/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #define _USE_MATH_DEFINES #include "webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.h" #include #include #include #include #include "webrtc/base/arraysize.h" #include "webrtc/common_audio/window_generator.h" #include "webrtc/modules/audio_processing/beamformer/covariance_matrix_generator.h" namespace webrtc { namespace { // Alpha for the Kaiser Bessel Derived window. const float kKbdAlpha = 1.5f; const float kSpeedOfSoundMeterSeconds = 343; // The minimum separation in radians between the target direction and an // interferer scenario. const float kMinAwayRadians = 0.2f; // The separation between the target direction and the closest interferer // scenario is proportional to this constant. const float kAwaySlope = 0.008f; // When calculating the interference covariance matrix, this is the weight for // the weighted average between the uniform covariance matrix and the angled // covariance matrix. // Rpsi = Rpsi_angled * kBalance + Rpsi_uniform * (1 - kBalance) const float kBalance = 0.95f; // Alpha coefficients for mask smoothing. const float kMaskTimeSmoothAlpha = 0.2f; const float kMaskFrequencySmoothAlpha = 0.6f; // The average mask is computed from masks in this mid-frequency range. If these // ranges are changed |kMaskQuantile| might need to be adjusted. const int kLowMeanStartHz = 200; const int kLowMeanEndHz = 400; // Range limiter for subtractive terms in the nominator and denominator of the // postfilter expression. It handles the scenario mismatch between the true and // model sources (target and interference). const float kCutOffConstant = 0.9999f; // Quantile of mask values which is used to estimate target presence. const float kMaskQuantile = 0.7f; // Mask threshold over which the data is considered signal and not interference. // It has to be updated every time the postfilter calculation is changed // significantly. // TODO(aluebs): Write a tool to tune the target threshold automatically based // on files annotated with target and interference ground truth. const float kMaskTargetThreshold = 0.01f; // Time in seconds after which the data is considered interference if the mask // does not pass |kMaskTargetThreshold|. const float kHoldTargetSeconds = 0.25f; // To compensate for the attenuation this algorithm introduces to the target // signal. It was estimated empirically from a low-noise low-reverberation // recording from broadside. const float kCompensationGain = 2.f; // Does conjugate(|norm_mat|) * |mat| * transpose(|norm_mat|). No extra space is // used; to accomplish this, we compute both multiplications in the same loop. // The returned norm is clamped to be non-negative. float Norm(const ComplexMatrix& mat, const ComplexMatrix& norm_mat) { RTC_CHECK_EQ(1u, norm_mat.num_rows()); RTC_CHECK_EQ(norm_mat.num_columns(), mat.num_rows()); RTC_CHECK_EQ(norm_mat.num_columns(), mat.num_columns()); complex first_product = complex(0.f, 0.f); complex second_product = complex(0.f, 0.f); const complex* const* mat_els = mat.elements(); const complex* const* norm_mat_els = norm_mat.elements(); for (size_t i = 0; i < norm_mat.num_columns(); ++i) { for (size_t j = 0; j < norm_mat.num_columns(); ++j) { first_product += conj(norm_mat_els[0][j]) * mat_els[j][i]; } second_product += first_product * norm_mat_els[0][i]; first_product = 0.f; } return std::max(second_product.real(), 0.f); } // Does conjugate(|lhs|) * |rhs| for row vectors |lhs| and |rhs|. complex ConjugateDotProduct(const ComplexMatrix& lhs, const ComplexMatrix& rhs) { RTC_CHECK_EQ(1u, lhs.num_rows()); RTC_CHECK_EQ(1u, rhs.num_rows()); RTC_CHECK_EQ(lhs.num_columns(), rhs.num_columns()); const complex* const* lhs_elements = lhs.elements(); const complex* const* rhs_elements = rhs.elements(); complex result = complex(0.f, 