPointerSizeLog2); __ Addu(elements_end, element, elements_end); // Loop condition: while (element < elements_end). // Live values in registers: // elements: Fixed array of strings. // array_length: Length of the fixed array of strings (not smi) // separator: Separator string // string_length: Accumulated sum of string lengths (smi). // element: Current array element. // elements_end: Array end. if (generate_debug_code_) { __ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin, array_length, Operand(zero_reg)); } __ bind(&loop); __ lw(string, MemOperand(element)); __ Addu(element, element, kPointerSize); __ JumpIfSmi(string, &bailout); __ lw(scratch1, FieldMemOperand(string, HeapObject::kMapOffset)); __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout); __ lw(scratch1, FieldMemOperand(string, SeqOneByteString::kLengthOffset)); __ AddBranchOvf(string_length, string_length, Operand(scratch1), &bailout); __ Branch(&loop, lt, element, Operand(elements_end)); // If array_length is 1, return elements[0], a string. __ Branch(¬_size_one_array, ne, array_length, Operand(1)); __ lw(v0, FieldMemOperand(elements, FixedArray::kHeaderSize)); __ Branch(&done); __ bind(¬_size_one_array); // Live values in registers: // separator: Separator string // array_length: Length of the array. // string_length: Sum of string lengths (smi). // elements: FixedArray of strings. // Check that the separator is a flat one-byte string. __ JumpIfSmi(separator, &bailout); __ lw(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset)); __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout); // Add (separator length times array_length) - separator length to the // string_length to get the length of the result string. array_length is not // smi but the other values are, so the result is a smi. __ lw(scratch1, FieldMemOperand(separator, SeqOneByteString::kLengthOffset)); __ Subu(string_length, string_length, Operand(scratch1)); __ Mul(scratch3, scratch2, array_length, scratch1); // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are // zero. __ Branch(&bailout, ne, scratch3, Operand(zero_reg)); __ And(scratch3, scratch2, Operand(0x80000000)); __ Branch(&bailout, ne, scratch3, Operand(zero_reg)); __ AddBranchOvf(string_length, string_length, Operand(scratch2), &bailout); __ SmiUntag(string_length); // Bailout for large object allocations. __ Branch(&bailout, gt, string_length, Operand(Page::kMaxRegularHeapObjectSize)); // Get first element in the array to free up the elements register to be used // for the result. __ Addu(element, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); result = elements; // End of live range for elements. elements = no_reg; // Live values in registers: // element: First array element // separator: Separator string // string_length: Length of result string (not smi) // array_length: Length of the array. __ AllocateOneByteString(result, string_length, scratch1, scratch2, elements_end, &bailout); // Prepare for looping. Set up elements_end to end of the array. Set // result_pos to the position of the result where to write the first // character. __ sll(elements_end, array_length, kPointerSizeLog2); __ Addu(elements_end, element, elements_end); result_pos = array_length; // End of live range for array_length. array_length = no_reg; __ Addu(result_pos, result, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); // Check the length of the separator. __ lw(scratch1, FieldMemOperand(separator, SeqOneByteString::kLengthOffset)); __ li(at, Operand(Smi::FromInt(1))); __ Branch(&one_char_separator, eq, scratch1, Operand(at)); __ Branch(&long_separator, gt, scratch1, Operand(at)); // Empty separator case. __ bind(&empty_separator_loop); // Live values in registers: // result_pos: the position to which we are currently copying characters. // element: Current array element. // elements_end: Array end. // Copy next array element to the result. __ lw(string, MemOperand(element)); __ Addu(element, element, kPointerSize); __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); __ SmiUntag(string_length); __ Addu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag); __ CopyBytes(string, result_pos, string_length, scratch1); // End while (element < elements_end). __ Branch(&empty_separator_loop, lt, element, Operand(elements_end)); DCHECK(result.is(v0)); __ Branch(&done); // One-character separator case. __ bind(&one_char_separator); // Replace separator with its one-byte character value. __ lbu(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize)); // Jump into the loop after the code that copies the separator, so the first // element is not preceded by a separator. __ jmp(&one_char_separator_loop_entry); __ bind(&one_char_separator_loop); // Live values in registers: // result_pos: the position to which we are currently copying characters. // element: Current array element. // elements_end: Array end. // separator: Single separator one-byte char (in lower byte). // Copy the separator character to the result. __ sb(separator, MemOperand(result_pos)); __ Addu(result_pos, result_pos, 1); // Copy next array element to the result. __ bind(&one_char_separator_loop_entry); __ lw(string, MemOperand(element)); __ Addu(element, element, kPointerSize); __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); __ SmiUntag(string_length); __ Addu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag); __ CopyBytes(string, result_pos, string_length, scratch1); // End while (element < elements_end). __ Branch(&one_char_separator_loop, lt, element, Operand(elements_end)); DCHECK(result.is(v0)); __ Branch(&done); // Long separator case (separator is more than one character). Entry is at the // label long_separator below. __ bind(&long_separator_loop); // Live values in registers: // result_pos: the position to which we are currently copying characters. // element: Current array element. // elements_end: Array end. // separator: Separator string. // Copy the separator to the result. __ lw(string_length, FieldMemOperand(separator, String::kLengthOffset)); __ SmiUntag(string_length); __ Addu(string, separator, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ CopyBytes(string, result_pos, string_length, scratch1); __ bind(&long_separator); __ lw(string, MemOperand(element)); __ Addu(element, element, kPointerSize); __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); __ SmiUntag(string_length); __ Addu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag); __ CopyBytes(string, result_pos, string_length, scratch1); // End while (element < elements_end). __ Branch(&long_separator_loop, lt, element, Operand(elements_end)); DCHECK(result.is(v0)); __ Branch(&done); __ bind(&bailout); __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); ExternalReference debug_is_active = ExternalReference::debug_is_active_address(isolate()); __ li(at, Operand(debug_is_active)); __ lb(v0, MemOperand(at)); __ SmiTag(v0); context()->Plug(v0); } void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); Label runtime, done; __ Allocate(JSIteratorResult::kSize, v0, a2, a3, &runtime, TAG_OBJECT); __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, a1); __ Pop(a2, a3); __ LoadRoot(t0, Heap::kEmptyFixedArrayRootIndex); __ sw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset)); __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset)); __ sw(a2, FieldMemOperand(v0, JSIteratorResult::kValueOffset)); __ sw(a3, FieldMemOperand(v0, JSIteratorResult::kDoneOffset)); STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize); __ jmp(&done); __ bind(&runtime); __ CallRuntime(Runtime::kCreateIterResultObject); __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) { // Push undefined as the receiver. __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); __ push(v0); __ LoadNativeContextSlot(expr->context_index(), v0); } void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) { ZoneList* args = expr->arguments(); int arg_count = args->length(); SetCallPosition(expr); __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ li(a0, Operand(arg_count)); __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined), RelocInfo::CODE_TARGET); } void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { ZoneList* args = expr->arguments(); int arg_count = args->length(); if (expr->is_jsruntime()) { Comment cmnt(masm_, "[ CallRuntime"); EmitLoadJSRuntimeFunction(expr); // Push the target function under the receiver. __ lw(at, MemOperand(sp, 0)); __ push(at); __ sw(v0, MemOperand(sp, kPointerSize)); // Push the arguments ("left-to-right"). for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } PrepareForBailoutForId(expr->CallId(), NO_REGISTERS); EmitCallJSRuntimeFunction(expr); // Restore context register. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, v0); } else { const Runtime::Function* function = expr->function(); switch (function->function_id) { #define CALL_INTRINSIC_GENERATOR(Name) \ case Runtime::kInline##Name: { \ Comment cmnt(masm_, "[ Inline" #Name); \ return Emit##Name(expr); \ } FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR) #undef CALL_INTRINSIC_GENERATOR default: { Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic"); // Push the arguments ("left-to-right"). for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the C runtime function. PrepareForBailoutForId(expr->CallId(), NO_REGISTERS); __ CallRuntime(expr->function(), arg_count); context()->Plug(v0); } } } } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::DELETE: { Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); Property* property = expr->expression()->AsProperty(); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (property != NULL) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); __ CallRuntime(is_strict(language_mode()) ? Runtime::kDeleteProperty_Strict : Runtime::kDeleteProperty_Sloppy); context()->Plug(v0); } else if (proxy != NULL) { Variable* var = proxy->var(); // Delete of an unqualified identifier is disallowed in strict mode but // "delete this" is allowed. bool is_this = var->HasThisName(isolate()); DCHECK(is_sloppy(language_mode()) || is_this); if (var->IsUnallocatedOrGlobalSlot()) { __ LoadGlobalObject(a2); __ li(a1, Operand(var->name())); __ Push(a2, a1); __ CallRuntime(Runtime::kDeleteProperty_Sloppy); context()->Plug(v0); } else if (var->IsStackAllocated() || var->IsContextSlot()) { // Result of deleting non-global, non-dynamic variables is false. // The subexpression does not have side effects. context()->Plug(is_this); } else { // Non-global variable. Call the runtime to try to delete from the // context where the variable was introduced. DCHECK(!context_register().is(a2)); __ li(a2, Operand(var->name())); __ Push(context_register(), a2); __ CallRuntime(Runtime::kDeleteLookupSlot); context()->Plug(v0); } } else { // Result of deleting non-property, non-variable reference is true. // The subexpression may have side effects. VisitForEffect(expr->expression()); context()->Plug(true); } break; } case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); context()->Plug(Heap::kUndefinedValueRootIndex); break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); if (context()->IsEffect()) { // Unary NOT has no side effects so it's only necessary to visit the // subexpression. Match the optimizing compiler by not branching. VisitForEffect(expr->expression()); } else if (context()->IsTest()) { const TestContext* test = TestContext::cast(context()); // The labels are swapped for the recursive call. VisitForControl(expr->expression(), test->false_label(), test->true_label(), test->fall_through()); context()->Plug(test->true_label(), test->false_label()); } else { // We handle value contexts explicitly rather than simply visiting // for control and plugging the control flow into the context, // because we need to prepare a pair of extra administrative AST ids // for the optimizing compiler. DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue()); Label materialize_true, materialize_false, done; VisitForControl(expr->expression(), &materialize_false, &materialize_true, &materialize_true); __ bind(&materialize_true); PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS); __ LoadRoot(v0, Heap::kTrueValueRootIndex); if (context()->IsStackValue()) __ push(v0); __ jmp(&done); __ bind(&materialize_false); PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS); __ LoadRoot(v0, Heap::kFalseValueRootIndex); if (context()->IsStackValue()) __ push(v0); __ bind(&done); } break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); { AccumulatorValueContext context(this); VisitForTypeofValue(expr->expression()); } __ mov(a3, v0); TypeofStub typeof_stub(isolate()); __ CallStub(&typeof_stub); context()->Plug(v0); break; } default: UNREACHABLE(); } } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { DCHECK(expr->expression()->IsValidReferenceExpressionOrThis()); Comment cmnt(masm_, "[ CountOperation"); Property* prop = expr->expression()->AsProperty(); LhsKind assign_type = Property::GetAssignType(prop); // Evaluate expression and get value. if (assign_type == VARIABLE) { DCHECK(expr->expression()->AsVariableProxy()->var() != NULL); AccumulatorValueContext context(this); EmitVariableLoad(expr->expression()->AsVariableProxy()); } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && !context()->IsEffect()) { __ li(at, Operand(Smi::FromInt(0))); __ push(at); } switch (assign_type) { case NAMED_PROPERTY: { // Put the object both on the stack and in the register. VisitForStackValue(prop->obj()); __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0)); EmitNamedPropertyLoad(prop); break; } case NAMED_SUPER_PROPERTY: { VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( prop->obj()->AsSuperPropertyReference()->home_object()); __ Push(result_register()); const Register scratch = a1; __ lw(scratch, MemOperand(sp, kPointerSize)); __ Push(scratch, result_register()); EmitNamedSuperPropertyLoad(prop); break; } case KEYED_SUPER_PROPERTY: { VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( prop->obj()->AsSuperPropertyReference()->home_object()); const Register scratch = a1; const Register scratch1 = t0; __ Move(scratch, result_register()); VisitForAccumulatorValue(prop->key()); __ Push(scratch, result_register()); __ lw(scratch1, MemOperand(sp, 2 * kPointerSize)); __ Push(scratch1, scratch, result_register()); EmitKeyedSuperPropertyLoad(prop); break; } case KEYED_PROPERTY: { VisitForStackValue(prop->obj()); VisitForStackValue(prop->key()); __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 1 * kPointerSize)); __ lw(LoadDescriptor::NameRegister(), MemOperand(sp, 0)); EmitKeyedPropertyLoad(prop); break; } case VARIABLE: UNREACHABLE(); } } // We need a second deoptimization point after loading the value // in case evaluating the property load my have a side effect. if (assign_type == VARIABLE) { PrepareForBailout(expr->expression(), TOS_REG); } else { PrepareForBailoutForId(prop->LoadId(), TOS_REG); } // Inline smi case if we are in a loop. Label stub_call, done; JumpPatchSite patch_site(masm_); int count_value = expr->op() == Token::INC ? 