0.f); for (size_t i = 0; i < lhs.num_columns(); ++i) { result += conj(lhs_elements[0][i]) * rhs_elements[0][i]; } return result; } // Works for positive numbers only. size_t Round(float x) { return static_cast(std::floor(x + 0.5f)); } // Calculates the sum of absolute values of a complex matrix. float SumAbs(const ComplexMatrix& mat) { float sum_abs = 0.f; const complex* const* mat_els = mat.elements(); for (size_t i = 0; i < mat.num_rows(); ++i) { for (size_t j = 0; j < mat.num_columns(); ++j) { sum_abs += std::abs(mat_els[i][j]); } } return sum_abs; } // Calculates the sum of squares of a complex matrix. float SumSquares(const ComplexMatrix& mat) { float sum_squares = 0.f; const complex* const* mat_els = mat.elements(); for (size_t i = 0; i < mat.num_rows(); ++i) { for (size_t j = 0; j < mat.num_columns(); ++j) { float abs_value = std::abs(mat_els[i][j]); sum_squares += abs_value * abs_value; } } return sum_squares; } // Does |out| = |in|.' * conj(|in|) for row vector |in|. void TransposedConjugatedProduct(const ComplexMatrix& in, ComplexMatrix* out) { RTC_CHECK_EQ(1u, in.num_rows()); RTC_CHECK_EQ(out->num_rows(), in.num_columns()); RTC_CHECK_EQ(out->num_columns(), in.num_columns()); const complex* in_elements = in.elements()[0]; complex* const* out_elements = out->elements(); for (size_t i = 0; i < out->num_rows(); ++i) { for (size_t j = 0; j < out->num_columns(); ++j) { out_elements[i][j] = in_elements[i] * conj(in_elements[j]); } } } std::vector GetCenteredArray(std::vector array_geometry) { for (size_t dim = 0; dim < 3; ++dim) { float center = 0.f; for (size_t i = 0; i < array_geometry.size(); ++i) { center += array_geometry[i].c[dim]; } center /= array_geometry.size(); for (size_t i = 0; i < array_geometry.size(); ++i) { array_geometry[i].c[dim] -= center; } } return array_geometry; } } // namespace const float NonlinearBeamformer::kHalfBeamWidthRadians = DegreesToRadians(20.f); // static const size_t NonlinearBeamformer::kNumFreqBins; NonlinearBeamformer::NonlinearBeamformer( const std::vector& array_geometry, SphericalPointf target_direction) : num_input_channels_(array_geometry.size()), array_geometry_(GetCenteredArray(array_geometry)), array_normal_(GetArrayNormalIfExists(array_geometry)), min_mic_spacing_(GetMinimumSpacing(array_geometry)), target_angle_radians_(target_direction.azimuth()), away_radians_(std::min( static_cast(M_PI), std::max(kMinAwayRadians, kAwaySlope * static_cast(M_PI) / min_mic_spacing_))) { WindowGenerator::KaiserBesselDerived(kKbdAlpha, kFftSize, window_); } void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) { chunk_length_ = static_cast(sample_rate_hz / (1000.f / chunk_size_ms)); sample_rate_hz_ = sample_rate_hz; high_pass_postfilter_mask_ = 1.f; is_target_present_ = false; hold_target_blocks_ = kHoldTargetSeconds * 2 * sample_rate_hz / kFftSize; interference_blocks_count_ = hold_target_blocks_; lapped_transform_.reset(new LappedTransform(num_input_channels_, 1, chunk_length_, window_, kFftSize, kFftSize / 2, this)); for (size_t i = 0; i < kNumFreqBins; ++i) { time_smooth_mask_[i] = 1.f; final_mask_[i] = 1.f; float freq_hz = (static_cast(i) / kFftSize) * sample_rate_hz_; wave_numbers_[i] = 2 * M_PI * freq_hz / kSpeedOfSoundMeterSeconds; } InitLowFrequencyCorrectionRanges(); InitDiffuseCovMats(); AimAt(SphericalPointf(target_angle_radians_, 0.f, 1.f)); } // These bin indexes determine the regions over which a mean is taken. This is // applied as a constant value over the adjacent end "frequency correction" // regions. // // low_mean_start_bin_ high_mean_start_bin_ // v v constant // |----------------|--------|----------------|-------|----------------| // constant ^ ^ // low_mean_end_bin_ high_mean_end_bin_ // void NonlinearBeamformer::InitLowFrequencyCorrectionRanges() { low_mean_start_bin_ = Round(kLowMeanStartHz * kFftSize / sample_rate_hz_); low_mean_end_bin_ = Round(kLowMeanEndHz * kFftSize / sample_rate_hz_); RTC_DCHECK_GT(low_mean_start_bin_, 0U); RTC_DCHECK_LT(low_mean_start_bin_, low_mean_end_bin_); } void NonlinearBeamformer::InitHighFrequencyCorrectionRanges() { const float kAliasingFreqHz = kSpeedOfSoundMeterSeconds / (min_mic_spacing_ * (1.f + std::abs(std::cos(target_angle_radians_)))); const float kHighMeanStartHz = std::min(0.5f * kAliasingFreqHz, sample_rate_hz_ / 2.f); const float kHighMeanEndHz = std::min(0.75f * kAliasingFreqHz, sample_rate_hz_ / 2.f); high_mean_start_bin_ = Round(kHighMeanStartHz * kFftSize / sample_rate_hz_); high_mean_end_bin_ = Round(kHighMeanEndHz * kFftSize / sample_rate_hz_); RTC_DCHECK_LT(low_mean_end_bin_, high_mean_end_bin_); RTC_DCHECK_LT(high_mean_start_bin_, high_mean_end_bin_); RTC_DCHECK_LT(high_mean_end_bin_, kNumFreqBins - 1); } void NonlinearBeamformer::InitInterfAngles() { interf_angles_radians_.clear(); const Point target_direction = AzimuthToPoint(target_angle_radians_); const Point clockwise_interf_direction = AzimuthToPoint(target_angle_radians_ - away_radians_); if (!array_normal_ || DotProduct(*array_normal_, target_direction) * DotProduct(*array_normal_, clockwise_interf_direction) >= 0.f) { // The target and clockwise interferer are in the same half-plane defined // by the array. interf_angles_radians_.push_back(target_angle_radians_ - away_radians_); } else { // Otherwise, the interferer will begin reflecting back at the target. // Instead rotate it away 180 degrees. interf_angles_radians_.push_back(target_angle_radians_ - away_radians_ + M_PI); } const Point counterclock_interf_direction = AzimuthToPoint(target_angle_radians_ + away_radians_); if (!array_normal_ || DotProduct(*array_normal_, target_direction) * DotProduct(*array_normal_, counterclock_interf_direction) >= 0.f) { // The target and counter-clockwise interferer are in the same half-plane // defined by the array. interf_angles_radians_.push_back(target_angle_radians_ + away_radians_); } else { // Otherwise, the interferer will begin reflecting back at the target. // Instead rotate it away 180 degrees. interf_angles_radians_.push_back(target_angle_radians_ + away_radians_ - M_PI); } } void NonlinearBeamformer::InitDelaySumMasks() { for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) { delay_sum_masks_[f_ix].Resize(1, num_input_channels_); CovarianceMatrixGenerator::PhaseAlignmentMasks( f_ix, kFftSize, sample_rate_hz_, kSpeedOfSoundMeterSeconds, array_geometry_, target_angle_radians_, &delay_sum_masks_[f_ix]); complex_f norm_factor = sqrt( ConjugateDotProduct(delay_sum_masks_[f_ix], delay_sum_masks_[f_ix])); delay_sum_masks_[f_ix].Scale(1.f / norm_factor); normalized_delay_sum_masks_[f_ix].CopyFrom(delay_sum_masks_[f_ix]); normalized_delay_sum_masks_[f_ix].Scale(1.f / SumAbs( normalized_delay_sum_masks_[f_ix])); } } void NonlinearBeamformer::InitTargetCovMats() { for (size_t i = 0; i < kNumFreqBins; ++i) { target_cov_mats_[i].Resize(num_input_channels_, num_input_channels_); TransposedConjugatedProduct(delay_sum_masks_[i], &target_cov_mats_[i]); } } void NonlinearBeamformer::InitDiffuseCovMats() { for (size_t i = 0; i < kNumFreqBins; ++i) { uniform_cov_mat_[i].Resize(num_input_channels_, num_input_channels_); CovarianceMatrixGenerator::UniformCovarianceMatrix( wave_numbers_[i], array_geometry_, &uniform_cov_mat_[i]); complex_f normalization_factor = uniform_cov_mat_[i].elements()[0][0]; uniform_cov_mat_[i].Scale(1.f / normalization_factor); uniform_cov_mat_[i].Scale(1 - kBalance); } } void NonlinearBeamformer::InitInterfCovMats() { for (size_t i = 0; i < kNumFreqBins; ++i) { interf_cov_mats_[i].clear(); for (size_t j = 0; j < interf_angles_radians_.size(); ++j) { interf_cov_mats_[i].push_back(new ComplexMatrixF(num_input_channels_, num_input_channels_)); ComplexMatrixF angled_cov_mat(num_input_channels_, num_input_channels_); CovarianceMatrixGenerator::AngledCovarianceMatrix( kSpeedOfSoundMeterSeconds, interf_angles_radians_[j], i, kFftSize, kNumFreqBins, sample_rate_hz_, array_geometry_, &angled_cov_mat); // Normalize matrices before averaging them. complex_f normalization_factor = angled_cov_mat.elements()[0][0]; angled_cov_mat.Scale(1.f / normalization_factor); // Weighted average of matrices. angled_cov_mat.Scale(kBalance); interf_cov_mats_[i][j]->Add(uniform_cov_mat_[i], angled_cov_mat); } } } void NonlinearBeamformer::NormalizeCovMats() { for (size_t i = 0; i < kNumFreqBins; ++i) { rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]); rpsiws_[i].clear(); for (size_t j = 0; j < interf_angles_radians_.size(); ++j) { rpsiws_[i].push_back(Norm(*interf_cov_mats_[i][j], delay_sum_masks_[i])); } } } void NonlinearBeamformer::ProcessChunk(const ChannelBuffer& input, ChannelBuffer* output) { RTC_DCHECK_EQ(input.num_channels(), num_input_channels_); RTC_DCHECK_EQ(input.num_frames_per_band(), chunk_length_); float old_high_pass_mask = high_pass_postfilter_mask_; lapped_transform_->ProcessChunk(input.channels(0), output->channels(0)); // Ramp up/down for smoothing. 1 mask per 10ms results in audible // discontinuities. const float ramp_increment = (high_pass_postfilter_mask_ - old_high_pass_mask) / input.num_frames_per_band(); // Apply the smoothed high-pass mask to the first channel of each band. // This can be done because the effect of the linear beamformer is negligible // compared to the post-filter. for (size_t i = 1; i < input.num_bands(); ++i) { float smoothed_mask = old_high_pass_mask; for (size_t j = 0; j < input.num_frames_per_band(); ++j) { smoothed_mask += ramp_increment; output->channels(i)[0][j] = input.channels(i)[0][j] * smoothed_mask; } } } void NonlinearBeamformer::AimAt(const SphericalPointf& target_direction) { target_angle_radians_ = target_direction.azimuth(); InitHighFrequencyCorrectionRanges(); InitInterfAngles(); InitDelaySumMasks(); InitTargetCovMats(); InitInterfCovMats(); NormalizeCovMats(); } bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) { // If more than half-beamwidth degrees away from the beam's center, // you are out of the beam. return fabs(spherical_point.azimuth() - target_angle_radians_) < kHalfBeamWidthRadians; } void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input, size_t num_input_channels, size_t num_freq_bins, size_t num_output_channels, complex_f* const* output) { RTC_CHECK_EQ(kNumFreqBins, num_freq_bins); RTC_CHECK_EQ(num_input_channels_, num_input_channels); RTC_CHECK_EQ(1u, num_output_channels); // Calculating the post-filter masks. Note that we need two for each // frequency bin to account for the positive and negative interferer // angle. for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) { eig_m_.CopyFromColumn(input, i, num_input_channels_); float eig_m_norm_factor = std::sqrt(SumSquares(eig_m_)); if (eig_m_norm_factor != 0.f) { eig_m_.Scale(1.f / eig_m_norm_factor); } float rxim = Norm(target_cov_mats_[i], eig_m_); float ratio_rxiw_rxim = 0.f; if (rxim > 0.f) { ratio_rxiw_rxim = rxiws_[i] / rxim; } complex_f rmw = abs(ConjugateDotProduct(delay_sum_masks_[i], eig_m_)); rmw *= rmw; float rmw_r = rmw.real(); new_mask_[i] = CalculatePostfilterMask(*interf_cov_mats_[i][0], rpsiws_[i][0], ratio_rxiw_rxim, rmw_r); for (size_t j = 1; j < interf_angles_radians_.size(); ++j) { float tmp_mask = CalculatePostfilterMask(*interf_cov_mats_[i][j], rpsiws_[i][j], ratio_rxiw_rxim, rmw_r); if (tmp_mask < new_mask_[i]) { new_mask_[i] = tmp_mask; } } } ApplyMaskTimeSmoothing(); EstimateTargetPresence(); ApplyLowFrequencyCorrection(); ApplyHighFrequencyCorrection(); ApplyMaskFrequencySmoothing(); ApplyMasks(input, output); } float NonlinearBeamformer::CalculatePostfilterMask( const ComplexMatrixF& interf_cov_mat, float rpsiw, float ratio_rxiw_rxim, float rmw_r) { float rpsim = Norm(interf_cov_mat, eig_m_); float ratio = 0.f; if (rpsim > 0.f) { ratio = rpsiw / rpsim; } return (1.f - std::min(kCutOffConstant, ratio / rmw_r)) / (1.f - std::min(kCutOffConstant, ratio / ratio_rxiw_rxim)); } void NonlinearBeamformer::ApplyMasks(const complex_f* const* input, complex_f* const* output) { complex_f* output_channel = output[0]; for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) { output_channel[f_ix] = complex_f(0.f, 0.f); const complex_f* delay_sum_mask_els = normalized_delay_sum_masks_[f_ix].elements()[0]; for (size_t c_ix = 0; c_ix < num_input_channels_; ++c_ix) { output_channel[f_ix] += input[c_ix][f_ix] * delay_sum_mask_els[c_ix]; } output_channel[f_ix] *= kCompensationGain * final_mask_[f_ix]; } } // Smooth new_mask_ into time_smooth_mask_. void NonlinearBeamformer::ApplyMaskTimeSmoothing() { for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) { time_smooth_mask_[i] = kMaskTimeSmoothAlpha * new_mask_[i] + (1 - kMaskTimeSmoothAlpha) * time_smooth_mask_[i]; } } // Copy time_smooth_mask_ to final_mask_ and smooth over frequency. void NonlinearBeamformer::ApplyMaskFrequencySmoothing() { // Smooth over frequency in both directions. The "frequency correction" // regions have constant value, but we enter them to smooth over the jump // that exists at the boundary. However, this does mean when smoothing "away" // from the region that we only need to use the last element. // // Upward smoothing: // low_mean_start_bin_ // v // |------|------------|------| // ^------------------>^ // // Downward smoothing: // high_mean_end_bin_ // v // |------|------------|------| // ^<------------------^ std::copy(time_smooth_mask_, time_smooth_mask_ + kNumFreqBins, final_mask_); for (size_t i = low_mean_start_bin_; i < kNumFreqBins; ++i) { final_mask_[i] = kMaskFrequencySmoothAlpha * final_mask_[i] + (1 - kMaskFrequencySmoothAlpha) * final_mask_[i - 1]; } for (size_t i = high_mean_end_bin_ + 1; i > 0; --i) { final_mask_[i - 1] = kMaskFrequencySmoothAlpha * final_mask_[i - 1] + (1 - kMaskFrequencySmoothAlpha) * final_mask_[i]; } } // Apply low frequency correction to time_smooth_mask_. void NonlinearBeamformer::ApplyLowFrequencyCorrection() { const float low_frequency_mask = MaskRangeMean(low_mean_start_bin_, low_mean_end_bin_ + 1); std::fill(time_smooth_mask_, time_smooth_mask_ + low_mean_start_bin_, low_frequency_mask); } // Apply high frequency correction to time_smooth_mask_. Update // high_pass_postfilter_mask_ to use for the high frequency time-domain bands. void NonlinearBeamformer::ApplyHighFrequencyCorrection() { high_pass_postfilter_mask_ = MaskRangeMean(high_mean_start_bin_, high_mean_end_bin_ + 1); std::fill(time_smooth_mask_ + high_mean_end_bin_ + 1, time_smooth_mask_ + kNumFreqBins, high_pass_postfilter_mask_); } // Compute mean over the given range of time_smooth_mask_, [first, last). float NonlinearBeamformer::MaskRangeMean(size_t first, size_t last) { RTC_DCHECK_GT(last, first); const float sum = std::accumulate(time_smooth_mask_ + first, time_smooth_mask_ + last, 0.f); return sum / (last - first); } void NonlinearBeamformer::EstimateTargetPresence() { const size_t quantile = static_cast( (high_mean_end_bin_ - low_mean_start_bin_) * kMaskQuantile + low_mean_start_bin_); std::nth_element(new_mask_ + low_mean_start_bin_, new_mask_ + quantile, new_mask_ + high_mean_end_bin_ + 1); if (new_mask_[quantile] > kMaskTargetThreshold) { is_target_present_ = true; interference_blocks_count_ = 0; } else { is_target_present_ = interference_blocks_count_++ < hold_target_blocks_; } } } // namespace webrtc