1 : -1; __ mov(a0, v0); if (ShouldInlineSmiCase(expr->op())) { Label slow; patch_site.EmitJumpIfNotSmi(v0, &slow); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ push(v0); break; case NAMED_PROPERTY: __ sw(v0, MemOperand(sp, kPointerSize)); break; case NAMED_SUPER_PROPERTY: __ sw(v0, MemOperand(sp, 2 * kPointerSize)); break; case KEYED_PROPERTY: __ sw(v0, MemOperand(sp, 2 * kPointerSize)); break; case KEYED_SUPER_PROPERTY: __ sw(v0, MemOperand(sp, 3 * kPointerSize)); break; } } } Register scratch1 = a1; __ li(scratch1, Operand(Smi::FromInt(count_value))); __ AddBranchNoOvf(v0, v0, Operand(scratch1), &done); // Call stub. Undo operation first. __ Move(v0, a0); __ jmp(&stub_call); __ bind(&slow); } if (!is_strong(language_mode())) { ToNumberStub convert_stub(isolate()); __ CallStub(&convert_stub); PrepareForBailoutForId(expr->ToNumberId(), TOS_REG); } // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ push(v0); break; case NAMED_PROPERTY: __ sw(v0, MemOperand(sp, kPointerSize)); break; case NAMED_SUPER_PROPERTY: __ sw(v0, MemOperand(sp, 2 * kPointerSize)); break; case KEYED_PROPERTY: __ sw(v0, MemOperand(sp, 2 * kPointerSize)); break; case KEYED_SUPER_PROPERTY: __ sw(v0, MemOperand(sp, 3 * kPointerSize)); break; } } } __ bind(&stub_call); __ mov(a1, v0); __ li(a0, Operand(Smi::FromInt(count_value))); SetExpressionPosition(expr); Handle code = CodeFactory::BinaryOpIC(isolate(), Token::ADD, strength(language_mode())).code(); CallIC(code, expr->CountBinOpFeedbackId()); patch_site.EmitPatchInfo(); __ bind(&done); if (is_strong(language_mode())) { PrepareForBailoutForId(expr->ToNumberId(), TOS_REG); } // Store the value returned in v0. switch (assign_type) { case VARIABLE: if (expr->is_postfix()) { { EffectContext context(this); EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN, expr->CountSlot()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context.Plug(v0); } // For all contexts except EffectConstant we have the result on // top of the stack. if (!context()->IsEffect()) { context()->PlugTOS(); } } else { EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN, expr->CountSlot()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(v0); } break; case NAMED_PROPERTY: { __ mov(StoreDescriptor::ValueRegister(), result_register()); __ li(StoreDescriptor::NameRegister(), Operand(prop->key()->AsLiteral()->value())); __ pop(StoreDescriptor::ReceiverRegister()); EmitLoadStoreICSlot(expr->CountSlot()); CallStoreIC(); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(v0); } break; } case NAMED_SUPER_PROPERTY: { EmitNamedSuperPropertyStore(prop); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(v0); } break; } case KEYED_SUPER_PROPERTY: { EmitKeyedSuperPropertyStore(prop); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(v0); } break; } case KEYED_PROPERTY: { __ mov(StoreDescriptor::ValueRegister(), result_register()); __ Pop(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister()); Handle ic = CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); EmitLoadStoreICSlot(expr->CountSlot()); CallIC(ic); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(v0); } break; } } } void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, Expression* sub_expr, Handle check) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); { AccumulatorValueContext context(this); VisitForTypeofValue(sub_expr); } PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Factory* factory = isolate()->factory(); if (String::Equals(check, factory->number_string())) { __ JumpIfSmi(v0, if_true); __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); Split(eq, v0, Operand(at), if_true, if_false, fall_through); } else if (String::Equals(check, factory->string_string())) { __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, v0, a1); Split(lt, a1, Operand(FIRST_NONSTRING_TYPE), if_true, if_false, fall_through); } else if (String::Equals(check, factory->symbol_string())) { __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, v0, a1); Split(eq, a1, Operand(SYMBOL_TYPE), if_true, if_false, fall_through); } else if (String::Equals(check, factory->boolean_string())) { __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(if_true, eq, v0, Operand(at)); __ LoadRoot(at, Heap::kFalseValueRootIndex); Split(eq, v0, Operand(at), if_true, if_false, fall_through); } else if (String::Equals(check, factory->undefined_string())) { __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(if_true, eq, v0, Operand(at)); __ JumpIfSmi(v0, if_false); // Check for undetectable objects => true. __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through); } else if (String::Equals(check, factory->function_string())) { __ JumpIfSmi(v0, if_false); __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); __ And(a1, a1, Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); Split(eq, a1, Operand(1 << Map::kIsCallable), if_true, if_false, fall_through); } else if (String::Equals(check, factory->object_string())) { __ JumpIfSmi(v0, if_false); __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(if_true, eq, v0, Operand(at)); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ GetObjectType(v0, v0, a1); __ Branch(if_false, lt, a1, Operand(FIRST_JS_RECEIVER_TYPE)); // Check for callable or undetectable objects => false. __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); __ And(a1, a1, Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through); // clang-format off #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ } else if (String::Equals(check, factory->type##_string())) { \ __ JumpIfSmi(v0, if_false); \ __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); \ __ LoadRoot(at, Heap::k##Type##MapRootIndex); \ Split(eq, v0, Operand(at), if_true, if_false, fall_through); SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE // clang-format on } else { if (if_false != fall_through) __ jmp(if_false); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); SetExpressionPosition(expr); // First we try a fast inlined version of the compare when one of // the operands is a literal. if (TryLiteralCompare(expr)) return; // Always perform the comparison for its control flow. Pack the result // into the expression's context after the comparison is performed. Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Token::Value op = expr->op(); VisitForStackValue(expr->left()); switch (op) { case Token::IN: VisitForStackValue(expr->right()); __ CallRuntime(Runtime::kHasProperty); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ LoadRoot(t0, Heap::kTrueValueRootIndex); Split(eq, v0, Operand(t0), if_true, if_false, fall_through); break; case Token::INSTANCEOF: { VisitForAccumulatorValue(expr->right()); __ mov(a0, result_register()); __ pop(a1); InstanceOfStub stub(isolate()); __ CallStub(&stub); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ LoadRoot(at, Heap::kTrueValueRootIndex); Split(eq, v0, Operand(at), if_true, if_false, fall_through); break; } default: { VisitForAccumulatorValue(expr->right()); Condition cc = CompareIC::ComputeCondition(op); __ mov(a0, result_register()); __ pop(a1); bool inline_smi_code = ShouldInlineSmiCase(op); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ Or(a2, a0, Operand(a1)); patch_site.EmitJumpIfNotSmi(a2, &slow_case); Split(cc, a1, Operand(a0), if_true, if_false, NULL); __ bind(&slow_case); } Handle ic = CodeFactory::CompareIC( isolate(), op, strength(language_mode())).code(); CallIC(ic, expr->CompareOperationFeedbackId()); patch_site.EmitPatchInfo(); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through); } } // Convert the result of the comparison into one expected for this // expression's context. context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, Expression* sub_expr, NilValue nil) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); VisitForAccumulatorValue(sub_expr); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ mov(a0, result_register()); if (expr->op() == Token::EQ_STRICT) { Heap::RootListIndex nil_value = nil == kNullValue ? Heap::kNullValueRootIndex : Heap::kUndefinedValueRootIndex; __ LoadRoot(a1, nil_value); Split(eq, a0, Operand(a1), if_true, if_false, fall_through); } else { Handle ic = CompareNilICStub::GetUninitialized(isolate(), nil); CallIC(ic, expr->CompareOperationFeedbackId()); __ LoadRoot(a1, Heap::kTrueValueRootIndex); Split(eq, v0, Operand(a1), if_true, if_false, fall_through); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { __ lw(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); context()->Plug(v0); } Register FullCodeGenerator::result_register() { return v0; } Register FullCodeGenerator::context_register() { return cp; } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); __ sw(value, MemOperand(fp, frame_offset)); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ lw(dst, ContextMemOperand(cp, context_index)); } void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { Scope* closure_scope = scope()->ClosureScope(); if (closure_scope->is_script_scope() || closure_scope->is_module_scope()) { // Contexts nested in the native context have a canonical empty function // as their closure, not the anonymous closure containing the global // code. __ LoadNativeContextSlot(Context::CLOSURE_INDEX, at); } else if (closure_scope->is_eval_scope()) { // Contexts created by a call to eval have the same closure as the // context calling eval, not the anonymous closure containing the eval // code. Fetch it from the context. __ lw(at, ContextMemOperand(cp, Context::CLOSURE_INDEX)); } else { DCHECK(closure_scope->is_function_scope()); __ lw(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } __ push(at); } // ---------------------------------------------------------------------------- // Non-local control flow support. void FullCodeGenerator::EnterFinallyBlock() { DCHECK(!result_register().is(a1)); // Store result register while executing finally block. __ push(result_register()); // Cook return address in link register to stack (smi encoded Code* delta). __ Subu(a1, ra, Operand(masm_->CodeObject())); DCHECK_EQ(1, kSmiTagSize + kSmiShiftSize); STATIC_ASSERT(0 == kSmiTag); __ Addu(a1, a1, Operand(a1)); // Convert to smi. // Store result register while executing finally block. __ push(a1); // Store pending message while executing finally block. ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ li(at, Operand(pending_message_obj)); __ lw(a1, MemOperand(at)); __ push(a1); ClearPendingMessage(); } void FullCodeGenerator::ExitFinallyBlock() { DCHECK(!result_register().is(a1)); // Restore pending message from stack. __ pop(a1); ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ li(at, Operand(pending_message_obj)); __ sw(a1, MemOperand(at)); // Restore result register from stack. __ pop(a1); // Uncook return address and return. __ pop(result_register()); DCHECK_EQ(1, kSmiTagSize + kSmiShiftSize); __ sra(a1, a1, 1); // Un-smi-tag value. __ Addu(at, a1, Operand(masm_->CodeObject())); __ Jump(at); } void FullCodeGenerator::ClearPendingMessage() { DCHECK(!result_register().is(a1)); ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ LoadRoot(a1, Heap::kTheHoleValueRootIndex); __ li(at, Operand(pending_message_obj)); __ sw(a1, MemOperand(at)); } void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorSlot slot) { DCHECK(!slot.IsInvalid()); __ li(VectorStoreICTrampolineDescriptor::SlotRegister(), Operand(SmiFromSlot(slot))); } #undef __ void BackEdgeTable::PatchAt(Code* unoptimized_code, Address pc, BackEdgeState target_state, Code* replacement_code) { static const int kInstrSize = Assembler::kInstrSize; Address branch_address = pc - 6 * kInstrSize; Isolate* isolate = unoptimized_code->GetIsolate(); CodePatcher patcher(isolate, branch_address, 1); switch (target_state) { case INTERRUPT: // slt at, a3, zero_reg (in case of count based interrupts) // beq at, zero_reg, ok // lui t9, upper // ori t9, lower // jalr t9 // nop // ok-label ----- pc_after points here patcher.masm()->slt(at, a3, zero_reg); break; case ON_STACK_REPLACEMENT: case OSR_AFTER_STACK_CHECK: // addiu at, zero_reg, 1 // beq at, zero_reg, ok ;; Not changed // lui t9, upper // ori t9, lower // jalr t9 ;; Not changed // nop ;; Not changed // ok-label ----- pc_after points here patcher.masm()->addiu(at, zero_reg, 1); break; } Address pc_immediate_load_address = pc - 4 * kInstrSize; // Replace the stack check address in the load-immediate (lui/ori pair) // with the entry address of the replacement code. Assembler::set_target_address_at(isolate, pc_immediate_load_address, replacement_code->entry()); unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, pc_immediate_load_address, replacement_code); } BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState( Isolate* isolate, Code* unoptimized_code, Address pc) { static const int kInstrSize = Assembler::kInstrSize; Address branch_address = pc - 6 * kInstrSize; Address pc_immediate_load_address = pc - 4 * kInstrSize; DCHECK(Assembler::IsBeq(Assembler::instr_at(pc - 5 * kInstrSize))); if (!Assembler::IsAddImmediate(Assembler::instr_at(branch_address))) { DCHECK(reinterpret_cast( Assembler::target_address_at(pc_immediate_load_address)) == reinterpret_cast( isolate->builtins()->InterruptCheck()->entry())); return INTERRUPT; } DCHECK(Assembler::IsAddImmediate(Assembler::instr_at(branch_address))); if (reinterpret_cast( Assembler::target_address_at(pc_immediate_load_address)) == reinterpret_cast( isolate->builtins()->OnStackReplacement()->entry())) { return ON_STACK_REPLACEMENT; } DCHECK(reinterpret_cast( Assembler::target_address_at(pc_immediate_load_address)) == reinterpret_cast( isolate->builtins()->OsrAfterStackCheck()->entry())); return OSR_AFTER_STACK_CHECK; } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS